Exocytosis by Neutrophils

  • Marco Baggiolini
  • Beatrice Dewald
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)


Neutrophils are short-lived, highly specialized phagocytes. Their main function is to defend the host organism against invading microbes. The properties required to perform this function are chemotactic responsiveness, mobility, and the ability to phagocytose. Microorganisms are sensed through the chemotactic signals they emit or induce; are approached by the neutrophils, which move actively toward the source of these signals; and are engulfed and killed within the phagocytic vacuoles. Killing depends on the activation of the respiratory burst, which generates microbicidal oxygen metabolites, and on the release of enzymes and other proteins stored in the granules.


Human Neutrophil Phorbol Myristate Acetate Polymorphonuclear Leukocyte Chronic Granulomatous Disease Phorbol Myristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amherdt, M., Baggiolini, M., Perrelet, A., and Orci, L., 1978, Freeze-fracture of membrane fusions in phagocytosing polymorphonuclear leukocytes, Lab. Invest. 39:398.PubMedGoogle Scholar
  2. Avila, J. L., and Convit, J., 1973, Human polymorphonuclear leukocyte enzymes. I. Assay of acid hydrolases and other enzymes, Biochim. Biophys. Acta 293:397.PubMedCrossRefGoogle Scholar
  3. Bach, M. K., Brashler, J. R., Smith, H. W., Fitzpatrick, F. A., Sun, F. F., and McGuire, J. C., 1982, 6,9-Deepoxy-6,9-(phenylimino)-6,8-prostaglandin I1, (U-60,257), a new inhibitor of leukotriene C and D synthesis: in vitro studies, Prostaglandins 23:759.PubMedGoogle Scholar
  4. Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1969, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48:187.PubMedCrossRefGoogle Scholar
  5. Baggiolini, M., 1972, The enzymes of the granules of polymophonuclear leukocytes and their functions, Enzyme 13:132.PubMedGoogle Scholar
  6. Baggiolini, M., Hirsch, J. G., and de Duve, C., 1969, Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation, J. Cell Biol 40: 529.PubMedCrossRefGoogle Scholar
  7. Baggiolini, M., de Duve, C., Masson, P. L., and Heremans, J. F., 1970a, Association of lacto-ferrin with specific granules in rabbit heterophil leukocytes, J. Exp. Med. 131:559.PubMedCrossRefGoogle Scholar
  8. Baggiolini, M., Hirsch, J. G., and de Duve, C., 1970b, Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes, J. Cell Biol. 45:586.PubMedCrossRefGoogle Scholar
  9. Baggiolini, M., Bretz, U., and Dewald, B., 1978, Subcellular localization of granule enzymes, in: Neutral Proteases of Human Polymorphonuclear Leukocytes (K. Havemann, and A. Janoff, eds.), pp. 3–17, Urban & Schwarzenberg, Baltimore and Munich.Google Scholar
  10. Bainton, D. F., 1973, Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms, J. Cell Biol. 58:249.PubMedCrossRefGoogle Scholar
  11. Bainton, D. F., and Farquhar, M. G., 1966, Origin of granules in polymorphonuclear leukocytes: Two types derived from opposite faces of the Golgi complex in developing granulocytes, J. Cell Biol 28:277.PubMedCrossRefGoogle Scholar
  12. Bainton, D. F., and Farquhar, M. G., 1968, Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells, J. Cell Biol. 39:299.PubMedCrossRefGoogle Scholar
  13. Bainton, D. F., Ullyot, J. L., and Farquhar, M. G., 1971, The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules, J. Exp. Med. 134:907.PubMedCrossRefGoogle Scholar
  14. Becker, E. L., and Showell, H. J., 1974, The ability of chemotactic factors to induce lysosomal enzyme release. II. The mechanism of release, J. Immunol. 112:2055.PubMedGoogle Scholar
  15. Becker, E. L., Showell, H. J., Henson, P. M., and Hsu, L. S., 1974, The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces and the relation of enzyme release to chemotactic responsiveness, J. Immunol. 112:2047.PubMedGoogle Scholar
  16. Becker, E. L., Sigman, M., and Oliver, J. M., 1979, Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187: the nature of the receptor and the requirement for Ca2+, Am. J. Pathol. 95:81.PubMedGoogle Scholar
  17. Bennett, J. P., Cockcroft, S., and Gomperts, B. D., 1980, Use of cytochalasin B to distinguish between early and late events in neutrophil activation, Biochim. Biophys. Acta 601:584.PubMedCrossRefGoogle Scholar
  18. Bentwood, B. J., and Henson, P. M., 1980, The sequential release of granule constituents from human neutrophils, J. Immunol. 124:855.PubMedGoogle Scholar
  19. Benveniste, J., Tencé, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthesis and proposed structure of platelet-activating factor (PAF): PAF-acether, an alkyl ether analog of lysophosphatidylcholine, C. R. Acad. Sci. [D] (Paris) 289:1037.Google Scholar
  20. Betz, S. J., and Henson, P. M., 1980, Production and release of platelet-activating factor (PAF); dissociation from degranulation and superoxide production in the human neutrophil, J. Immunol. 125:2756.PubMedGoogle Scholar
  21. Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187, Proc. Natl. Acad. Sci. (USA) 76:2148.CrossRefGoogle Scholar
  22. Borgeat, P., Hamberg, M., and Samuelsson, B., 1976, Transformation of arachidonic acid and homo-γ-linolenic acid by rabbit polymorphonuclear leukocytes, J. Biol. Chem. 251: 7816.PubMedGoogle Scholar
  23. Bray, M. A., Ford-Hutchinson, A. W., and Smith, M. J. H., 1981, Leukotriene B4: An inflammatory mediator in vivo, Prostaglandins 22:213.PubMedGoogle Scholar
  24. Bretz, U., and Baggiolini, M., 1973, Association of the alkaline phosphatase of rabbit polymorphonuclear leukocytes with the membrane of the specific granules, J. Cell Biol 59: 696.PubMedCrossRefGoogle Scholar
  25. Bretz, U., and Baggiolini, M., 1974, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J. Cell Biol. 63:251.PubMedCrossRefGoogle Scholar
  26. Burke, J. S., Uriuhara, T., Macmorine, D. R. L., and Movat, H. Z., 1964, A permeability factor released from phagocytosing PMN-leukocytes and its inhibition by protease inhibitors, Life Sci. 3:1505.PubMedCrossRefGoogle Scholar
  27. Camussi, G., Aglietta, M., Coda, R., Bussolino, F., Piacibello, W., and Tetta, C., 1981, Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: Monocytes, polymorphonuclear neutrophils and basophils, Immunology 42:191.PubMedGoogle Scholar
  28. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl Acad. Sci. (USA) 75:3943.CrossRefGoogle Scholar
  29. Chenoweth, D. E., and Hugli, T. E., 1980, Human C5a and C5a analogs as probes of the neutrophil C5a receptor, Mol Immunol 17:151.PubMedCrossRefGoogle Scholar
  30. Claessen, H.-E., Lundberg, U., and Malmsten, C., 1981, Serum-coated zymosan stimulates the synthesis of leukotriene B4 in human polymorphonuclear leukocytes. Inhibition by cyclic AMP, Biochem. Biophys. Res. Commun. 99:1230.CrossRefGoogle Scholar
  31. Cohn, Z. A., and Hirsch, J. G., 1960a, The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leukocytes, J. Exp. Med. 112:983.PubMedCrossRefGoogle Scholar
  32. Cohn, Z. A., and Hirsch, J. G., 1960b, The influence of phagocytosis on the intracellular distribution of granule associated components of polymorphonuclear leukocytes, J. Exp. Med. 112:1015.PubMedCrossRefGoogle Scholar
  33. Corcino, J., Krauss, S., Waxman, S., and Herbert, V., 1970, Release of vitamin B12-binding protein by human leukocytes in vitro, J. Clin. Invest. 49:2250.PubMedCrossRefGoogle Scholar
  34. Cotter, T. G., Spears, P., and Henson, P. M., 1981, A monoclonal antibody inhibiting human neutrophil Chemotaxis and degranulation, J. Immunol. 127:1355.PubMedGoogle Scholar
  35. Craddock, P. R., White, J. G., and Jacob, H. S., 1978, Potentiation of complement (C5a)-induced granulocyte aggregation by cytochalasin B, J. Lab. Clin. Med. 91:490.PubMedGoogle Scholar
  36. Dahinden, C., and Fehr, J., 1980, Receptor-directed inhibition of chemotactic factor-induced neutrophil hyperactivity by pyrazolon derivatives. Definition of a chemotactic peptide antagonist, J. Clin. Invest. 66:884.PubMedCrossRefGoogle Scholar
  37. Davies, P., Fox, R. I., Polyzonis, M., Allison, A. C., and Haswell, A. D., 1973, The inhibition of phagocytosis and facilitation of exocytosis in rabbit polymorphonuclear leukocytes by cytochalasin B, Lab. Invest. 28:16.PubMedGoogle Scholar
  38. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor. Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355.PubMedGoogle Scholar
  39. Dewald, B., Rindler-Ludwig, R., Bretz, U., and Baggiolini, M., 1975, Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes, J. Exp. Med. 141:709.PubMedCrossRefGoogle Scholar
  40. Dewald, B., Bretz, U., and Baggiolini, M., 1982, Release of gelatinase from a novel secretory compartment of human neutrophils, J. Clin. Invest. 70:518.PubMedCrossRefGoogle Scholar
  41. de Duve, C., and Wattiaux, R., 1966, Functions of lysosomes, Annu. Rev. Physiol. 28:435.PubMedCrossRefGoogle Scholar
  42. de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and Van Hoof, F., 1974, Commentary. Lysosomotropic agents, Biochem. Pharmacol. 23:2495.PubMedCrossRefGoogle Scholar
  43. Estensen, R. D., White, J. G., and Holmes, B., 1974, Specific degranulation of human polymorphonuclear leukocytes, Nature 248:347.PubMedCrossRefGoogle Scholar
  44. Fehr, J., and Dahinden, C., 1979, Modulating influence of chemotactic factor-induced cell adhesiveness on granulocyte function, J. Clin. Invest. 64:8.PubMedCrossRefGoogle Scholar
  45. Feinmark, S. J., Lindgren, J. A., Claessen, H.-E., Malmsten, C., and Samuelsson, B., 1981, Stimulation of human leukocyte degranulation by leukotriene B4 and its ω-oxidized metabolites, FEBS Lett. 136:141.PubMedCrossRefGoogle Scholar
  46. Fernandez, H. N., and Hugh, T. E., 1976, Partial characterization of human C5a anaphyla-toxin. I. Chemical description of the carbohydrate and polypeptide portions of human C5a, J. Immunol. 117:1688.PubMedGoogle Scholar
  47. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature 286:264.PubMedCrossRefGoogle Scholar
  48. Goetzl, E. J., and Pickett, W. C., 1980, The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs), J. Immunol. 125:1789.PubMedGoogle Scholar
  49. Goetzl, E. J., and Pickett, W. C., 1981, Novel structural determinants of the human neutrophil chemotactic activity of leukotriene B, J. Exp. Med. 153:482.PubMedCrossRefGoogle Scholar
  50. Goldstein, I. M., Horn, J. K., Kaplan, H. B., and Weissmann, G., 1974, Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 60:807.PubMedCrossRefGoogle Scholar
  51. Goldstein, I. M., Hoffstein, S. T., and Weissmann, G., 1975b, Mechanisms of lysosomal enzyme release from human polymorphonuclear leukocytes. Effects of phorbol myris-tate acetate, J. Cell Biol. 66:647.PubMedCrossRefGoogle Scholar
  52. Goldstein, I. M., Roos, D., Kaplan, H. B., and Weissmann, G., 1975b, Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis, J. Clin. Invest. 56:1155.PubMedCrossRefGoogle Scholar
  53. Goldstein, I. M., Malmsten, C. L., Kindahl, H., Kaplan, H. B., Radmark, O., Samuelsson, B., and Weissmann, G., 1978, Thromboxane generation by human peripheral blood polymorphonuclear leukocytes, J. Exp. Med. 148:787.PubMedCrossRefGoogle Scholar
  54. Hafstrom, I., Palmblad, J., Malmsten, C. L., Radmark, O., and Samuelsson, B., 1981, Leukotriene B4-a stereospecific stimulator for release of lysosomal enzymes from neutrophils, FEBS Lett. 130:146.PubMedCrossRefGoogle Scholar
  55. Hansson, G., and Radmark, O., 1980, Leukotriene C4: Isolation from human polymorphonuclear leukocytes, FEBS Lett. 122:87.PubMedCrossRefGoogle Scholar
  56. Henson, P. M., 1971a, The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis and adherence to nonphagocytosable surfaces, J. Immunol. 107:1547.PubMedGoogle Scholar
  57. Henson, P. M., 1911b, Interaction of cells with immune complexes: Adherence, release of constitutents, and tissue injury, J. Exp. Med. 134:114.Google Scholar
  58. Henson, P. M., and Oades, Z. G., 1973, Enhancement of immunologically induced granule exocytosis from neutrophils by cytochalasin B, J. Immunol. 110:290.PubMedGoogle Scholar
  59. Henson, P. M., Johnson, H. B., and Spiegelberg, H. L., 1972, The release of granule enzymes from human neutrophils stimulated by aggregated immunoglobulins of different classes and subclasses, J. Immunol. 109:1182.PubMedGoogle Scholar
  60. Henson, P. M., Zanolari, B., Schwartzman, N. A., and Hong, S. R., 1978, Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin B, J. Immunol 121:851.PubMedGoogle Scholar
  61. Henson, P. M., Hollister, J. R., Musson, R. A., Webster, R. O., Spears, P., Henson, J. E., and McCarthy, K. M., 1979, Inflammation as a surface phenomenon: Initiation of inflammatory processes by surface-bound immunologic components, in: Advances in Inflammation Research (G. Weissmann, B. Samuelsson, and R. Paoletti, eds.), pp. 341–352, Raven Press, New York.Google Scholar
  62. Higgs, G. A., McCall, E., and Youlten, L. J. F., 1975, A chemotactic role for prostaglandins released from polymorphonuclear leucocytes during phagocytosis, Br. J. Pharmacol 53: 539.PubMedCrossRefGoogle Scholar
  63. Higgs, G. A., Bunting, S., Moncada, S., and Vane, J. R., 1976, Polymorphonuclear leukocytes produce thromboxane A2-like activity during phagocytosis, Prostaglandins 12:749.PubMedGoogle Scholar
  64. Hirsch, J. G., 1962, Cinemicrophotographic observations on granule lysis in polymorphonuclear leukocytes during phagocytosis, J. Exp. Med. 116:827.PubMedCrossRefGoogle Scholar
  65. Hoffstein, S., Soberman, R., Goldstein, I., and Weissmann, G., 1976, Concanavalin A induces microtubule assembly and specific granule discharge in human polymorphonuclear leukocytes, J. Cell Biol. 68:781.PubMedCrossRefGoogle Scholar
  66. Ingraham, L. M., Coates, T. D., Allen, J. M., Higgins, C. P., Baehner, R. L., and Boxer, L. A., 1982, Metabolic, membrane, and functional responses of human polymorphonuclear leukocytes to platelet-activating factor, Blood 59:1259.PubMedGoogle Scholar
  67. Jouvin-Marche, E., Poitevin, B., and Benveniste, J., 1982, Platelet-activating factor (PAF-acether), an activator of neutrophil functions, Agents Actions 12:716.PubMedCrossRefGoogle Scholar
  68. Jubiz, W., Radmark, O., Malmsten, C., Hansson, G., Lindgren, J. A., Palmblad, J., Udén, A.-M., and Samuelsson, B., 1982, A novel leukotriene produced by stimulation of leukocytes with formylmethionylleucylphenylalanine, J. Biol Chem. 257:6106.PubMedGoogle Scholar
  69. Kane, S. P., and Peters, T. J., 1975, Analytical subcellular fractionation of human granulocytes with reference to the localization of vitamin B12-binding proteins, Clin. Sci. Mol. Med. 49:171.PubMedGoogle Scholar
  70. Klempner, M. S., Dinarello, C. A., and Gallin, J. I., 1978, Human leukocytic pyrogen induces release of specific granule contents from human neutrophils, J. Clin. Invest. 61: 1330.PubMedCrossRefGoogle Scholar
  71. Korchak, H. M., Eisenstat, B. A., Hoffstein, S. T., Dunham, P. B., and Weissmann, G., 1980, Anion channel blockers inhibit lysosomal enzyme secretion from human neutrophils without affecting generation of superoxide anion, Proc. Natl. Acad. Sci. (USA) 77:2721.CrossRefGoogle Scholar
  72. Koza, E. P., Wright, T. E., and Becker, E. L., 1975, Lysosomal enzyme secretion and volume contraction induced in neutrophils by cytochalasin B, chemotactic factor and A23187, Proc. Soc. Exp. Biol. Med. 149:476.PubMedGoogle Scholar
  73. Leffell, M. S., and Spitznagel, J. K., 1972, Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes, Infect. Immun. 6:761.PubMedGoogle Scholar
  74. Leffell, M. S., and Spitznagel, J. K., 1974, Intracellular and extracellular degranulation of human polymorphonuclear azurophil and specific granules induced by immune complexes, Infect. Immun. 10:1241.PubMedGoogle Scholar
  75. Leffell, M. S., and Spitznagel, J. K., 1975, Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: Effects of immunoglobulin G subclasses and immune complexes coated on latex beads, Infect. Immun. 12:813.PubMedGoogle Scholar
  76. May, C. D., Levine, B. B., and Weissmann, G., 1970, Effects of compounds which inhibit antigenic release of histamine and phagocytic release of lysosomal enzyme on glucose utilization by leukocytes in human, Proc. Soc. Exp. Biol. Med. 133:758.PubMedGoogle Scholar
  77. Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M., 1977, Collagenase is a component of the specific granules of human neutrophil leukocytes, Biochem. J. 162:195.PubMedGoogle Scholar
  78. Murphy, G., Bretz, U., Baggiolini, M., and Reynolds, J. J., 1980, The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes, Biochem. J. 192:517.PubMedGoogle Scholar
  79. Nelson, R. D., Ackerman, S. K., Fiegel, V. D., Bauman, M. P., and Douglas, S. D., 1979, Cytotaxin receptors of neutrophils: evidence that F-methionyl peptides and pepstatin share a common receptor, Infect. Immun. 26:996.PubMedGoogle Scholar
  80. Northover, B. J., 1977, Effect of indomethacin and related drugs on the calcium ion-dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leucocytes in vitro, Br. J. Pharmacol. 59:253.PubMedCrossRefGoogle Scholar
  81. O’Flaherty, J. T., Kreutzer, D. L., Showell, H. J., and Ward, P. A., 1977, Influence of inhibitors of cellular function on chemotactic factor-induced neutrophil aggregation, J. Immunol. 119:1751.PubMedGoogle Scholar
  82. Ohta, H., 1964, A biochemical study on the neutrophilic granules isolated in a pure state from leukocyte homogenate, Acta Haematol. Jpn. 27:555.Google Scholar
  83. Radmark, O., Malmsten, C., Samuelsson, B., Goto, G., Marfat, A., and Corey, E. J., 1980, Leukotriene A. Isolation from human polymorphonuclear leukocytes, J. Biol. Chem. 255:1 18–28.Google Scholar
  84. Rae, S. A., and Smith, M. J. H., 1981, The stimulation of lysosomal enzyme secretion from human polymorphonuclear leucocytes by leukotriene B4, J. Pharm. Pharmacol. 33:616.PubMedCrossRefGoogle Scholar
  85. Robineaux, J., and Frederick, J., 1955, Contribution à l’étude des granulations neutrophiles des polynucléaires par la microcinematographie en contraste de phase, C.R. Soc. Biol. (Paris) 149:486.Google Scholar
  86. Ryan, G. B., Borysenko, J. Z., and Karnovsky, M. J., 1974, Factors affecting the redistribution of surface-bound concanavalin A on human polymorphonuclear leukocytes, J. Cell Biol. 62:351.PubMedCrossRefGoogle Scholar
  87. Sanchez-Crespo, M., Alonso, F., and Egido, J., 1980, Platelet-activating factor in anaphylaxis and phagocytosis. I. Release from human peripheral polymorphonuclears and monocytes during the stimulation by ionophore A23187 and phagocytosis but not from degranu-lating basophils, Immunology 40:645.PubMedGoogle Scholar
  88. Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-Formylmethionyl peptides as chemoattractants for leucocytes, Proc. Natl Acad. Sci. (USA) 72:1059.CrossRefGoogle Scholar
  89. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, D. J., 1981, Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor), J. Immunol 127:1250.PubMedGoogle Scholar
  90. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976, The structure-activity relations of synthetic peptides as chemo-tactic factors and inducers of lysosomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154.PubMedCrossRefGoogle Scholar
  91. Showell, H. J., Naccache, P. H., Borgeat, P., Picard, S., Vallerand, P., Becker, E. L., and Sha’afî, R. I., 1982, Characterization of the secretory activity of leukotriene B4 toward rabbit neutrophils, J. Immunol 128:811.PubMedGoogle Scholar
  92. Skosey, J. L., Chow, D., Damgaard, E., and Sorensen, L. B., 1973, Effect of cytochalasin B on response of human polymorphonuclear leukocytes to zymosan, J. Cell Biol 57:237.PubMedCrossRefGoogle Scholar
  93. Smith, R. J., 1978, Nonsteroid anti-inflammatory agents: Regulators of the phagocytic secretion of lysosomal enzymes from guinea-pig neutrophils, J. Pharmacol Exp. Ther. 207:618.PubMedGoogle Scholar
  94. Smith, R. J., 1979, The guinea pig neutrophil calcium-dependent lysosomal enzyme secretory process. Inhibition by nonsteroid anti-inflammatory agents, Biochem. Pharmacol. 28: 2739.PubMedCrossRefGoogle Scholar
  95. Smith, R. J., and Bowman, B. J., 1982, Stimulation of human neutrophil degranulation with l-O-octadecyl-2-O-acetyl-sn-glyeery1–3-phosphorylcholine: Modulation by inhibitors of arachidonic acid metabolism, Biochem. Biophys., Res. Commun. 104:1495.CrossRefGoogle Scholar
  96. Smith, R. J., and Iden, S. S., 1980, Pharmacological modulation of chemotactic factor-elicited release of granule-associated enzymes from human neutrophils. Effects of prostaglandins, nonsteroid anti-inflammatory agents and corticosteroids, Biochem. Pharmacol. 29:2389.PubMedCrossRefGoogle Scholar
  97. Smith, R. J., Sun, F. F., Iden, S. S., Bowman, B. J., Sprecher, H., and McGuire, J. C., 1981, An evaluation of the relationship between arachidonic acid lipoxygenation and human neutrophil degranulation, Clin. Immunol Immunopathol 20:157.PubMedCrossRefGoogle Scholar
  98. Smith, R. J., Sun, F. F., Bowman, B. J., Iden, S. S., Smith H. W., and McGuire, J. C., 1982, Effect of 6,9-Deepoxy-6,9-(phenylimino)-6,8-prostaglandin 11 (U-60,257), and inhibitor of leukotriene synthesis, on human neutrophil function, Biochem. Biophys. Res. Commun. 109:943.PubMedCrossRefGoogle Scholar
  99. Smolen, J. E., and Weissmann, G., 1980, Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid, and p-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes, Biochem. Pharmacol. 29:533.PubMedCrossRefGoogle Scholar
  100. Sopata, I., and Dancewicz, A. M., 1974, Presence of a gelatin-specific proteinase and its latent form in human leucocytes, Biochem. Biophys. Acta 370:510.PubMedCrossRefGoogle Scholar
  101. Spitznagel, J. K., DaUdorf, F. G., Leffell, M. S., Folds, J. D., Welsh, I. R. H., Cooney, M. H., and Martin, L. E., 1974, Character of azurophil and specific granules purified from human polymorphonuclear leukocytes, Lab. Invest. 30:774.PubMedGoogle Scholar
  102. Stenson, W. F., and Parker, C. W., 1979, Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64:1457.PubMedCrossRefGoogle Scholar
  103. Taichman, N. S., Pruzanski, W., and Ranadive, N. S., 1972, Release of intracellular constituents from rabbit polymorphonuclear leukocytes exposed to soluble and insoluble immune complexes, Int. Arch. Allergy 43:182.PubMedCrossRefGoogle Scholar
  104. Weissmann, G., 1971, The molecular basis of acute gout, Hosp Pract 6:43.Google Scholar
  105. Weissmann, G., Dukor, P., and Zurier, R. B., 1971, Effect of cyclic AMP on release of lysosomal enzymes from phagocytes, Nature (New Biol.) 231:131.Google Scholar
  106. Weissman, G., Goldstein, I., Hoffstein, S., Chauvet, G., and Robineaux, R., 1975, Yin/Yang modulation of lysosomal enzyme release from polymorphonuclear leukocytes by cyclic nucleotides, Ann. NY Acad. Sci. 256:222.CrossRefGoogle Scholar
  107. West, B. C., Rosenthal, A. S., Gelb, N. A., and Kimball, H. R., 1974, Separation and characterization of human neutrophil granules, Am. J. Pathol 77:41.PubMedGoogle Scholar
  108. Wetzel, B. K., Horn, R. G., and Spicer, S. S., 1967, Fine structural studies on the development of heterophil, eosinophil and basophil granulocytes in rabbits, Lab. Invest. 16:349.PubMedGoogle Scholar
  109. White, J. G., and Estensen, R. D., 1974, Selective labilization of specific granules in polymorphonuclear leukocytes by phorbol myristate acetate, Am. J. Pathol. 75:45.Google Scholar
  110. Woodin, A. M., 1962, The extrusion of protein from the rabbit polymorphonuclear leucocyte treated with staphylococcal leucocidin, Biochem. J. 82:9.PubMedGoogle Scholar
  111. Woodin, A. M., and Wieneke, A. A., 1964, The participation of calcium, adenosine triphosphate and adenosine triphosphatase in the extrusion of the granule proteins from the polymorphonuclear leucocytes, Biochem. J. 90:498.PubMedGoogle Scholar
  112. Woodin, A. M., and Wieneke, A. A., 1966, The secretion of protein by the polymorphonuclear leucocyte treated with streptolysin 0, Exp. Cell Res. 43:319.PubMedCrossRefGoogle Scholar
  113. Wright, D. G., and Gallin, J. I., 1979, Secretory responses of human neutrophils: Exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123:285.PubMedGoogle Scholar
  114. Wright, D. G., and Malawista, S. E., 1972, The mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis, J. Cell Biol. 53:788.PubMedCrossRefGoogle Scholar
  115. Wright, D. G., Bralove, D. A., and Gallin, J. I., 1977, The differential mobilization of human neutrophil granules. Effects of phorbol myristate acetate and ionophore A23187, Am. J. Pathol. 87:273.PubMedGoogle Scholar
  116. Zabucchi, G., Soranzo, M. R., Berton, G., Romeo, D., and Rossi, F., 1978, The stimulation of the oxidative metabolism of polymorphonuclear leukocytes: Effect of colchicine and cytochalasin B, J. Reticuloendothel. Soc. 24:451.PubMedGoogle Scholar
  117. Zucker-Franklin, D., and Hirsch, J. G., 1964, Electron microscope studies on the degranu-lation of rabbit peritoneal leukocytes during phagocytosis, J. Exp. Med. 120:569.PubMedCrossRefGoogle Scholar
  118. Zurier, R. B., and Sayadoff, D. M., 1975, Release of prostaglandins from human polymorphonuclear leukocytes, Inflammation 1:93.CrossRefGoogle Scholar
  119. Zurier, R. B., Hoffstein, S., and Weissmann, G., 1973, Cytochalasin, B: Effect on lysosomal enzyme release from human leukocytes, Proc. Natl. Acad. Sci. (USA) 70:844.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Marco Baggiolini
    • 1
  • Beatrice Dewald
    • 1
  1. 1.Research Institute Wander, A Sandoz Research UnitWander Ltd.BerneSwitzerland

Personalised recommendations