Neutrophil Chemoattractant fMet-Leu-Phe Receptor Expression and Ionic Events Following Activation

  • John I. Gallin
  • Bruce E. Seligmann
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)


The identification of receptors for chemotactic factors on neutrophils opened a new era in the investigation of these cells. The first chemoattractant receptor defined was for the synthetic peptide N-formyl-methionylleucyl-phenylalanine (fMet-Leu-Phe) (Aswanikumar et al., 1977; Williams et al., 1977), which had been discovered by Schiffmann et al. (1975). This receptor was linked to chemoattractant-elicited events of directed locomotion, activation of the respiratory burst, and degranulation of lysosomal enzymes (Becker, 1979). Subsequently receptors have been defined for numerous chemoattractants (Chenoweth and Hugli, 1978; Spilberg and Mehta, 1979; Wilkinson and Allan, 1978), although the best studied receptor is for fMet-Leu-Phe and closely related analogues.


Human Neutrophil Superoxide Production Chronic Granulomatous Disease Chemotactic Factor Phorbol Myristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, H. A., 1927, The mechanism of the inflammatory process. I. The electrophoresis of the blood cells of the horse and its relation to leukocyte emigration, J. Exp. Med. 46:987–1002.PubMedCrossRefGoogle Scholar
  2. Ambrose, E. S., and Forrester, J. A., 1968, Electrical phenomena associated with cell movements, Symp. Soc. Biol. 22:237–248.Google Scholar
  3. Aswanikumar, S., Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1976, Role of a peptidase in phagocyte Chemotaxis, Proc. Natl. Acad. Sci. (USA) 73:2439–2442.CrossRefGoogle Scholar
  4. Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A., Freer, R., Showell, H., and Becker, E., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochem. Biophys. Res. Commun. 74:810–817.PubMedCrossRefGoogle Scholar
  5. Atkinson, J. P., Simchowitz, L., Mehta, J., and Steuison, W. F., 1982, 5,8,11,14-Eico-satetraynoic acid (ETYA) inhibits binding of N-formyl-methionyl-leucyl-phenylalanine (FMLP) to its receptor on human granulocytes: A note of caution, Immunopharm. 4:1–9.CrossRefGoogle Scholar
  6. Becker, E. L., 1979, A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides, J. Reticuloendothel. Soc. 26:701–709.PubMedGoogle Scholar
  7. Becker, E. L., Talley, J. V., Showell, H. J. Naccache, P. H., and Sha’afi, R. I., 1978, Activation of the rabbit polymorphonuclear leukocyte membrane “Na, K”-ATPase by chemotactic factor, J. Cell Biol. 77:329–333.PubMedCrossRefGoogle Scholar
  8. Becker, E. L., Sigman, M., and Oliver, J. M., 1979, Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187: The nature of the receptor and the requirement for Ca2+, Am J. Pathol 95:81–97.PubMedGoogle Scholar
  9. Becker, E. L., Naccache, P. H., Showell, H. J., and Walenga, R. W., 1981, Early events in neutrophil activation: Receptor stimulation, ionic fluxes, and arachidonic acid metabolism, Lymphokines 4:297–334.Google Scholar
  10. Boucek, M. M., and Snyderman, R., 1976, Calcium influx requirement for human neutrophil Chemotaxis; Inhibition by lanthanum chloride, Science 194:905–907.CrossRefGoogle Scholar
  11. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. (USA) 75:3943–3947.CrossRefGoogle Scholar
  12. Cividalli, G., and Nathan, D. G., 1974, Sodium and potassium concentration and transmembrane fluxes in leukocytes, Blood 43:861–869.PubMedGoogle Scholar
  13. Clark, R. A. F., Gallin, J. I., and Fauci, A. S., 1979, Effect of in vivo prednisone on in vitro eosinophil and neutrophil adherence and Chemotaxis, Blood 53:633–641.PubMedGoogle Scholar
  14. Cramer, E. B., and Gallin, J. I., 1979, Localization of submembranous cations to the leading end of human neutrophils during Chemotaxis, J. Cell Biol. 82:369–379.PubMedCrossRefGoogle Scholar
  15. Davis, B. H., Walter, R. J., Pearson, C. B., Becker, E. L., and Oliver, J. M., 1982, Membrane activity and topography of fMet-Leu-Phe treated polymorphonuclear leukocytes. Acute and sustained responses to chemotactic peptide, Am. J. Pathol. 108:206–216.PubMedGoogle Scholar
  16. Donabedian, H., and Gallin, J. I., 1981, Deactivation of human neutrophil Chemotaxis by chemoattractants: Effect on receptors for the chemotactic factor f-Met-Leu-Phe, J. Immunol. 127:839–844.PubMedGoogle Scholar
  17. Fearon, D. T., and Collins, L. A., 1983, Increased expression of C3b receptors on polymorphonuclear leukocytes induced by purification procedures, J. Immunol. 130: 370–375.PubMedGoogle Scholar
  18. Fehr, J., and Grossman, H. C., 1979, Disparity between circulating and marginated neutrophils: Evidence from studies on the granulocyte alkaline phosphatase, a marker of cell maturity, Am. J. Hematol. 7:369–379.PubMedCrossRefGoogle Scholar
  19. Fletcher, M., and Gallin, J. I., 1980, Degranulating stimuli increase the availability of receptors on human neutrophils for the chemoattractant fMet-Leu-Phe, J. Immunol. 124: 1585–1588.PubMedGoogle Scholar
  20. Fletcher, M., and Gallin, J. I., 1983, Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant fMet-Leu-Phe, Blood 62:792–799.PubMedGoogle Scholar
  21. Fletcher, M., Seligmann, B., and Gallin, J. I., 1982, Correlation of human neutrophil secretion, chemoattractant receptor mobilization, and enhanced functional capacity, J. Immunol. 128:941–948.PubMedGoogle Scholar
  22. Fontana, J. A., Wright, D. G., Schiffman, E., Corcoran, B. A., and Deisseroth, A. B., 1980, Development of chemotactic responsiveness in myeloid precursor cells. Studies with a human leukemia cell line, Proc. Natl. Acad. Sci. (USA) 77:3664–3668.CrossRefGoogle Scholar
  23. Gallin, E. K., and Gallin, J. I., 1977, Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes, J. Cell Biol. 75:277–289.PubMedCrossRefGoogle Scholar
  24. Gallin, E. K., Seligmann, B., and Gallin, J. I., 1980, Alteration of macrophage and monocyte membrane potential by chemotactic factors, in: Mononuclear Phagocytes (R. van Fürth, ed.), pp. 505–523, Martinus Nijhoff, The Hague.Google Scholar
  25. Gallin, J. I., 1980, Degranulating stimuli decrease the negative surface charge and increase the adhesiveness of human neutrophils, J. Clin. Invest. 65:298–306.PubMedCrossRefGoogle Scholar
  26. Gallin, J. I., 1982, The role of neutrophil lysosomal granules in the evaluation of the inflammatory response, in: Phagocytosis-Past and Future (M. L. Karnovsky and L. Bolis, eds.), pp. 519–541, Academic Press, New York.Google Scholar
  27. Gallin, J. I., 1984, Neutrophil heterogeneity exists, but is it biologically relevant? Blood (in press).Google Scholar
  28. Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis: Evidence for an association between calcium exchanges and microtubule assembly, J. Cell Biol. 62:594–609.PubMedCrossRefGoogle Scholar
  29. Gallin, J. I., Durocher, J. R., and Kaplan, A. P., 1975, Interaction of leukocyte chemotactic factors with the cell surface. I. Chemotactic factor-induced changes in human granulocyte surface charge, J. Clin. Invest. 551:967–974.CrossRefGoogle Scholar
  30. Gallin, J. I., Wright, D. G., and Schiffmann, E., 1978, Role of secretory events in modulating human neutrophil Chemotaxis, J. Clin. Invest. 62:1364–1374.PubMedCrossRefGoogle Scholar
  31. Gallin, J., Gallin, E., and Schiffmann, E., 1979, Mechanism of leukocyte Chemotaxis, in: Advances in Inflammation Research, Vol. 1 (G. Weissmann, B. Samuelsson, and R. Paoletti, eds.), pp. 123–138, Raven Press, New York.Google Scholar
  32. Gallin, J. L, Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N., 1982, Human neutrophil specific granule deficiency; a model to assess the role of neutrophil specific granules in the evolution of the inflammatory response, Blood 59:1317–1329.PubMedGoogle Scholar
  33. Gallin, J. L, Seligmann, B., and Fletcher, M., 1983, Dynamics of human neutrophil receptors for the chemoattractant fmet-leu-phe, in: Leukocyte Locomotion and Chemotaxis. Agents and Actions Supplements Vol. 12 (H. U. Keller, and G. O. Till, eds.), pp. 290–308, Birkhauser Verlag, Basel.CrossRefGoogle Scholar
  34. Gallin, J. I., Metcalf, J. A., Roos, D., Seligmann, B., and Friedman, M. M., 1984, Organelle-depleted human neutrophil cytoplasts used to study fMet-Leu-Phe receptor modulation and cell function, J. Immunol, (in press).Google Scholar
  35. Goetzl, E., Foster, D., and Goldman, D., 1981, Isolation and partial characterization of human neutrophil receptors for chemotactic formylmethionyl peptides, Biochemistry. 20:5717–5722.PubMedCrossRefGoogle Scholar
  36. Goetzl, E. J., Foster, D. W., and Goldman, D. W., 1982, Specific effects on human neutrophil of antibodies to a membrane protein constituent of neutrophil receptors for chemotactic formyl-methionyl peptides, Immunology 45:249–256.PubMedGoogle Scholar
  37. Hoffstein, S. T., Friedman, R. S., and Weissman, G., 1982, Degranulation membrane addition and shape change during chemotactic factor-induced aggregation of human neutrophils, J. Cell Biol. 95:234–241.PubMedCrossRefGoogle Scholar
  38. Jesaitis, A., Naemara, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1982, Intracellular localization of N-formyl chemotactic receptor and Mg+ dependent ATPase in human granulocytes, Biochem. Biophys. Acta 719:556–568.PubMedCrossRefGoogle Scholar
  39. Jesaitis, A., Naemura, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1983, The fate of an N-formylated chemotactic peptide in stimulated human granulocytes. Subcellular fractionation studies, J. Biol Chem. 258:1968–1977.PubMedGoogle Scholar
  40. Jones, P. C. T., 1966, A contractile protein model for cell adhesion, Nature 212:365–369.PubMedCrossRefGoogle Scholar
  41. Jones, G. S., VanDyke, K., and Castranova, V., 1980, Purification of human granulocytes by centrifugal elutriation and measurement of transmembrane potential, J. Cell Physiol 104:425–431.PubMedCrossRefGoogle Scholar
  42. Klempner, M. S., and Gallin, J. I., 1978, Separation and functional characterization of human neutrophil subpopulations, Blood 51:659–669.PubMedGoogle Scholar
  43. Koo, C., and Snyderman, R., 1980, Chemotactic peptide protects against inhibition by cyto-chalasin B of peptide bonding on human polymorphonuclear leukocytes: A potential mechanism for enhanced gradient sensing, Clin. Res. 28:373A.Google Scholar
  44. Koo, C., Lefkowitz, R., and Snyderman, R., 1982, The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity in states, Biochem. Biophys. Res. Commun. 106:442–449.PubMedCrossRefGoogle Scholar
  45. Korchak, H. M., and Weissmann, G., 1978, Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation, Proc. Natl. Acad. Sci. (USA) 75:3818–3822.CrossRefGoogle Scholar
  46. Kuroki, M., Satoh, H., Kamo, N., and Kobatake, Y., 1981, Contribution to the membrane potential of the electrogenic Na+, K+ pump in guinea pig polymorphonuclear leukocytes, FEBSLett. 123:177–180.CrossRefGoogle Scholar
  47. Lehmeyer, J. E., Snyderman, R., and Johnston, R. B., 1979, Stimulation of neutrophil oxidative metabolism by chemotactic peptides: Influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate, Blood 54:35–45.PubMedGoogle Scholar
  48. Levin, G. E., Collinson, P., and Baron, D. N., 1976, The intracellular pH of human leukocytes in response to acid-base change in vivo, Clin. Sci. Mol. Med. 50:293–299.Google Scholar
  49. Liao, C. S. and Freer, R. J., 1980, Cryptic receptors for chemotactic peptides in rabbit neutrophils, Biochem. Biophys. Res. Commun. 93:566–571.PubMedCrossRefGoogle Scholar
  50. Lichtman, M. A., and Weed, R. I., 1972, Alteration of the cell periphery during granulocyte maturation relationship to cell function, Blood 39:301–315.PubMedGoogle Scholar
  51. Lohr, K. M., and Snyderman, R., 1982, Amphotericin B alters the affinity and functional activity of the oligopeptide chemotactic factor receptor on human polymorphonuclear leukocytes, J. Immunol 129:1594–1599.PubMedGoogle Scholar
  52. MacGregor, R. R., Spagnuolo, B. E., and Lentnek, A. L., 1974, Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, N. Engl J. Med. 291:642–645.PubMedCrossRefGoogle Scholar
  53. Mackin, W. M., Huang, C., and Becker, E. L., 1982, The formylpeptide chemotactic receptor on rabbit peritoneal neutrophils. 1. Evidence for two binding sites with different affinities, J. Immunol 129:1608–1611.PubMedGoogle Scholar
  54. Marasco, W. A., and Becker, E. L., 1982, Antiidiotype as antibody against the formyl peptide Chemotaxis receptor of the neutrophil, J. Immunol 128:963–968.PubMedGoogle Scholar
  55. Marasco, W. A., Showell, H. J., Freer, R. J., and Becker, E. L., 1982, Anti-fmet-leu-phe: Similarities in fine specificity with the formyl peptide Chemotaxis receptor of the neutrophil, J. Immunol. 128:956–962.PubMedGoogle Scholar
  56. I Molski, T. F. P., Naccache, P. H., Volpi, M., Wolpert, L. M., and Sha’afi, R. I., 1980, Spe-cific modulation of the intracellular pH or rabbit neutrophils by chemotactic factors, Biochem. Biophys. Res. Commun. 94:508–514.PubMedCrossRefGoogle Scholar
  57. Molski, T. F. P., Naccache, P. H., Borgest, P., and Sha’afi, R. I., 1981, Similarities in the mechanisms by which formyl-methionyl-leucyl-phenyl-alanine, arachidonic acid and leukotriene B4 increase calcium and sodium influxes in rabbit neutrophils, Biochem. Biophys. Res. Commun. 103:227–232.PubMedCrossRefGoogle Scholar
  58. Mottola, C., and Romeo, D., 1982, Calcium movement and membrane potential changes in the early phase of neutrophil activation by phorbol myristate acetate: A study with ion-selective electrodes, J. Cell Biol 93:129–134.PubMedCrossRefGoogle Scholar
  59. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes: Effect of chemotactic factor, J. Ceil Biol 73:428–444.CrossRefGoogle Scholar
  60. Niedel, J., 1981, Detergent solubilization of the formyl peptide chemotactic receptor. Strategy based on covalent affinity labeling, J. Biol. Chem. 256:9295–9299.PubMedGoogle Scholar
  61. Niedel, J. E., and Dolmatch, B. L., 1983, Cellular processing of the formyl peptide receptor, in Leukocyte Locomotion and Chemotaxis. Agents and Actions Supplements Vol. 12 (H. U. Keller and G. O. Till, eds.), pp. 309–322, Birkhauser Verlag, Basel.CrossRefGoogle Scholar
  62. Niedel, J., Kahane, I., and Cuatrecasas, P., 1979a, Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils, Science 205:1412–1414.PubMedCrossRefGoogle Scholar
  63. Niedel, J., Wilkinson, S., and Cuatrecasas, P., 1979b, Receptor-mediated uptake and de-granulation of I-chemotactic peptide by human neutrophils, J. Biol. Chem. 254: 10700–10706.PubMedGoogle Scholar
  64. Niedel, J., Frothingham, R., and Cuatrecasas, P., 1980a, Inhibition of l25I-chemotactic peptide uptake by protease inhibitors, Biochem. Biophys. Res. Commun., 94:667–673.Google Scholar
  65. Niedel, J., Kahane, I., Lachman, L., and Cuatrecasas, P., 1980, A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor, Proc. Natl. Acad. Sci. (USA) 77:1000–1004.CrossRefGoogle Scholar
  66. Nuccitelli, R., 1983, Transcellular ion currents: Signals and effectors of cell polarity, in: Modern Cell Biology, Vol. 2, Spatial Organization of Eukaryotic Cells (J. R. Mcintosh, ed.), New York (in press).Google Scholar
  67. Orida, N., and Feldman, J. D., 1982, Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields, CellMotil. 2:243–255.Google Scholar
  68. Roberts, R. L., Mouuessa, N. L. and Gallin, J. I., 1984, Increasing extracellular potassium causes calcium-dependent shape change and facilitates concanavalin A capping in human neutrophils, J. Immunol, (in press).Google Scholar
  69. Roos, D., Voetman, A. A., and Meerhof, L. J., 1983, Functional activity of enucleated human polymorphonuclear leukocytes, J. Cell Biol. 97:368–377.PubMedCrossRefGoogle Scholar
  70. Rossi, F., Delia Bianca, V., and Davoli, A., 1981, A new way for inducing a respiratory burst in guinea pig neutrophils, FEBS Lett. 132:273–277.PubMedCrossRefGoogle Scholar
  71. Schaak, T. M., Takeuchi, A., Spilberg, I., and Persellin, R. H., 1980, Alteration of polymorphonuclear leukocyte surface charge by endogenous and exogenous chemotactic factors, Inflammation 4:37–44.CrossRefGoogle Scholar
  72. Schiffmann, E., and Gallin, J. I., 1979, Biochemistry of phagocyte Chemotaxis, Curr. Top. CellRegul. 15:203–261.Google Scholar
  73. Schiffmann, E., Corcoran, B., Wahl, S., 1975, N-formylmethionyl peptides as chemoat-tractants for leukocytes, Proc. Natl. Acad. Sci. (USA) 72:1059–1062.CrossRefGoogle Scholar
  74. Schiffmann, E., Aswanikumas, S., Venkatasubramanian, K., Corcoran, B. A., Pert, C. B., Brown, J., Gross, E., Day, A. B., Freer, R. J., Showell, A. H., and Becker, E. L., 1980, Some characteristics of the neutrophil receptor for chemotactic peptides, FEBS Lett. 117:1–7.PubMedCrossRefGoogle Scholar
  75. Schmitt, M., Painter, P. G., Algirder, A. J., Preissner, K., Sklar, L. A., and Cochrane, C. G.,1983, Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes, J. Biol. Chem. 258:649–654.PubMedGoogle Scholar
  76. Seligmann, B. E., and Gallin, J. I., 1980, Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease, J. Clin. Invest. 66:493–503.PubMedCrossRefGoogle Scholar
  77. Seligmann, B. E., and Gallin, J. I., 1983a, Comparison of indirect probes of membrane potential utilized in studies of human neutrophils, J. Cell. Physiol. 115:105–115.PubMedCrossRefGoogle Scholar
  78. Seligmann, B., and Gallin, J. I., 1983b, Abnormality in elicited membrane potential changes in neutrophils from patients with chronic granulomatous disease, in: Advances in Host Defense Mechanisms (J. I. Gallin and A. S. Fauci, eds.), pp. 195–226, Raven Press, New York.Google Scholar
  79. Seligmann, B. E., Gallin, E. K., Martin, W., Shain, W., and Gallin, J. I., 1980, Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential sensitive cyanine dye, J. Membr. Biol. 52:257–272.PubMedCrossRefGoogle Scholar
  80. Seligmann, B., Chused, T. M., and Gallin, J. I., 1981, Human neutrophil heterogeneity identified using flow microfluorometry to monitor membrane potential, J. Clin. Invest. 68:1125–1131.PubMedCrossRefGoogle Scholar
  81. Seligmann, B. E., Chused, T. M., and Gallin, J. I., 1982a, Binding of fluoresceinated chemoattractant peptide to human neutrophils is heterogeneous and correlates with the heterogeneous stimulation of membrane potential changes, J. Cell Biol. 95:444a.Google Scholar
  82. Seligmann, B. E., Fletcher, M. P., and Gallin, J. L, 1982b, Adaptation of human neutrophil responsiveness to the chemoattractant N-formylmethionylleucylphenylalanine: Heterogeneity and/or negative cooperative interaction of receptors, J. Biol. Chem. 257:6280–6286.Google Scholar
  83. Sha’afi, R. I., Molski, T. F. P., and Naccache, P. H., 1981, Chemotactic factors activate differentiable permeation pathways for sodium and calcium in rabbit neutrophils. Effects of amiloride, Biochem. Biophys. Res. Commun. 99:1271–1276.PubMedCrossRefGoogle Scholar
  84. Simchowitz, L., and Spilberg, I., 1979, Chemotactic factor-induced generation of superoxide radicals by human neutrophils: Evidence for the role of sodium, J. Immunol. 123:2428–2435.PubMedGoogle Scholar
  85. Simchowitz, L., Spilberg, I., and DeWeer, P., 1982, Sodium and potassium fluxes and membrane potential of human neutrophils, J. Gen. Physiol. 79:453–479.PubMedCrossRefGoogle Scholar
  86. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981a, The kinetics of neutrophil activation. The response to chemotactic peptides depends upon whether ligand-receptor interaction is rate-limiting, J. Biol Chem. 256:9909–9914.Google Scholar
  87. Sklar, L. A., Oades, Z. G., Jesaitis, A. J., Painter, R. G. and Cochrane, C. G., 1981b, Fluoresceinated chemotactic peptide and high-affinity antifluorescein antibody as a probe of the temporal characteristics of neutrophil stimulation, Proc. Natl. Acad. Sci. (USA) 78: 7540–7544.Google Scholar
  88. Skubitz, K., Craddock, P., Hammerschmidt, D., and August, J., 1981, Corticosteroids block binding of chemotactic peptide to its receptor on granulocytes and causes disaggregation of granulocyte aggregates in vitro, J. Clin. Invest. 68:13–20.CrossRefGoogle Scholar
  89. Spilberg, I., and Mehta, J., 1979, Demonstration of a specific neutrophil receptor for a cell-derived chemotactic factor, J. Clin. Invest. 63:85–88.PubMedCrossRefGoogle Scholar
  90. Stossel, T., 1979, The mechanism of leukocyte locomotion, in: Leukocyte Chemotaxis: Methods, Physiology and Clinical Implications (J. I. Gallin and P. G. Quie, eds.), pp. 143–160, Raven Press, New York.Google Scholar
  91. Sullivan, S., and Zigmond, S., 1980, Chemotactic peptide receptor modulation in polymorphonuclear leukocytes, J. Cell Biol. 85:703–711.PubMedCrossRefGoogle Scholar
  92. Sullivan, S. J., and Zigmond, S. H., 1982, Asymmetric receptor distribution of PMNs, J. Cell Biol 95:418a.Google Scholar
  93. Tsung, P., Showell, H., and Becker, E., 1980, Surface membrane enzyme chemotacticresponsiveness of rabbit peripheral and peritoneal neutrophils, Inflammation 4: 271–277.PubMedCrossRefGoogle Scholar
  94. Utsumi, K., Sugiyama, K., Miyahara, M., Naito, M., Awai, M., and Inoue, M., 1977, Effect of concanavalin A on membrane potential of polymorphonuclear leukocyte monitored by fluorescent dye, Cell Struct. Function 2:203–209.CrossRefGoogle Scholar
  95. Van Epps, D., and Garcia, M., 1980, Enhancement of neutrophil function as a result of prior exposure to chemotactic factor, J. Clin. Invest. 66:167–175.PubMedCrossRefGoogle Scholar
  96. Van Zwieten, R., Wever, R., Hamers, M. N., Weening, R. S., and Roos, D., 1981, Extracellular proton release by stimulated neutrophils, J. Clin. Invest. 68:310–313.PubMedCrossRefGoogle Scholar
  97. Weissmann, G., Smolen, J. E., and Korchak, H. M., 1980, Release of inflammatory mediators from stimulated neutrophils, iV. Engl. J. Med. 303:27–34.CrossRefGoogle Scholar
  98. Weissmann, G., Serhan, C., Smolen, J., Radin, A., Goetzl, E. J., and Samuelsson, B., 1982, Leukotriene B4 (LTB4) as a mediator of inflammation: Human neutrophil (PMN) activation and calcium (Ca) ionophoresis, Clin. Res. 30:573a.Google Scholar
  99. Whitin, J. C., Capman, CE., Simons, E. R., Chovaniec, M. E., and Cohen, H. J., 1980, Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate, J. Biol. Chem. 255:1874–1878.PubMedGoogle Scholar
  100. Wilkinson, P. C., 1982, Chemotaxis and Inflammation, Churchill Livingston, Edinburgh.Google Scholar
  101. Wilkinson, P. C., and Allan, R. B., 1981, Binders of protein chemotactic factors to the surfaces of neutrophil leukocytes and its modification with lipid specific bacterial toxins, Mol. Cell Biochem. 20:25–40.Google Scholar
  102. Williams, L., Snyderman, R., Pike, M., and Lefkowitz, R., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. (USA) 74:1204–1208.CrossRefGoogle Scholar
  103. Wright, D. G., and Gallin, J. L, 1979, Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123:285–294.Google Scholar
  104. Yuli, I., Tomonaga, A., and Snyderman, R., 1982, Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers, Proc. Natl Acad. Sci. (USA) 79:5906–5910.CrossRefGoogle Scholar
  105. Zigmond, S. H., 1974, Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes, Nature 29:450–452.CrossRefGoogle Scholar
  106. Zigmond, S. H., 1981, Consequences of chemotactic peptide receptor modulation, J. Cell Biol. 88:644–647.PubMedCrossRefGoogle Scholar
  107. Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell Biol. 82:517–527.PubMedCrossRefGoogle Scholar
  108. Zigmond, S., Sullivan, S., and Lauffenburger, D., 1982, Kinetic analysis of chemotactic peptide receptor modulation, J. Cell Biol. 92:34–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • John I. Gallin
    • 1
  • Bruce E. Seligmann
    • 1
  1. 1.Bacterial Diseases Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations