Nonoxidative Antimicrobial Reactions of Leukocytes

  • John K. Spitznagel
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)


Neutrophil polymorphonuclear granulocytes (PMNs) comprise the first line of cellular defense against a variety of common bacteria and fungi. Since Metchnikoff discovered the role of PMNs in defense against infection, much research has focused on the mediation of their antimicrobial activities (Metchnikoff, 1905). At first this work sought what may now be thought of as antibioticlike components of PMNs with direct antimicrobial action. Research emphasis then began to shift as the capacity of PMNs to utilize O2 during phagocytosis began to be recognized (Karnovsky, 1962). With the recognition by Holmes et al. (1968) of the oxidative defect in the PMNs of children with X-linked chronic granulomatous disease, many workers concentrated on oxygen dependent antimicrobial functions of PMNs. Klebanoff (1975) suggested that PMN antimicrobial mechanisms might be classified as either O2 dependent or O2 independent. Klebanoff and Clark (1978) also suggested that oxidative mechanisms, especially those dependent on myeloperoxidase, carry the principal burden of intraleukocytic killing in PMNs. Currently developing evidence suggests, however, that O2 — independent mechanisms may carry more of the burden of antimicrobial action than has been appreciated (Kossack et al., 1981; Okamura and Spitznagel, 1982; Weiss et al., 1982; Rest et al., 1982).


Polymorphonuclear Leukocyte Chronic Granulomatous Disease Cationic Protein Cytoplasmic Granule Granule Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, J. S., Mills, E. L., Giebink, G. S., and Quie, P., 1982a, Depression of monocyte and polymorphonuclear leukocyte oxidative metabolism and bactericidal capacity by influenza a virus, Infect. Immun. 35:350.PubMedGoogle Scholar
  2. Abramson, J. S., Lewis, J. C., Lyles, D. S., Heller, K. A., Mills, E. L., and Bass, D. A., 1982b, Inhibition of neutrophil lysosome-phagosome fusion associated with influenza virus infection in vitro, J. Clin. Invest. June:1393.Google Scholar
  3. Alobaidi, T., Naccache, P. H., and Sha’afi, R. I., 1981, Calmodulin antagonists modulate rabbit neutrophil degranulation, aggregation and stimulated oxygen consumption, Biochim. Biophys. Acta 17:675 :316.Google Scholar
  4. Amano, T., Inai, S., Seki, Y., Kashiba, S., Fujikawa, K., and Nishimura, S., 1954, Studies on the immune bacteriolysis. I. Accelerating effect on the immune bacteriolysis by lysozyme-like substance of leucocytes and egg-white lysozyme, Med. J. Osaka Univ. 4:401.Google Scholar
  5. Amano, F., Hashida, R., and Mizuno, D., 1981, Differences in the rates and extents of fusion between lysosomes and phagocytic vesicles containing different particles, J. Biochem. 89:1847.PubMedGoogle Scholar
  6. Ambruso, D. R., and Johnston, R. B., 1981, Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system, J. Clin. Invest. 67:352.PubMedCrossRefGoogle Scholar
  7. Amrein, P. C., and Stossel, T. P., 1980, Prevention of degradation of human polymorphonuclear leukocyte proteins by disopropylfluorophosphate, Blood 56:442.PubMedGoogle Scholar
  8. Andersen, A. J., and Irwin, C., 1973, Some properties of neutral-acting proteases and actin degradative enzymes in rat leucocytes, Life Sci. 13:601.CrossRefGoogle Scholar
  9. Archer, G. T., and Hirsch, J. G., 1963, Isolation of granules from eosinophil leukocytes and study of their enzyme contents, J. Exp. Med. 118:277.PubMedCrossRefGoogle Scholar
  10. Arnold, R. R., Cole, M. F., and McGhee, J. R., 1977, A bactericidal effect for human lactoferrin, Science 197:263.PubMedCrossRefGoogle Scholar
  11. Arnold, R. R., Brewer, M., and Gauthier, J. J., 1980, Bactericidal activity of human lactoferrin : Sensitivity of a variety of microorganisms, Infect. Immun. 28:893.PubMedGoogle Scholar
  12. Arnold, R. R., Russell, J. E., Champion, W. J., and Gauthier, J. J., 1981, Bactericidal activity of human lactoferrin : Influence of physical conditions and metabolic state of the target microorganism, Infect. Immun. 32:655.PubMedGoogle Scholar
  13. Arnold, R. R., Russell, J. E., Champion, W. J., Brewer, M., and Gauthier, J. J., 1982, Bactericidal activity of human lactoferrin. Differentiation from the stasis of iron deprivation, Infect. Immun. 35:792.PubMedGoogle Scholar
  14. Avery, O. T., and Cullen, G. E., 1919, Hydrogen ion concentration of cultures of pneumococci of the different types of carbohydrate media, J. Exp. Med. 30:359.PubMedCrossRefGoogle Scholar
  15. Baggiolini, M., Hirsch, J. G., and de Duve, C., 1969, Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation, J. Cell. Biol. 40:529.PubMedCrossRefGoogle Scholar
  16. Baggiolini, M., de Duve, C., Masson, P. L., and Heremans, J. K., 1970, Association of lactoferrin with specific granules in rabbit heterophil leukocytes, J. Exp. Med. 131:559.PubMedCrossRefGoogle Scholar
  17. Baggiolini, M., Amherdt, M., and Orci, L., 1976, Unusual membrane fracture faces in polymorphonuclear leukocyte granules, Experientia 32:1400.PubMedCrossRefGoogle Scholar
  18. Bainton, D. F., 1973, Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms, J. Cell. Biol. 58:249.PubMedCrossRefGoogle Scholar
  19. Bainton, D. F., Ullyot, J. L., and Farquhar, M. G., 1971, The development of neutrophilic, polymorphonuclear leucocytes in human bone marrow. Origin and content of azurophil and specific granules. J. Exp. Med. 134:907.PubMedCrossRefGoogle Scholar
  20. Becker, M. E., and Hartsell, S. E., 1954, Factors affecting bactenolysis using lysozyme in dual enzyme systems, Arch. Biochem. 53:402.PubMedCrossRefGoogle Scholar
  21. Becker, M. E., and Hartsell, S. E., 1955, The synergistic action of lysozyme and trypsin in bacteriolysis, Arch. Biochem. 55:257.PubMedCrossRefGoogle Scholar
  22. Beckerdite, S., Mooney, C., Weiss, J., Franson, R., and Elsbach, P., 1974, Early and discrete changes in permeability of Escherichia coli and certain other gram-negative bacteria during killing by granulocytes, J. Exp. Med. 140:396.PubMedCrossRefGoogle Scholar
  23. Berlin, I., and Neujahr, H. Y., 1968, Studies of controlled lysis of washed cell suspensions of Lactobacillus fermenti and preparation of membrane-like fragments by a combined trypsin lysozyme treatment, Acta Chem. Scand. [B] 22:2972.CrossRefGoogle Scholar
  24. Bishop, J. G., Schanbacher, F. L., Ferguson, L. C., and Smith, K. L., 1976, In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferrin, Infect. Immun. 14:911.PubMedGoogle Scholar
  25. Bjornson, A. B., Bjornson, H. S., and Kilko, B. P., 1980, Specificity of immunoglobulin in antibodies in normal human serum that participate in opsonophagocytosis and intracellular killing of Bacteroides fragilis and Bacteroides thetaiotamicron by human polymorphonuclear leukocytes, Infect. Immun. 30:263.PubMedGoogle Scholar
  26. Blondin, J., and Janoff, A., 1976, The role of lysosomal elastase in the digestion of Escherichia coli proteins by human polymorphonuclear leukocytes, J. Clin. Invest. 58:971.PubMedCrossRefGoogle Scholar
  27. Bloom, W. L., and Blake, F. G., 1948, Studies on an anti-bacterial polypeptide extracted from normal tissues, J. Infect. Dis. 83:116.PubMedCrossRefGoogle Scholar
  28. Bloom, W. L., Winters, M. G., and Watson, D. W., 1951, The inhibition of two anti-bacterial basic proteins by nucleic acids, J. Bacteriol. 62:7.PubMedGoogle Scholar
  29. Bluard-Deconinck, J., Masson, P. L., Osinski, P. A., and Heremanns, J. F., 1974, Amino acid sequence of cystic peptides of lactoferrin and demonstration of similarities between lactoferrin and transferrin, Biochim. Biophys. A cta 365:311.CrossRefGoogle Scholar
  30. Boxer, L. A., Hedley-Whyte, E. T., and Stossel, T. P., 1974, Neutrophil actin dysfunction and abnormal neutrophil behavior, N. Engl. J. Med. 291:1093.PubMedCrossRefGoogle Scholar
  31. Breton-Gorius, J., Mason, D. Y., Buriot, D., Vilde, J. L., and Griscelli, C., 1980, Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy, Am. J. Pathol. 99:413.PubMedGoogle Scholar
  32. Bretz, U., and Baggiolini, M., 1974, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J. Cell. Biol. 63:251.PubMedCrossRefGoogle Scholar
  33. Britz, M. L., and Lowther, D. A., 1981, Some properties of neutral proteinases from lysosomes of rabbit polymorphonuclear leucocytes, Aust. J. Exp. Biol. Med. Sci. 59:63.PubMedCrossRefGoogle Scholar
  34. Brown, W. J., Shannon, W. A., and Snell, W. J., 1983, Specific and azurophilic granules from rabbit polymorphonuclear leukocytes. II. Cell surface localization of granule membrane and content proteins before and after degranulation, J. Cell. Biol. 96:1040.PubMedCrossRefGoogle Scholar
  35. Brumfitt, W., and Glynn, A. A., 1961, Intracellular killing of Micrococcus lysodeikticus by macrophages and polymorphonuclear leucocytes: A comparative study, Br. J. Exp. Pathol. 42:408.PubMedGoogle Scholar
  36. Brumfitt, W., Wardlaw, A. C., and Park, J. T., 1958, Development of lysozyme-resistance in Micrococcus lysodiekticus and its association with an increased O-acetyl content of the cell wall, Nature 181:1783.PubMedCrossRefGoogle Scholar
  37. Brune, K., and Spitznagel, J. K., 1973, Peroxidaseless chicken leukocytes. Isolation and characterization of anti-bacterial granules, J. Infect. Dis. 127:84.PubMedCrossRefGoogle Scholar
  38. Brune, K., Leffell, M. S., and Spitznagel, J. K., 1972, Microbicidal activity of peroxidaseless chicken heterophile leukocytes, Infect. Immun. 5:283.PubMedGoogle Scholar
  39. Bryan, C. S., 1974, Sensitization of E. coli to the serum bactericidal system and to lysozyme by ethleneglycoltetraacetic acid, Proc. Soc. Exp. Biol. Med. 145:1431.PubMedGoogle Scholar
  40. Buchner, H., 1894, Neuere Fortschritte in der Immunitatsfrage, MMW 41:497.Google Scholar
  41. Buck, P., and Rest, R. F., 1981, Effects of human neutrophil granule extracts on macromolecular synthesis in Neisseria gonorrhoeae, Infect. Immun. 33:426.Google Scholar
  42. Bullen, J. J., 1975, Iron-binding proteins in milk and resistance to Escherichia coli infection in infants, Postgrad. Med. J. 51:67.PubMedGoogle Scholar
  43. Bullen, J. J., and Wallis, S. N., 1977, Reversal of the bactericidal effect of polymorphs by a ferritin-antibody complex, FEMS Lett. 1:117.CrossRefGoogle Scholar
  44. Bullen, J. J., Rogers, H. J., and Leigh, L., 1972, Iron-binding proteins in milk and resistance to Escherichia coli infection in infants, Br. Med. J. 1:69.PubMedCrossRefGoogle Scholar
  45. Bullen, J. J., Rogers, H. J., and Griffiths, E., 1978, Role of iron in bacterial infection, Curr. Top. Microbiol. Immunol. 80:1.PubMedCrossRefGoogle Scholar
  46. Burger, W. C., and Stahmann, M. A., 1952, The agglutination and inhibition of growth of bacteria by lysine polypeptides, Arch. Biochem. 39:27.PubMedCrossRefGoogle Scholar
  47. Butterworth, A. E., Wassom, D. L., Gleich, G. J., Loegering, D. A., and David, J. R., 1979, Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein, J. Immunol. 122:221.PubMedGoogle Scholar
  48. Calamai, E. G., and Spitznagel, J. K., 1982, Characterization of rat polymorphonuclear leukocyte subcellular granules, Lab. Invest. 46:597.PubMedGoogle Scholar
  49. Canfield, R. E., 1963, The amino acid sequence of egg white lysozyme, J. Biol. Chem. 238:2698.PubMedGoogle Scholar
  50. Chipman, D. M., and Sharon, N., 1969, Mechanism of lysozyme action. Lysozyme is the first enzyme for which the relation between structure and function has become clear, Science 165:454.PubMedCrossRefGoogle Scholar
  51. Cohn, Z. A., and Hirsch, J. G., 1960a, The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes, J. Exp. Med. 112:983.PubMedCrossRefGoogle Scholar
  52. Cohn, Z. A., and Hirsch, J. G., 1960b, The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes, J. Exp. Med. 112:1015.PubMedCrossRefGoogle Scholar
  53. Collins, M. S., and Pappagianis, D., 1974, Inhibition by lysozyme of growth of the spherule phase of Coccidioides immitis in vitro, Infect. Immun. 10:616.Google Scholar
  54. Costerton, J. W., Brown, M. R. W., and Sturgess, J. M., 1979, The cell envelope: Its role in infection, in: Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy (R. G. Dogett, ed.), pp. 41–62, Academic Press, New York.Google Scholar
  55. Crawford, J. J., 1971, Interaction of Actinomyces organisms with cationic polypeptides, I. Histochemical studies of infected human and animal tissues, Infect. Immun. 4:632.PubMedGoogle Scholar
  56. Cromartie, W. J., Craddock, J. H., Schwab, H. J., Anderle, S. K., and Yang, C., 1977, Arthritis in rats after systemic injection of streptococcal cells or cell walls, J. Exp. Med. 146:1585.PubMedCrossRefGoogle Scholar
  57. Daly, J. A., Lee, T. J., Spitznagel, J. K., and Sparling, P. F., 1982, Gonococci with mutations to low-level penicillin resistance exhibit increased sensitivity to the oxygen-independent bactericidal activity of human polymorphonuclear leukocyte granule extracts, Infect. Immun. 35:826.PubMedGoogle Scholar
  58. Davies, P., Krakauer, K., and Weissmann, G., 1970, Subcellular distribution of neutral proteases and peptidases in rabbit polymorphonuclear leucocytes, Nature 228:761.PubMedCrossRefGoogle Scholar
  59. Davis, S. D., Gemsa, D., and Wedgwood, R. J., 1966, Kinetics of the transformation of gram-negative rods to spheroplasts and ghosts by serum, J. Immunol. 96:570.PubMedGoogle Scholar
  60. Davis, S. D., Gemsa, D., Ianetta, A., and Wedgwood, R. J., 1968, Potentiation of serum bactericidal activity by lysozyme, J. Immunol. 101:277.PubMedGoogle Scholar
  61. Delworth, J. A., and Mandell, G. L., 1977, Adults with chronic granulomatous disease of childhood, Am. J. Med. 63:233.CrossRefGoogle Scholar
  62. Densen, P., and Mandell, G. L., 1978, Gonococcal interactions with polymorphonuclear neutrophils: Importance of the phagosome for bactericidal activity, J. Clin. Invest. 62:1161.PubMedCrossRefGoogle Scholar
  63. Denys, J., and Havet, J., 1894, Sur la part des leucocytes dans le pouvoir bactericide du sang de chien, Cellule 10:7.Google Scholar
  64. DeWald, B., Rindler-Ludwig, R., Bretz, U., and Baggiolini, M., 1975, Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes, J. Exp. Med. 141:709CrossRefGoogle Scholar
  65. Diamond, R. D., and Krzeskcki, R., 1978, Mechanisms of attachment of neutrophils to Candida albicans pseudohyphae in the absence of serum, and of subsequent damage to pseudophyphae by micorbicidal processes of neutrophils in vitro, J. Clin. Invest. 61:360.CrossRefGoogle Scholar
  66. Drazin, R. E., and Lehrer, R. I., 1977, Fungicidal properties of a chymotrypsin-like cationic protein from human neutrophils: Adsorption to Candida parapsilosis, Infect. Immun. 17:382.Google Scholar
  67. Dubos, R. J., 1950, The effect of organic acids on mammalian tubercle bacilli, J. Exp. Med. 42:319.CrossRefGoogle Scholar
  68. Dubos, R. J., 1953, Effect of ketone bodies and other metabolites on the survival and multiplication of staphylococci and tubercle bacilli, J. Exp. Med. 98:145.PubMedCrossRefGoogle Scholar
  69. Ehrlich, P., and Lazarus, A., 1900, Histology of the blood. Reprinted from, Histology of the Blood: Normal and Pathological, Cambridge University Press, in: The Collected Works of Paul E. Ehrlich, Vol. I: Histology, Biochemistry and Pathology (F. Himmelweit, ed.), p. 215, Pergamon Press, London and New York, 1956.Google Scholar
  70. Elsbach, P., Weiss, J., Franson, R. C., Beckerdite-Quagliata, S., Schneider, A., and Harris, L., 1979, Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes: Observations on their relationship, J. Biol. Chem. 254:1100.Google Scholar
  71. Fishman, M., and Silverman, M. S., 1957, Bactericidal activity of rat leucocytic extracts. I. Anti-bacterial spectrum and the subcellular localization of the bactericidal activity, J. Exp. Med. 105:521.PubMedCrossRefGoogle Scholar
  72. Fishman, M., Cole, L. J., and Silverman, M. S., 1957, Bactericidal activity of rat leucocyte extracts. II. Characterization of the bactericidal substance in leucocyte mitochondrial extracts, J. Exp. Med. 105:529.PubMedCrossRefGoogle Scholar
  73. Fleming, A., 1922, On a remarkable bacteriolytic element found in tissues and secretions, Proc. R. Soc. Lond. [Biol.] 93:306.CrossRefGoogle Scholar
  74. Fleming, A., and Allison, V. D., 1922, Observations on a bacteriolytic substance (“lysozyme”) found in secretions and tissues, Br. J. Exp. Pathol. 3:252.Google Scholar
  75. Frankel-Conrat, J., Chew, W. B., Pitlick, F., and Barber, S., 1966, Certain properties of leukocytic cathepsins in health and disease, Cancer 19:1393.CrossRefGoogle Scholar
  76. Friedberg, D., and Shilo, M., 1970, Interaction of gram-negative bacteria with the lysosomal fraction of polymorphonuclear leukocytes, Infect. Immun. 1:305.PubMedGoogle Scholar
  77. Gadebusch, H. H., and Johnson, A. G., 1966, Natural host resistance to infection with Cryptococcus neoformans. IV. The effect of some cationic proteins on the experimental disease, J. Infect. Dis. 116:551.PubMedCrossRefGoogle Scholar
  78. Galbraith, H., and Miller, T. B., 1973a, Effect of metal cations and PH on the anti-bacterial activity and uptake of long chain fatty acids, J. Appl. Bacteriol. 36:635.PubMedCrossRefGoogle Scholar
  79. Galbraith, H., and Miller, T. B., 1973b, Effect of long chain fatty acids on bacterial respiration and amino acid uptake, J. Appl. Bacteriol. 36:659.PubMedCrossRefGoogle Scholar
  80. Galbraith, H., and Miller, T. B., 1973 c, Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts, J. Appl. Bacteriol. 36:647.PubMedCrossRefGoogle Scholar
  81. Galbraith, H., Miller, T. B., Paton, A. M., and Thompson, J. K., 1971, Anti-bacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol, J. Appl. Bacteriol. 34:803.PubMedGoogle Scholar
  82. Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N., 1982, Human neutrophil-specific granule deficiency: A model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response, Blood 59:1317.PubMedGoogle Scholar
  83. Gallis, H. A., Miller, S. E., and Wheat, R. W., 1976, Degradation of 14C-labeled streptococcal cell walls by egg white lysozyme and lysosomal enzymes, Infect. Immun. 13:1459.PubMedGoogle Scholar
  84. Gemsa, D., Davis, S. D., and Wedgwood, R. J., 1966, Lysozyme and serum bactericidal action, Nature 210:950.PubMedCrossRefGoogle Scholar
  85. Genarro, R., Romeo, D., DeWald, B., and Baggiolini, M., 1982, The bovine neutrophil: Separation and partial characterization of plasma membrane and cytoplasmic granules, in: Biochemistry and Function of Phagocytes (F. Rossi and P. Patriarca, eds.), pp. 277–281, Plenum Press, New York.CrossRefGoogle Scholar
  86. Gennaro, R., Dolzani, L., and Romeo, D., 1983, Potency of bactericidal proteins purified from the large granules of bovine neutrophils, Infect. Immun. 40:684.PubMedGoogle Scholar
  87. Ghuysen, J., 1974, Substrate requirements of glycosidases for lytic activity on bacterial walls, in: Lysozyme (E. F. Osserman, R. E. Canfield, and S. Beychok, eds.), pp. 185–193, Academic Press, New York.CrossRefGoogle Scholar
  88. Ginsburg, I., Ne’eman, N., and Lahav, M., 1973, Effect of cationic and anionic polyelectrolytes and antibodies on the lysis of micrococci and streptococci by leukocyte lysates and lysozyme, Isr. J. Med. Sci. 9:663.PubMedGoogle Scholar
  89. Gladstone, G. P., 1973, The effect of iron and haematin on the killing of staphylococci by rabbit polymorphonuclear leucocytes. With notes on the inhibition of iron of serum blysins and staphylocidal cationic proteins from polymorphonuclear leucocytes, in: Contributions to Microbiology and Immunology, Vol. 1: Staphylococci and Staphylococcallnfections, pp. 222–243, Karger, Basel.Google Scholar
  90. Gladstone, G. P., and Walton, E., 1970, Effect of iron on the bactericidal proteins from rabbit polymorphonuclear leucocytes, Nature 227:849.PubMedCrossRefGoogle Scholar
  91. Gladstone, G. P., and Walton, E., 1971, The effect of iron and haematin on the killing of staphylococci by rabbit polymorphs, Br. J. Exp. Pathol. 52:452.PubMedGoogle Scholar
  92. Gladstone, G. P., Walton, E., and Kay, U., 1974, The effect of cultural conditions on susceptibility of staphylococci to killing by the cationic proteins from rabbit polymorphonuclear leucocytes, Br. J. Exp. Pathol. 55:427.PubMedGoogle Scholar
  93. Gleich, G. J., Loegering, D. A., and Maldonado, J. E., 1973, Identification of a major basic protein in guinea pig eosinophil granules, J. Exp. Med. 137:1459.PubMedCrossRefGoogle Scholar
  94. Gleich, G. J., Loegering, D. A., Kueppers, F., Bojoj, S. P., and Mann, K. G., 1974, Physicochemical and biological properties of the major basic protein from guinea pig eosinophil granules, J. Exp. Med. 140:313.PubMedCrossRefGoogle Scholar
  95. Gleich, G. J., Loegering, D. A., Mann, K. G., and Maldonado, J. E., 1976, Comparative properties of the Charcot-Leyden crystal protein and the major basic protein from human eosinophils, J. Clin. Invest. 57:633.PubMedCrossRefGoogle Scholar
  96. Glick, A. D., Ranhand, J. M., and Cole, R. M., 1972, Degradation of group A streptococcal cell walls by egg-white lysozyme and human lysosomal enzymes, Infect. Immun. 6:403.PubMedGoogle Scholar
  97. Glynn, A. A., 1969, The complement lysozyme sequence in immune bacteriolysis, Immunology 16:463.PubMedGoogle Scholar
  98. Glynn, A. A., and Milne, C. M., 1967, A kinetic study of the bacteriolytic and bactericidal action of human serum, Immunology 12:639.PubMedGoogle Scholar
  99. Goldman, R., and Rottenberg, H., 1973, Ion distribution in lysosomal suspensions, FEBS Lett. 33:233.PubMedCrossRefGoogle Scholar
  100. Goldstein, I. M., Hoffstein, S. T., and Weissmann, G., 1975, Mechanisms of lysosomal enzyme release from human polymorphonuclear leucocytes, effect of phorbol myristate acetate, J. Cell. Biol. 66:647.PubMedCrossRefGoogle Scholar
  101. Goren, M. B., 1983, Some paradoxes of macrophage function in host defenses to intracellular pathogens, Adv. Exp. Med. Biol. 162:31.PubMedCrossRefGoogle Scholar
  102. Gutteridge, J. M. C., Paterson, S. K., Segal, A. W., and Halliwell, B., 1981, Inhibition of lipid peroxidation by the iron-binding protein lactoferrin, Biochem. J. 199:259.PubMedGoogle Scholar
  103. Hallgren, R., and Venge, P., 1976, Cationic proteins of human granulocytes: Enhancement of phagocytosis of staphylococcus protein A-IgG complexes, Inflammation 3:237.CrossRefGoogle Scholar
  104. Hankin, E. H., 1891, A bacteria-killing globulin, Proc. R. Soc. Lond. [Biol.] 48:93.Google Scholar
  105. Hayashi, H., Ariki, Y., and Ito, E., 1973, Occurrence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme, J. Bacteriol. 113: 592.PubMedGoogle Scholar
  106. Henson, P. M., and Oades, Z. G., 1975, Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. Secretion of granule constituents and increased oxidation of glucose, J. Clin. Invest. 56:1053.PubMedCrossRefGoogle Scholar
  107. Heymann, H., Manniello, J. M., and Barkulis, S. S., 1964, Structure of streptococcal cell walls. III. Characterization of an alanine-containing glucosaminylmuramic acid derivative liberated by lysozyme from streptococcal glycopeptide, J. Biol. Chem. 239:2981.PubMedGoogle Scholar
  108. Hindenburg, A., Spitznagel, J. K., and Amrein, N., 1974, Isozymes of lysozyme in leukocytes and egg-white. Evidence for the species specific control of egg-white lysozyme synthesis, Proc. Natl. Acad. Sci. (USA) 71:1653.CrossRefGoogle Scholar
  109. Hirsch, J. G., 1956a, Phagocytin: A bactericidal substance from polymorphonuclear leucocytes, J. Exp. Med. 103:589.PubMedCrossRefGoogle Scholar
  110. Hirsch, J. G., 1956b, Studies of the bactericidal action of phagocytin, J. Exp. Med. 103:613.PubMedCrossRefGoogle Scholar
  111. Hirsch, J. G., 1958, Bactericidal action of histone, J. Exp. Med. 108:925.PubMedCrossRefGoogle Scholar
  112. Hirsch, J. G., 1960a, Anti-microbial factors in tissues and phagocytic cells, Bacteriol. Rev. 24:133.PubMedGoogle Scholar
  113. Hirsch, J. G., 1960b, Further studies on preparation and properties of phagocytin, J. Exp. Med. 111:323.PubMedCrossRefGoogle Scholar
  114. Hirsch, J. G., and Cohn, Z. A., 1960, Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms, J. Exp. Med. 112:1005.PubMedCrossRefGoogle Scholar
  115. Hirsch, J. G., and Cohn, Z. A., 1964, Digestive and autolytic functions of lysosomes in phagocytic cells, Fed. Proc. 23:1023.PubMedGoogle Scholar
  116. Hodinka, R. L., and Modrzakowski, M. C., 1983, Bactericidal activity of granule contents from rat polymorphonuclear leukocytes, American Society for Microbiology, Abstract Annual Meeting, p. 91, p. 74.Google Scholar
  117. Holmes, B., Page, A. R., Windhorst, D. B., Quie, P. G., White, J. G., and Good, R. A., 1968, The metabolic pattern and phagocytic function of leukocytes with children with chronic granulomatous disease, Ann. NYAcad. Sci. 155:888.CrossRefGoogle Scholar
  118. Horwitz, M. A., and Silverstein, S. C., 1981, Interaction of the legionnaires’ disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody and complement, J. Exp. Med. 153:386.PubMedCrossRefGoogle Scholar
  119. Inoue, K., Tanigawa, Y., Takubo, M., Satini, M., and Amano, T., 1959, Quantitative studies on immune bacteriolysis. II. The role of lysozyme in immune bacteriolysis, Biken’s J. 2:1.Google Scholar
  120. Jacques, Y. V., and Bainton, D. F., 1978, Changes in pH within the phagocyte vacuoles of human neutrophils and monocytes, Lab. Invest. 39:179.PubMedGoogle Scholar
  121. Janoff, A., and Scherer, J., 1968, Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes, J. Exp. Med. 128:1137.PubMedCrossRefGoogle Scholar
  122. Jensen, M. S., and Bainton, D. F., 1973, Temporal changes in pH within the phagocytic vacoule of the polymorphonuclear neutrophilic leukocyte, J. Cell. Biol. 56:379.PubMedCrossRefGoogle Scholar
  123. Jolles, J., Jaurague-Adell, J., Bernier, I., and Jolles, P., 1963, La structure chimique du lysozyme de blanc d’oeuf de poule: Etude detaillée, Biochem. Biophys. Acta 78:668.PubMedCrossRefGoogle Scholar
  124. Kakinuma, K., 1970, Metabolic control and intracellular pH during phagocytosis by polymorphonuclear leucocytes, J. Biochem. 68:177.PubMedGoogle Scholar
  125. Kamaya, T., 1970, Lytic action of lysozyme on Candida albicans, Mycopathologia (Den Haag), 42:197.Google Scholar
  126. Kamizuma, A., Morosanna, H., Hahaha, T., Niyagawa, Y., and Akabane, T., 1979, Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function, J. Pediatr. 94:19.CrossRefGoogle Scholar
  127. Kanthack, A. A., and Hardy, W. B., 1894, The morphology and distribution of wandering cells of mammaliae, J. Physiol. (Lond.) 17:81.Google Scholar
  128. Kaplan, E. L., Laxdal, T., and Quie, P. G., 1968, Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: Bactericidal capacity for streptococci, Pediatrics 41:591.PubMedGoogle Scholar
  129. Karnovsky, M. L., 1962, Metabolic basis of phagocytic activity, Physiol. Rev. 42:143.PubMedGoogle Scholar
  130. Katchalski, E., Bichowski-Slomnitzki, L., and Volcani, B. E., 1953, The action of some water soluble poly-α-amino acids on bacteria, Biochem. J. 55:671.PubMedGoogle Scholar
  131. Kierszenbaum, F., Ackerman, S. J., and Gleich, G. J., 1981, Destruction of bloodstream forms of Trypanosoma cruzi by eosinophil granule major basic protein, Am. J. Trop. Med. Hyg. 30:775.PubMedGoogle Scholar
  132. Kirkpatrick, C. H., Green, I., Rich, R. R., and Schade, A. L., 1971, Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: Relation to host-defense mechanisms in chronic mucocutaneous candidiasis, J. Infect. Dis. 124:539.PubMedCrossRefGoogle Scholar
  133. Klebanoff, S. J., 1975, Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin. Hematol. 12:117.PubMedGoogle Scholar
  134. Klebanoff, S. J., and Clark, R. A., 1978, The Neutrophil-Function and Clinical Disorders, Elsevier-North-Holland, New York.Google Scholar
  135. Klebanoff, S. J., and Hamon, C. B., 1972, Role of myeloperoxidase-mediated anti-microbial systems in intact leukocytes, J. Reticuloendothel. Soc. 12:170.PubMedGoogle Scholar
  136. Kling, C. A., 1910, Untersuchungen uber die bakterientotenden Eigenschatten der weisten Blutkorperchen, Z. Immunitaetsforsch. Immunobiol. 7:1.Google Scholar
  137. Kodicek, E., 1949, The effect of unsaturated fatty acids on gram positive bacteria, Symp. Soc. Exp. Biol. 3:217.Google Scholar
  138. Koj, A., Chudzik, J., and Dubin, A., 1976, Substrate specificity and modification of the active center of elastase-like neutral proteinases from horse blood leukocytes, Biochem. J. 153:397.PubMedGoogle Scholar
  139. Komiyama, A., Morosama, H., Nahaha, T., Miyagawa, Y., and Akabane, T., 1979, Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function, J. Pediatr. 94:19.PubMedCrossRefGoogle Scholar
  140. Konisky, J., 1979, Specific transport systems and receptors for colicins and phages, in Bacterial Outer Membranes, Isogeneic and Functions (M. Inoue, ed.), pp. 336–337, Wiley, New York.Google Scholar
  141. Kopitar, M., and Lebez, D., 1975, Intracellular distribution of neutral proteinases and inhibitors in pig leucocytes. Isolation of two inhibitors of neutral proteinases, Eur. J. Biochem. 56:571.PubMedCrossRefGoogle Scholar
  142. Korschun, C. V., 1908, Sur l’action bactericide de l’extrait leucocytaire des lapins et des cobayes, Ann. Inst. Pasteur 22:586.Google Scholar
  143. Kossack, R. E., Guerrant, R. L., Densen, P., Schadelin, J., and Mandell, G. L., 1981, Diminished neutrophil oxidative metabolism after phagocytosis of virulent Salmonella typhi, Infect. Immun. 674.Google Scholar
  144. Kossell, H., 1896, Uber die basichen stoffe des zellkerns, Hoppe-Seylers Z. Physiol. Chem. 22:176.CrossRefGoogle Scholar
  145. Kreutzer, D. L., Dreyfus, L. A., and Robertson, D. C., 1979, Interaction of polymorphonuclear leukocytes with smooth and rough strains of Brucella abortus, Infect. Immun. 23:737.Google Scholar
  146. Lazarus, G. S., Brown, R. S., Daniels, J. R., and Fullmer, H. M., 1968a, Human granulocyte collagenase, Science 159:1483.PubMedCrossRefGoogle Scholar
  147. Lazarus, G. S., Daniels, J. R., Brown, R. S., Bladen, H. A., and Fullmer, H. M., 1968b, Degradation of collagen by a human granulocyte collagenolytic system, J. Clin. Invest. 47:2622.PubMedCrossRefGoogle Scholar
  148. Laffrell, M. S., and Spitznagel, J. K., 1972, Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes, Infect. Immun. 6:761.Google Scholar
  149. Laffrell, M. S., and, Spitznagel, J. K., 1974, Intracellular and extracellular degranulation of human polymorphonuclear azurophil and specific granules induced by immune complexes, Infect. Immun. 10:1241.Google Scholar
  150. Laffrell, M. S., and Spitznagel, J. K., 1975, Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: Effects of immunoglobulin G subclasses and immune complexes coated on latex beads, Infect. Immun. 12:813.Google Scholar
  151. Lehrer, R. I., 1972, Functional aspects of a second mechanism of candidacidal activity by human neutrophils, J. Clin. Invest. 51:2566.PubMedCrossRefGoogle Scholar
  152. Lehrer, R. I., and Cline, M. J., 1969, Interaction of Candida albicans with human leukocytes and serum, J. Bacteriol. 98:996.PubMedGoogle Scholar
  153. Lehrer, R. I., Ladra, K. M., and Hake, R. B., 1975, Nonoxidative fungicidal mechanisms of mammalian granulocytes: Demonstration of components with candidacidal activity in human, rabbit and guinea pig leukocytes, Infect. Immun. 11:1226.PubMedGoogle Scholar
  154. Lehrer, R. I., Ferrari, L. G., Patterson-Delafield, J., and Sorrell, T., 1980, Fungicidal activity of rabbit alveolar and peritoneal macrophages against Candida albicans, Infect. Immun. 28:1001.Google Scholar
  155. Leijh, P. C., Van den Barselaar, M. T., Van Zwet, T. L., Daha, M. R., and Van Furth, R., 1979, Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes, J. Clin. Invest. 63:772.PubMedCrossRefGoogle Scholar
  156. Lord, F. T., and Nye, R. N., 1919, The relation of the Pneumococcus to hydrogen ion concentration, acid death-point, and dissolution of the organisms, J. Exp. Med. 30:389.PubMedCrossRefGoogle Scholar
  157. MacRae, E. K., and Spitznagel, J. K., 1975, Ultrastructural localization of cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leukocytes, J. Cell. Sci. 17:79.PubMedGoogle Scholar
  158. Mandell, G. L., 1970, Intraphagosomal pH of human polymorphonuclear neutrophils, Proc. Soc. Exp. Biol. Med. 134:447.PubMedGoogle Scholar
  159. Mandell, G. L., 1974, Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils, Infect. Immun. 9:337.PubMedGoogle Scholar
  160. Manwaring, W. H., 1912, The nature of the bactericidal substance in leucocytic extract, J. Exp. Med. 16:249.PubMedCrossRefGoogle Scholar
  161. Masson, P., 1970, La lactoferrin: Proteine les Secretions Externes et des Leukocytes Neutrophiles, Librairie Malôine, Paris.Google Scholar
  162. Masson, P. L., and Heremans, J. F., 1966, Studies on lactoferrin, the iron-binding protein of secretions, Protides Biol. Fluids 14:115.Google Scholar
  163. McRipley, R. J., and Sbarra, A. J., 1967a, Role of the phagocyte in host-parasite interactions. XI. Relationship between stimulated oxidative metabolism and hydrogen peroxide formation, and intracellular killing, J. Bacteriol. 94:1417.PubMedGoogle Scholar
  164. McRipley, R. J., and Sbarra, A. J., 1967b, Role of the phagocyte in host parasite interactions. XII. Hydrogen peroxidase-myeloperoxidase bacterial system in the phagocyte, J. Bacteriol. 94:1425.PubMedGoogle Scholar
  165. Melby, K., and Midtvedt, T., 1981, A study of the elimination phase of phagocytosis of 32P-labeled Escherichia coli by human polymorphonuclear cell, Acta Pathol. Microbiol. Scand. [B] 89:37.Google Scholar
  166. Menzel, J., Jungfer, H., and Gemsa, D., 1978, Contribution of immunoglobulins, M. and G., complement, and properdin to the intracellular killing of Escherichia coli by polymorphonuclear leukocytes, Infect. Immun. 19:659.PubMedGoogle Scholar
  167. Metchnikoff, E., 1905, Immunity in Infective Diseases, Cambridge University Press, Cambridge.Google Scholar
  168. Miller, T. E., and Watson, D. W., 1969, Biochemical characterization of the anti-microbial histone released by deoxyribonuclease and lactic acid, Proc. Soc. Exp. Biol. 131:339.PubMedGoogle Scholar
  169. Miller, B F., Abrams, R., Dorfman, A., and Klein, M., 1942, Antibacterial properties of protamine and histone, Science 96:428.PubMedCrossRefGoogle Scholar
  170. Modrzakowski, M. C., and Paranavitana, C. M., 1981, Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: Role of bacterial membrane lipid, Infect. Immun. 32:668.PubMedGoogle Scholar
  171. Modrzakowski, M. C., and Spitznagel, J. K., 1979, Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: Antagonism of granule cationic proteins by lipopolysaccharide, Infect. Immun. 25:597.PubMedGoogle Scholar
  172. Modrzakowski, M. C., Cooney, M. H., Martin, L. E., and Spitznagel, J. K., 1979, Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes, Infect. Immun. 23:587.PubMedGoogle Scholar
  173. Mounter, L. A., and Atiyeh, W., 1960, Proteases of human leukocytes, Blood 15:52.PubMedGoogle Scholar
  174. Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M., 1977, Collagenese is a component of the specific granules of human neutrophil leucocytes, Biochem. J. 162:195.PubMedGoogle Scholar
  175. Murphy, G., Reynolds, J. J., Bretz, U., and Baggiolini, M., 1982, Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes, Biochem. J. 203:209.PubMedGoogle Scholar
  176. Muschel, J. H., Carey, W. F., and Baron, L. S., 1959, Formalism of bacterial protoplasts by serum components, J. Immunol. 82:38.PubMedGoogle Scholar
  177. Muschel, J. H., and Jackson, J. E., 1963, Activity of the antibody complement system and lysozyme against rough gram negative organisms, Proc. Soc. Exp. Biol. Med. 113:881.PubMedGoogle Scholar
  178. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Changes in ionic movements across rabbit polymorphonuclear leukocyte membranes during lysosomal enzyme release. Possible ionic basis for lysosomal enzyme release, J. Cell. Biol. 75:635.PubMedCrossRefGoogle Scholar
  179. Ne’eman, N., Duchan, Z., Lehav, M., Sela, M. N., and Ginsburg, I., 1976, The effect of leukocyte hydrolases on bacteria. VII. Bactericidal and bacteriolytic reactions mediated by leukocyte and tissue extracts and their modifications by polyelectrolytes, Inflammation 1:261.CrossRefGoogle Scholar
  180. Nieman, C., 1954, Influence of trace amounts of fatty acids on the growth of microorganisms, Bacteriol. Rev. 18:147.PubMedGoogle Scholar
  181. Noller, E. C., and Hartsell, S. E., 1961, Bacteriolysis of Enterobacteriaceae. II. Pre- and colytic treatments potentiating the action of lysozyme, J. Bact. 81:492.PubMedGoogle Scholar
  182. Odeberg, H., and Olsson, I., 1975, Antibacterial activity of cationic proteins from human granulocytes, J. Clin. Invest. 56:1118.PubMedCrossRefGoogle Scholar
  183. Odeberg, H., and Olsson, I., 1976, Mechanisms for the microbicidal activity of cationic proteins of human granulocytes, Infect. Immun. 14:1269.PubMedGoogle Scholar
  184. Odeberg, H., Olsson, I., and Venge, P., 1975, Cationic proteins of human granulocytes. IV. Esterase activity. Lab. Invest. 32:86.PubMedGoogle Scholar
  185. O’Flaherty, J. T., Showell, H. J., Ward, P. A., and Becker, E. L., 1979, A possible role of arachidonic acid in human neutrophil aggregation and degranulation, Am. J. Pathol. 96:799.PubMedGoogle Scholar
  186. Ohlsson, K., 1971, Interaction between human or dog leucocyte proteases and plasma protease inhibitors, Scand. J. Clin. Lab. Invest. 28:225.PubMedCrossRefGoogle Scholar
  187. Ohlsson, K., and Olsson, I., 1974, The neutral proteases of human granulocytes. II. Isolation and partial characterization of granulcoyte elastases. Eur. J. Biochem. 42:519.PubMedCrossRefGoogle Scholar
  188. Ohlsson, K., Olsson, I., and Spitznagel, J. K., 1977, Localization of chymotrypsin-like cationic protein, collagenase and elastase in azurophil granules of human neutrophilic polymorphonuclear leukocytes, Hoppe Seylers Z. Physiol. Chem. 358:361.PubMedCrossRefGoogle Scholar
  189. Okamura, N., and Spitznagel, J., 1982, Outer membrane mutants of Salmonella typhimurium LT2 have lipopolysaccharide-dependent resistance to the bactericidal activity of anaerobic human neutrophils, Infect. Immun. 36 :1086.PubMedGoogle Scholar
  190. Okamura, N., Ishibashi, S., and Takano, T., 1979, Evidence for bactericidal activity of polymorphonuclear leukocytes without phagocytosis, J. Cell. Biol. 86:469.Google Scholar
  191. Olsson, I., and Venge, P., 1972, Cationic proteins of human granulocytes. I. Isolation of the cationic proteins from the granules of leukaemic myeloid cells, Scand. J. Haematol. 9:204.PubMedCrossRefGoogle Scholar
  192. Olsson, I., and Venge, P., 1974, Cationic proteins of human granulocytes. II. Separation of the cationic proteins of leukemic myeloid cells, Blood 44:235.PubMedGoogle Scholar
  193. Oram, J. D., and Reiter, B., 1968, Inhibition of bacteria by lactoferrin and other iron-chelating agents, Biochim. Biophys. Acta 170:351.PubMedCrossRefGoogle Scholar
  194. Oseas, R., Yang, H. H., Baehner, R. L., and Boxer, L. A., 1981, Lactoferrin: A promoter of polymorphonuclear leukocyte adhesiveness, Blood 57:939.PubMedGoogle Scholar
  195. Padgett, G. A., and Hirsch, J. G., 1967, Lysozyme: Its absence in tears and leukocytes of cattle, Aust. J. Exp. Biol. Med. Sci. 45:569.PubMedCrossRefGoogle Scholar
  196. Parmley, R. T., Ogawa, M., Darby, C. P., and Spicer, S. S., 1975, Congenital neutropenia: Neutrophil proliferation with abnormal maturation, Blood 46:723.PubMedGoogle Scholar
  197. Patterson-Delafield, J., Martinez, R. J., and Lehrer, R. I., 1980, Microbicidal cationic proteins in rabbit alveolar macrophages: A potential host defense mechanism, Infect. Immun. 30:180.PubMedGoogle Scholar
  198. Patterson-Delafield, J., Szklarek, D., Martinez, R. J., and Lehrer, R. I., 1981, Microbicidal cationic proteins of rabbit alveolar macrophages: Amino acid composition and functional attributes, Infect. Immun. 31:723.PubMedGoogle Scholar
  199. Pavlov, E. P., and Soloviev, V. N., 1967, Changes in the hydrogen ion concentration of cytoplasma during the phagocytosis of microbes stained with indicator dyes, Bull. Eksp. Biol. Med. 63:78.Google Scholar
  200. Pelletier, M., and Delaunay, A., 1972, Modifications par des histones (P II), du pouvoir bactericide des polynucléaires et des macrophages, Ann. Inst. Pasteur 123:85.Google Scholar
  201. Penniall, R., and Spitznagel, J. K., 1975, Chicken neutrophils: Oxidative metabolism in phagocytic cells devoid of myeloperoxidase, Proc. Natl. Acad. Sci. (USA) 72:5012.CrossRefGoogle Scholar
  202. Penniall, R., Holbrook, J. P., and Zeya, H. I., 1972, The inhibition of cytochrome oxidase by lysosomal cationic proteins of rabbit polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 47:1270.PubMedCrossRefGoogle Scholar
  203. Petterson, A., 1905, Ueber die bakterigiden leukocytenstaffe und ihse Begieburg zur Immunitat centr. Bakteriol. Parasitenk Abt. I 39:423.Google Scholar
  204. Prieur, D. J., Olson, H. M., and Young, D. M., 1974, Lysozyme deficiency—an inherited disorder of rabbits, Am. J. Pathol. 77:283.PubMedGoogle Scholar
  205. Pryzwansky, K. B., Rausch, P. G., Spitznagel, J. K., and Herion, J. C., 1979a, Immunocytochemical distinction between primary and secondary granule formation in developing human neutrophils: Correlations with Romanovsky stains, Blood 53:179.PubMedGoogle Scholar
  206. Pryzwansky, K. B., Macrae, E. K., Spitznagel, J. K., and Cooney, M. H., 1979b, Early degranulation of human neutrophils : Immunocytochemical studies of surface and intracellular phagocytic events, Cell 18:1025.PubMedCrossRefGoogle Scholar
  207. Pryzwansky, K. B., Steiner, A. L., Spitznagel, J. K., and Kapoor, C. L., 1981, Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes, Science 211:407.PubMedCrossRefGoogle Scholar
  208. Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bacterial capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood, J. Clin. Invest. 46:668.PubMedCrossRefGoogle Scholar
  209. Rausch, P. G., and Moore, T. G., 1975, Granule enzymes of polymorphonuclear neutrophils. A phylogenetic comparison, Blood 46:913.PubMedGoogle Scholar
  210. Rausch, P. G., Canonico, P. G., and Chapple, F. E. III, 1974, Lysosomal characterization of monkey peripheral granulocytes during infection, Fed. Proc. 33:257.Google Scholar
  211. Rausch, P. G., Pryzwansky, K. B., and Spitznagel, J. K., 1978, Immunocytochemical identi- fication of azurophilic and specific granule markers in the giant granules of Chediak. Higashi neutrophils, N. Engl. J. Med. 298:693.PubMedCrossRefGoogle Scholar
  212. Reijngoud, D. J., and Tager, J. M., 1973, Measurement of intralysosomal pH, Biochim. Biophys. Acta 297:174.CrossRefGoogle Scholar
  213. Reijngoud, D. J., and Tager, J. M., 1975, Effect of ionophores and temperature on intralysosomal pH, FEBS Lett. 54:76.PubMedCrossRefGoogle Scholar
  214. Rein, M. F., Sullivan, J. A., and Mandell, G. L., 1980, Trichomonacidal activity of human polymorphonuclear neutrophils: Killing by destruction and fragmentation, J. Infect. Dis. 142:575.PubMedCrossRefGoogle Scholar
  215. Reiter, B., Brock, J. H., and Steel, E. D., 1975, Inhibition of Escherichia coli by bovine colostrum and postcolostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible serum resistant strain of E. coli, Immunology 28:83.Google Scholar
  216. Repaske, R., 1956, Lysis of gram-negative bacteria by lysozyme, Biochim. Biophys. Acta 22:189.PubMedCrossRefGoogle Scholar
  217. Repaske, R., 1958, Lysis of gram-negative organisms and the role of versene, Biochim. Biophys. Acta 30:225.PubMedCrossRefGoogle Scholar
  218. Repine, J. E., and Clawson, C. C., 1977, Quantitative measurement of the bactericidal capability of neutrophils from patients and carriers of chronic granulomatous disease, J. Lab Clin. Med. 90:522.PubMedGoogle Scholar
  219. Repine, J. E., Fox, R. B., and Berger, E. M., 1981a, Dimethyl sulfoxide inhibits killing of Staphylococcus aureus by polymorphonuclear leukocytes, Infect. Immun. 31:510.PubMedGoogle Scholar
  220. Repine, J. E., Fox, R. B., Berger, E. M., and Harada, R. N., 1981b, Effect of staphylococcal iron content on the killing of Staphylococcus aureus by polymorphonuclear leukocytes, Infect. Immun. 32:407.PubMedGoogle Scholar
  221. Rest, R. F., 1979, Killing of Neiserria gonorrhoeae by human polymorphonuclear neutrophil granule extracts, Infect. Immun. 25:574.PubMedGoogle Scholar
  222. Rest, R. F., and Pretzer, E., 1981, Degradation of gonococcal outer membrane proteins by human neutrophil lysosomal proteases, Infect. Immun. 34:62.PubMedGoogle Scholar
  223. Rest, R. F., Cooney, M. H., and Spitznagel, J. K., 1977, Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions, Infect. Immun. 16:145.PubMedGoogle Scholar
  224. Rest, R. F., Cooney, M. H., and Spitznagel, J. K., 1978a, Bactericidal activity of specific and azurophil granules from human neutrophils: Studies with outer-membrane mutants of Salmonella typhimurium LT-2, Infect. Immun. 19:131.PubMedGoogle Scholar
  225. Rest, R. F., Cooney, M. H., and Spitznagel, J. K., 1978b, Subcellular distribution of glycosidases in human polymorphonuclear leucocytes, Biochem. J. 174:53.PubMedGoogle Scholar
  226. Rest, R. F., Fischer, S. H., Ingham, Z. Z., Jones, J. F., 1982, Interaction of Neisseria gonorrhoeae with human neutrophils: Effects of serum and goncoccal opacity on phagocyte killings and chemiluminescence, Infect. Immun. 203:737.Google Scholar
  227. Rindler-Ludwig, R., Schmalzl, F., and Braunsteiner, H., 1974, Isolierung und charakterisierung der chymotrypsinahnlichen protease aus neutiophiler Granulozyten des menschen. Schweiz. Med. Wochenschr. 104:132.Google Scholar
  228. Robineaux, J., and Frederic, J., 1955, Contribution a’l’étude des granulations neutrophiles des polynucléaires par la microcinématographie en contraste de phase, C. R. Soc. Biol. (Paris), 149:486.Google Scholar
  229. Root, R. K., and Cohen, M. S., 1981, The microbicidal mechanisms of human neutrophils and eosinophils, Rev. Infect. Dis. 142:565.CrossRefGoogle Scholar
  230. Root, R. K., Isturiz, R., Molavi, A., and Metcalf, J. A., 1981, Interactions between antibiotics and human neutrophils in the killing of staphylococci. Studies with normal and cytochalasin B-treated cells, J. Clin. Invest. 67:247.PubMedCrossRefGoogle Scholar
  231. Rouse, P., 1925a, The relative reaction within living mammalian tissues. I. General features vital staining with litmus, J. Exp. Med. 41:379.CrossRefGoogle Scholar
  232. Rouse, P., 1925b, The relative reaction within living mammalian tissues II. On the mobilization of acid material within cells, and the reaction as influenced by the cell state, J. Exp. Med. 41:399.CrossRefGoogle Scholar
  233. Salton, M. R. J., 1957, The properties of lysozyme and its action on microorganisms, Bacteriol. Rev. 21:82.PubMedGoogle Scholar
  234. Schattenfroh, A., 1897, Ueber die bacterien-feindlichen eigenschafter der leukocyten, Arch. Hyg. (Berl.) 31:1.Google Scholar
  235. Schmidt, W., and Havemann, K., 1977, Chymotrypsin-like neutral protease from lysosome of human polymorphonuclear leukocytes, Hoppe Seylers Z. Physiol. Chem. 358:555.PubMedCrossRefGoogle Scholar
  236. Schneider, R., 1909, Die baklterizide und hamolytische wirking der tierischen gewebsflussigkeiten und ihre beziehungen zu dem leukozyten, Arch. Hyg. (Berl.) 70:40.Google Scholar
  237. Segal, A. W., Dorling, J., and Coade, S., 1980, Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes, J. Cell Biol. 85:42.PubMedCrossRefGoogle Scholar
  238. Segal, A. W., Geisow, M., Garcia, R., Harper, A., and Miller, R., 1981, The respiratory burst of phagocytic cells is associated with a rise in vaculolar pH, Nature 290:406.PubMedCrossRefGoogle Scholar
  239. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G., 1983, Absence of cytochrome b-245 in chronic granulomatous disease: A multicenter European evaluation of its incidence and relevance, N. Engl. J. Med. 308: 245.PubMedCrossRefGoogle Scholar
  240. Selvaraj, R. J., and Sbarra, A. J., 1966, Relationship of glycolytic and oxidative metabolism and particle entry and destruction in phagocytosing cells, Nature 211:1272.PubMedCrossRefGoogle Scholar
  241. Shafer, W. M., and Spitznagel, J. K., 1983, Sensitivity of Salmonella typhimurium to polymorphonuclear granulocyte extracts: Role of lipid A. Molecular Concepts of Lipid A, Washington, D.C., April 6–8, 1983.Google Scholar
  242. Shafer, W. M., Martin, L. E., Yakrus, M., and Spitznagel, J. K., 1983, Fractionation of bactericidal activity from human granulocytes under conditions of serine protease inhibition, Abst. B161, Am. Soc. Microbiol. Proc. 141.Google Scholar
  243. Skarnes, R. C., 1967, Leukin, a bactericidal agent from rabbit polymorphonuclear leucocytes, Nature 216:806.PubMedCrossRefGoogle Scholar
  244. Skarnes, R. C., and Watson, D. W., 1956, Characterization of leukin: An antibacterial factor from leucocytes active against gram-positive pathogens, J. Exp. Med. 104:829.PubMedCrossRefGoogle Scholar
  245. Skarnes, R. C., and Watson, D. W., 1957, Antimicrobial factors of normal tissues and fluids, Bacteriol. Rev. 21:273.PubMedGoogle Scholar
  246. Smit, J., Hanio, Y., and Nakaido, H., 1975, Outer membrane of Salmonella typhimurium chemical analysis and freeze fracture studies with lipopolysaccharide mutants, J. Bacteriol. 124:942.PubMedGoogle Scholar
  247. Smolen, J. E., and Weissmann, G., 1980, Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid, and P-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes, Biochem. Pharmacol. 29:533.PubMedCrossRefGoogle Scholar
  248. Smolen, J. E., and Weissmann, G., 1981, Stimuli which provide secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3’ to 5’ monophosphate, Biochem. Biophys. Acta 672:197.PubMedCrossRefGoogle Scholar
  249. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1980, Initial kinetics of lysosomal enzyme secretion and superoxide anion generation by human polymorphonuclear leukocytes, Inflammation 4:145.PubMedCrossRefGoogle Scholar
  250. Solberg, C. O., Christie, K. E., Larsen, B., and Tonder, O., 1976, Influence of antibodies and thermolabile serum factors on the bactericidal activity of human neutrophil granulocytes, Acta Pathol. Microbiol. Scand. [C] 84:112.Google Scholar
  251. Sorenson, M., and Sorenson, S. P. L., 1939, The proteins in whey, C. R. Lab. Carlsberg 23:55.Google Scholar
  252. Spitznagel, J. K., 1961a, The effects of mammalian and other cationic polypeptides on the cytochemical character of bacterial cells, J. Exp. Med. 114:1063.PubMedCrossRefGoogle Scholar
  253. Spitznagel, J. K., 1961b, Anti-bacterial effects associated with changes in bacterial cytology produced by cationic polypeptides, J. Exp. Med. 114:1079.PubMedCrossRefGoogle Scholar
  254. Spitznagel, J. K., 1980, Oxygen independent systems in polymorphonuclear leukocytes in the reticuloendothelial system: A comprehensive treatise, 2, in: Biochemistry and Metabolism (A. J. Sbarra and R. R. Strauss, eds.), pp. 355–368. Plenum, New York.Google Scholar
  255. Spitznagel, J. K., and Chi, H.-Y., 1963, Cationic proteins and antibacterial properties of infected tissues and leukocytes, Am. J. Pathol. 43:697.PubMedGoogle Scholar
  256. Spitznagel, J. K., Cooper, M. R., McCall, A. F., DeChatelet, L. R., and Welsh, I. R. H., 1972, Selective deficiency of granules associated with lysozyme and lactoferrin in human polymorphs (PMN) with reduced microbicidal capacity, J. Clin. Invest. 51:93a.Google Scholar
  257. Spitznagel, J. K., Dalldorf, F. G., Leffell, M. S., Folds, J. D., Welsh, I. R. H., Cooney, M. H., and Martin, L. E., 1974, Character of azurophil and specific granules purified from human polymorphonuclear leukocytes, Lab. Invest. 30:774.PubMedGoogle Scholar
  258. Spitznagel, J. K., Goodrum, K. J., and Warejcka, D. J., 1983, Rat arthritis due to whole group B streptococci, Am. J. Pathol. 112:37.PubMedGoogle Scholar
  259. Sprick, M. G., 1956, Phagocytosis of M. tuberculosis and M. smegmatis stained with indicator dyes, Am. Rev. Respir. Dis. 74:552.Google Scholar
  260. Starkey, P. M., and Barrett, A. J., 1976, Human cathepsin G. catalytic and immunological properties, Biochem. J. 155:273.PubMedGoogle Scholar
  261. Steinman, R. M., Nellman, I. S., Muller, W. A., and Cohn, Z. A., 1983, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96:1.PubMedCrossRefGoogle Scholar
  262. Stossel, T. P., Ballard, T. D., and Mason, R. J., 1971, Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes, J. Clin. Invest. 50:1745.PubMedCrossRefGoogle Scholar
  263. Strauss, R. G., Bove, K. E., Jones, J. R., Mauer, A. M., and Fulginiti, V. A., 1974, An anomaly of neutrophil morphology with impaired function, N. Engl. J. Med. 290:478.PubMedCrossRefGoogle Scholar
  264. Strominger, J. L., and Ghuysen, J.-M., 1967, Mechanisms of enzymatic bacteriolysis, Science 156:213.PubMedCrossRefGoogle Scholar
  265. Strominger, J. L., and Tipper, D. J., 1974, Structure of bacterial cell walls: The lysozyme substrate, in Lysozyme (E. Osserman, R. E. Canfield, and S. Beychok, eds.), pp. 169–184. Academic Press, New York.CrossRefGoogle Scholar
  266. Tagesson, C., and Stendahl, O., 1973, Influence of the cell surface lipopolysaccharide structure of Salmonella typhimurium on resistance to intracellular bactericidal systems, Acta Pathol. Microbiol. Scand. [B] 81:473.Google Scholar
  267. Tedesco, R., Rottini, G., and Patriarca, P., 1981, Modulating effect of the late-acting components of the complement system on the bactericidal activity of human polymorphonuclear leukocytes on E. coli 0111:B4, J. Immunol. 127:1910.PubMedGoogle Scholar
  268. Thorne, K. J. I., Oliver, R. C., and Barrett, A. J., 1976, Lysis and killing of bacteria by lysosomal proteinases, Infect. Immun. 14:555.PubMedGoogle Scholar
  269. Van Houte, A. J., Elsbasch, P., Verkleij, A., and Weiss, J., 1977, Killing of Escherichia coli by a granulocyte fraction occurs without recognizable ultrastructural alterations in the bacterial envelope, as studies by freeze-fracture electron microscopy, Infect. Immun. 15:556.PubMedGoogle Scholar
  270. Van Snick, J. L., Masson, P. L., and Heremanns, J. F., 1974, The involvement of lactoferrin in the hyposideremia of acute inflammation, J. Exp. Med. 140:1068.PubMedCrossRefGoogle Scholar
  271. Walton, E., 1978, The preparation, properties and action on Staphylococcus aureus of purified fractions from the cationic proteins of rabbit polymorphonuclear leucocytes, Br. J. Exp. Pathol. 59:416.PubMedGoogle Scholar
  272. Walton, E., and Gladstone, G. P., 1975, A study of the action of the cationic proteins from rabbit polymorphonuclear leucocytes on the staphylococcal cell membrane, Br. J. Exp. Pathol. 56:459.PubMedGoogle Scholar
  273. Walton, E., and Gladstone, G. P., 1976, Factors affecting the susceptibility of staphylococci to killing by the cationic proteins from rabbit polymorphonuclear leucocytes: The effects of alteration of cellular energetics and of various iron compounds, Br. J. Exp. Pathol. 57:560.PubMedGoogle Scholar
  274. Wang-Iverson, P., Pryzwansky, K. B., Spitznagel, J. K., and Cooney, M. H., 1978, Bactericidal capacity of phorbol myristate acetate-treated human polymorphonuclear leukocytes, Infect. Immun. 22:945.PubMedGoogle Scholar
  275. Wardlaw, A. C., 1962, The complement-dependent bacteriolytic activity of normal human serum. I. The effect of pH and ionic strength and the role of lysozyme, J. Exp. Med. 115:1231.PubMedCrossRefGoogle Scholar
  276. Warren, G. H., Gray, J., and Bartell, P., 1955, The lysis of Pseudomonas aeruginosa by lysozyme, J. Bacteriol. 70:614.Google Scholar
  277. Warren, G. H., Gray, J., and Yurchenco, J. A., 1957, Effect of polymyxin on the lysis of Neisseria catarrhalis by lysozyme, J. Bacteriol. 74:788.PubMedGoogle Scholar
  278. Wassom, D. L., and Gleich, G. J., 1979, Damage to Trichinella spiralis newborn larvae by eosinophil major basic protein, Am. J. Trop. Med. Hyg. 28: 860.PubMedGoogle Scholar
  279. Weil, E., 1911, Untersuchungen uber die keimtotende Kraft der weissen Blutkorperchen. Arch. Hyg. (Berl.) 74:289.Google Scholar
  280. Weinberg, E. D., 1971, Roles of iron in host-parasite interactions, J. Infect. Dis. 124:401.PubMedCrossRefGoogle Scholar
  281. Weinberg, E. D., 1974, Iron and susceptibility to infectious disease, Science 184:952.PubMedCrossRefGoogle Scholar
  282. Weinberg, E. D., 1974, Iron and susceptibility to infectious disease. Science 184:95 2.Google Scholar
  283. Weiss, J., and Elsbach, P., 1977, The use of a phospholipase A-less Escherichia coli mutant to establish the action of granulocyte phospholipase A on bacterial phospholipids during killing by a highly purified granulocyte fraction, Biochim. Biophys. Acta 466:23.PubMedCrossRefGoogle Scholar
  284. Weiss, J., Franson, R. C., Beckerdite, S., Schmeidler, K., and Elsbach, P., 1975, Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli, J. Clin. Invest. 55:33.CrossRefGoogle Scholar
  285. Weiss, J., Franson, R. C., Schmeidler, K., and Elsbach, P., 1976, Reversible envelope effects during and after killing of escherichia coli by a highly-purified rabbit polymorphonuclear leukocyte fraction, Biochim. Biophys. Acta 436:154.PubMedCrossRefGoogle Scholar
  286. Weiss, J., Victor, M., Cross, A. S., and Elsbach, P. E., 1977, Sensitivity of K-1 encapsulated Escherichia coli to killing by the bactericidal/permeability-increasing protein of rabbit and human neutrophils, Infect. Immun. 38:1149.Google Scholar
  287. Weiss, J., Elsbach, P., Olsson, I., and Odeberg, H., 1978, Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes, J. Biol. Chem. 253:2664.PubMedGoogle Scholar
  288. Weiss, J., Beckerdite-Quagliata, S., and Elsbach, P., 1979, Determinants of the action of phospholipases A on the envelope phospholipids of Escherichia coli, J. Biol. Chem. 254:11010.Google Scholar
  289. Weiss, J., Beckerdite-Quagliata, S., and Elsbach, P., 1980, Resistance of gram-negative bacteria to purified bactericidal leukocyte proteins: Relation to binding and bacterial lipopolysaccharide structure, J. Clin. Invest. 65:619.PubMedCrossRefGoogle Scholar
  290. Weiss, J., Victor, M., Stendhal, O., and Elsbach, P., 1982, Killing of gram-negative bacteria by polymorphonuclear leukocytes, J. Clin. Invest. 69:959.PubMedCrossRefGoogle Scholar
  291. Welsh, I. R. H., and Spitznagel, J. K., 1971, Distribution of lysosomal enzymes, cationic proteins, and bactericidal substances in subcellular fractions of human polymorphonuclear leukocytes, Infect. Immun. 4:97.PubMedGoogle Scholar
  292. Wilson, L. A., and Spitznagel, J. K., 1968, Molecular and structural damage of Escherichia coli produced by antibody, complement and lysozyme systems, J. Bacteriol. 96:1339.PubMedGoogle Scholar
  293. Witholt, B., van Heerikhuizen, H., and de Leij, L., 1976, How does lysozyme penetrate through the bacterial outer membrane? Biochim. Biophys. Acta 443:534.PubMedGoogle Scholar
  294. Zeya, H. I., and Spitznagel, J. K., 1963, Anti-bacterial and enzymatic basic proteins from leukocyte lysosomes: Separation and identification, Science 142:1085.PubMedCrossRefGoogle Scholar
  295. Zeya, H. I., and Spitznagel, J. K., 1966a, Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities, J. Bacteriol. 91: 750.PubMedGoogle Scholar
  296. Zeya, H. I., and Spitznagel, J. K., 1966b, Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties and mechanism of anti-bacterial action, J. Bacteriol. 91:755.PubMedGoogle Scholar
  297. Zeya, H. I., and Spitznagel, J. K., 1966c, Anti-microbial specificity of leukocyte lysosomal cationic proteins, Science 154:1059.CrossRefGoogle Scholar
  298. Zeya, H. I., and Spitznagel, J. K., 1968, Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Anti-microbial specificity and biochemical heterogeneity, J. Exp. Med. 127:927.PubMedCrossRefGoogle Scholar
  299. Zeya, H. I., and Spitznagel, J. K., 1971, Characterization of cationic protein-bearing granules of polymorphonuclear leukocytes, Lab. Invest. 24:229.PubMedGoogle Scholar
  300. Zeya, H. I., Spitznagel, J. K., and Schwab, J. H., 1966, Anti-bacterial action of PMN lysosomal cationic proteins resolved by density gradient electrophoresis, Proc. Soc. Exp. Biol. 121:250.PubMedGoogle Scholar
  301. Zinder, N. D., and Arndt, W. F., 1956, Production of protoplasts of Escherichia coli by lysozyme treatment, Proc. Natl. Acad. Sci. (USA) 42:586.CrossRefGoogle Scholar
  302. Zinsser, H., 1910, On bactericidal substances extracted from normal leucocytes, J. Med. Res. 22:397.PubMedGoogle Scholar
  303. Zucker-Franklin, D., and Hirsch, J. G., 1964, Electron microscope studies on the degranulation of rabbit peritoneal leukocytes during phagocytosis, J. Exp. Med. 120:569.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • John K. Spitznagel
    • 1
  1. 1.Department Microbiology and Immunology, School of MedicineEmory UniversityAtlantaUSA

Personalised recommendations