Advertisement

Tools for Formulating Markov Models

  • Gianfranco Ciardo
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 24)

Abstract

Many man-made systems, especially those in the areas of computer and communication, are so complex that it is essential to study them with simplified mathematical models during their design, prototyping, and deployment.

Keywords

Critical Section Computational Probability Discrete Event System Reward Rate Jackson Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ajmone Marsan et al., 1989]
    Ajmone Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte, G., and Cumani, A. (1989). The effect of execution policies on the semantics and analyis of Stochastic Petri Nets. IEEE Trans. Softw. Eng., 15 (7): 832–846.CrossRefGoogle Scholar
  2. [Ajmone Marsan et al., 1995]
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and Franceschinis, G. (1995). Modelling with generalized stochastic Petri nets. John Wiley amp; Sons.Google Scholar
  3. [Amoia et al., 1981]
    Amoia, V., De Micheli, G., and Santomauro, M. (1981). Computer-oriented formulation of transition-rate matrices via Kronecker algebra. IEEE Trans. Rel., 30: 123–132.CrossRefGoogle Scholar
  4. [Baskett et al., 1975]
    Baskett, F., Chandy, K. M., Muntz, R. R., and PalaciosGomez, F. (1975). Open, Closed, and Mixed networks of queues with different classes of customers. J. ACM, 22 (2): 335–381.CrossRefGoogle Scholar
  5. [Bause et al., 1995]
    Bause, F., Buchholz, P., and Kemper, P. (1995). QPN-Tool for the specification and analysis of hierarchically combined queueing Petri nets. In Beilner, H. and Bause, F., editors, Quantitative Evaluation of Computing and Communication Systems, 8th Int. Conf. Modelling Techniques and Tools, LNCS 977, pages 224–238.CrossRefGoogle Scholar
  6. [Berson et al., 1991]
    Berson, S., de Souza e Silva, E., and Muntz, R. R. (1991). A methodology for the specification and generation of Markov models. In Stewart, W. J., editor, Numerical Solution of Markov Chains, pages 11–36. Marcel Dekker, Inc., New York, NY.Google Scholar
  7. [Blum et al., 1994]
    Blum, A. M., Goyal, A., Heidelberger, P., and Lavenberg, S. S. (1994). Modeling and analysis of system dependability using the System Availability Estimator. In Proc. 24th Int. Symp. on Fault-Tolerant Computing, pages 137–141, Austin, TX.CrossRefGoogle Scholar
  8. [Bobbio and Cumani, 1984]
    Bobbio, A. and Cumani, A. (1984). Discrete state stochastic systems with phase-type distributed transition times. In Proc. 1984 AMSE Int. Conf. on Modelling and Simulation,Athens, Greece.Google Scholar
  9. [Buchholz, 1991]
    Buchholz, P. (1991). Numerical solution methods based on structured descriptions of Markovian models. In Balbo, G. and Serazzi, G., editors, Computer performance evaluation, pages 251–267. Elsevier Science Publishers B.V. ( North-Holland )Google Scholar
  10. [Buchholz, 1994]
    Buchholz, P. (1994). A class of hierarchical queueing networks and their analysis. Queueing Systems., 15: 59–80.CrossRefGoogle Scholar
  11. [Buchholz and Kemper, 1995]
    Buchholz, P. and Kemper, P. (1995). Numerical analysis of stochastic marked graphs. In Proc. 6th Int. Workshop on Petri Nets and Performance Models (PNPM’95), pages 32–41, Durham, NC. IEEE Comp. Soc. Press.CrossRefGoogle Scholar
  12. Caselli et al., 1995] Caselli, S., Conte, G., and Marenzoni, P. (1995). Parallel state space exploration for GSPN models. In De Michelis, G. and Diaz, M., editors, Application and Theory of Petri Nets 1995, Lecture Notes in Computer Science 935 (Proc. 16th Int. Conf. on Applications and Theory of Petri Nets, Turin, Italy),pages 181–200. Springer-Verlag.Google Scholar
  13. [Cassandras, 1993]
    Cassandras, C. G. (1993). Discrete Event Systems: Modeling and Performance Analysis. Aksen Associates.Google Scholar
  14. [Çinlar, 1975]
    Çinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall.Google Scholar
  15. [Chen et al., 1989]
    Chen, P.-z., Bruell, S. C., and Balbo, G. (1989). Alternative methods for incorporating non-exponential distributions into stochastic timed Petri nets. In Proc. 3rd Int. Workshop on Petri Nets and Performance Models (PNPM’89),Kyoto, Japan. IEEE Comp. Soc. Press.Google Scholar
  16. [Chiola et al., 1993]
    Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S. (1993). Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comp., 42 (11): 1343–1360.CrossRefGoogle Scholar
  17. [Choi et al., 1994]
    Choi, H., Kulkarni, V. G., and Trivedi, K. S. (1994). Markov regenerative stochastic Petri nets. Perf. Eval., 20 (1–3): 337–357.CrossRefGoogle Scholar
  18. [Ciardo, 1989]
    Ciardo, G. (1989). Analysis of large stochastic Petri net models. PhD thesis, Duke University, Durham, NC.Google Scholar
  19. [Ciardo, 1994]
    Ciardo, G. (1994). Petri nets with marking-dependent arc multiplicity: properties and analysis. In Valette, R., editor, Application and Theory of Petri Nets 1994, Lecture Notes in Computer Science 815 (Proc. 15th Int. Conf. on Applications and Theory of Petri Nets, Zaragoza, Spain),pages 179–198. Springer-Verlag.Google Scholar
  20. [Ciardo, 1995]
    Ciardo, G. (1995). Discrete-time Markovian stochastic Petri nets. In Stewart, W. J., editor, Computations with Markov Chains, pages 339–358. Kluwer, Boston, MA.CrossRefGoogle Scholar
  21. [Ciardo et al., 1993a]
    Ciardo, G., Blakemore, A., Chimento, P. F. J., Muppala, J. K., and Trivedi, K. S. (1993a). Automated generation and analysis of Markov reward models using Stochastic Reward Nets. In Meyer, C. and Plemmons, R. J., editors, Linear Algebra, Markov Chains, and Queueing Models,volume 48 of IMA Volumes in Mathematics and its Applications,pages 145–191. Springer-Verlag.Google Scholar
  22. [Ciardo et al., 1993b]
    Ciardo, G., German, R., and Lindemann, C. (1993b). A characterization of the stochastic process underlying a stochastic Petri net. In Proc. 5th Int. Workshop on Petri Nets and Performance Models (PNPM’93), pages 170–179, Toulouse, France. IEEE Comp. Soc. Press.CrossRefGoogle Scholar
  23. [Ciardo et al., 1998]
    Ciardo, G., Gluckman, J., and Nicol, D. (1998). Distributed state-space generation of discrete-state stochastic models. INFORMS J. Comp., 10 (1): 82–93.CrossRefGoogle Scholar
  24. [Ciardo and Miner, 1997]
    Ciardo, G. and Miner, A. S. (1997). Storage alternatives for large structured state spaces. In Marie, R., Plateau, B., Calzarossa, M., and Rubino, G., editors, Proc. 9th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, LNCS 1245, pages 44–57, St. Malo, France. Springer-Verlag.CrossRefGoogle Scholar
  25. [Ciardo et al., 1991]
    Ciardo, G., Muppala, J. K., and Trivedi, K. S. (1991). On the solution of GSPN reward models. Perf. Eval., 12 (4): 237–253.CrossRefGoogle Scholar
  26. [Ciardo and Tilgner, 1996]
    Ciardo, G. and Tilgner, M. (1996). On the use of Kronecker operators for the solution of generalized stochastic Petri nets. ICASE Report 96–35, Institute for Computer Applications in Science and Engineering, Hampton, VA.Google Scholar
  27. [Ciardo and Zijal, 1996]
    Ciardo, G. and Zijal, R. (1996). Well-defined stochastic Petri nets. In Proc. 4th Int. Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’96), pages 278–284, San Jose, CA, USA. IEEE Comp. Soc. Press.CrossRefGoogle Scholar
  28. [Clocksin and Mellish, 1984]
    Clocksin, W. F. and Mellish, C. S. (1984). Programming in Prolog. Springer-Verlag.Google Scholar
  29. [Cox, 1955]
    Cox, D. (1955). A use of complex probabilities in the theory of stochastic processes. Proc. of the Cambridge Philosophical Society, 51: 313319.Google Scholar
  30. [Cumani, 1985]
    Cumani, A. (1985). ESP - A package for the evaluation of stochastic Petri nets with phase-type distributed transitions times. In Proc. Int. Workshop on Timed Petri Nets,Torino, Italy.Google Scholar
  31. [Davio, 1981]
    Davio, M. (1981). Kronecker products and shuffle algebra. IEEE Trans. Comp., C-30: 116–125.Google Scholar
  32. [de Souza e Silva and Gail, 1989]
    de Souza e Silva, E. and Gail, H. R. (1989). Calculating availability and performability measures of repairable computer systems using randomization. J. ACM., 36 (1): 171–193.Google Scholar
  33. [Deavours and Sanders, 1997a]
    Deavours, D. D. and Sanders, W. H. (1997a). An efficient disk-based tool for solving very large Markov models. In Marie, R., Plateau, B., Calzarossa, M., and Rubino, G., editors, Proc. 9th Int. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation, LNCS 1245, pages 58–71, St. Malo, France. Springer-Verlag.CrossRefGoogle Scholar
  34. [Deavours and Sanders, 1997b]
    Deavours, D. D. and Sanders, W. H. (1997b). “On-the-fly” solution techniques for stochastic Petri nets and extensions. In Proc. 7th Int. Workshop on Petri Nets and Performance Models (PNPM’97), pages 132–141, St. Malo, France. IEEE Comp. Soc. Press.Google Scholar
  35. [Donatelli, 1991]
    Donatelli, S. (1991). Superposed Stochastic Automata: a class of stochastic Petri nets amenable to parallel solution. In Proc. 4th Int. Workshop on Petri Nets and Performance Models (PNPM’91), pages 54–63, Melbourne, Australia. IEEE Comp. Soc. Press.CrossRefGoogle Scholar
  36. [Donatelli, 1994]
    Donatelli, S. (1994). Superposed generalized stochastic Petri nets: definition and efficient solution. In Valette, R., editor, Application and Theory of Petri Nets 199.4, Lecture Notes in Computer Science 815 (Proc. 15th Int. Conf. on Applications and Theory of Petri Nets), pages 258–277, Zaragoza, Spain. Springer-Verlag.Google Scholar
  37. [Feller, 1962]
    Feller, W. (1962). An Introduction to Probability Theory and Its Applications. John Wiley, New York. Second Edition.Google Scholar
  38. [Fernandes et al., 1996]
    Fernandes, P., Plateau, B., and Stewart, W. J. (1996). Numerical issue for stochastic automata networks. In Proc. of the Ord Workshop on Process Algebra and Performance Modelling (PAPM), Torino, Italy. CLUT.Google Scholar
  39. [Grassmann, 1991]
    Grassmann, W. K. (1991). Finding transient solutions in Markovian event systems through randomization. In Stewart, W. J., editor, Numerical Solution of Markov Chains, pages 357–371. Marcel Dekker, Inc., New York, NY.Google Scholar
  40. [Grassmann and Wang, 1995]
    Grassmann, W. K. and Wang, Y. (1995) Immediate events in Markov chains. In Stewart, W. J., editor, Computations with Markov Chains, pages 163–176. Kluwer, Boston, MA.CrossRefGoogle Scholar
  41. [Gross and Miller, 1984]
    Gross, D. and Miller, D. (1984). The randomization technique as a modeling tool and solution procedure for transient Markov processes. Oper. Res., 32: 343–361.CrossRefGoogle Scholar
  42. [Jensen, 1953]
    Jensen, A. (1953). Markoff Chains as an Aid in the Study of Markoff Processes. Skand. Aktuarietidskr., 36: 87–91.Google Scholar
  43. [Jensen, 1987]
    Jensen, K. (1987). Coloured Petri nets. In Petri Nets: Central Models and Their Properties, Lecture Notes in Computer Science 254, pages 248–299. Springer-Verlag.Google Scholar
  44. [Kemper, 1996]
    Kemper, P. (1996). Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng., 22 (4): 615–628.CrossRefGoogle Scholar
  45. [Molloy, 1985]
    Molloy, M. K. (1985). Discrete time stochastic Petri nets. IEEE Trans. Softw. Eng., 11 (4): 417–423.CrossRefGoogle Scholar
  46. [Murata, 1989]
    Murata, T. (1989). Petri Nets: properties, analysis and applications. Proc. of the IEEE, 77 (4): 541–579.CrossRefGoogle Scholar
  47. [Page et al., 1989]
    Page, T. W., Berson, S. E., Cheng, W. C., and Muntz, R. R. (1989). An object-oriented modeling environment. In OOPSLA ‘89 Proc.Google Scholar
  48. [Plateau, 1985]
    Plateau, B. (1985). On the stochastic structure of parallelism and synchronisation models for distributed algorithms. In Proc. 1985 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pages 147–153, Austin, TX, USA.Google Scholar
  49. [Plateau and Atif, 1991]
    Plateau, B. and Atif, K. (1991). Stochastic Automata Network for modeling parallel systems. IEEE Trans. Softw. Eng., 17 (10): 1093–1108.CrossRefGoogle Scholar
  50. [Plateau et al., 1988]
    Plateau, B., Fourneau, J.-M., and Lee, K. H. (1988). PEPS: a package for solving complex Markov models of parallel systems. In Puigjaner, R., editor, Proc. 4th Int. Conf. Modelling Techniques and Tools, pages 341–360.Google Scholar
  51. [Qureshi et al., 1995]
    Qureshi, M. A., Sanders, W. H., van Morsel, A. P. A., and German, R. (1995). Algorithms for the generation of state-level representations of stochastic activity networks with general reward structures. In Proc. 6th Int. Workshop on Petri Nets and Performance Models (PNPM’95), pages 180–190, Durham, NC. IEEE Comp. Soc. Press.CrossRefGoogle Scholar
  52. [Sanders, 1988]
    Sanders, W. H. (1988). Construction and solution of performability models based on Stochastic Activity Networks. PhD thesis, Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI.Google Scholar
  53. [Sanders and Meyer, 1991]
    Sanders, W. H. and Meyer, J. F. (1991). Reduced base model construction methods for stochastic activity networks. IEEE J. Sel. Areas in Comm., 9 (1): 25–36.CrossRefGoogle Scholar
  54. [Stewart, 1991]
    Stewart, W. J. (1991). MARCA: Markov Chain Analyser, a software package for Markov modelling In Stewart, W. J., editor, Numerical Solution of Markov Chains, pages 37–61. Marcel Dekker, Inc., New York, NY.Google Scholar
  55. [Stewart et al., 1995]
    Stewart, W. J., Atif, K., and Plateau, B. (1995). The numerical solution of stochastic automata networks. Europ. J. of Oper. Res., 86: 503–525.CrossRefGoogle Scholar
  56. [Van Dijk, 1991]
    Van Dijk, N. M. (1991). Truncation of Markov chains with applications to queueing. Operations Research, 39 (6): 1018–1026.CrossRefGoogle Scholar
  57. [Wallace and Rosenberg, 1994]
    Wallace, V. L. and Rosenberg, R. (1994). RQA1, The recursive queue analyser. Technical Report 2, Systems Engineering Laboratory, University of Michigan, Ann Arbor.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gianfranco Ciardo
    • 1
  1. 1.Department of Computer ScienceCollege of William and MaryWilliamsburgUSA

Personalised recommendations