Advertisement

The Kinetics of the Growth of Oxides

  • M. J. Dignam
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)

Abstract

The growth of an oxide film on a metal surface involves the transport of matter and/or charge in at least three phases, the metal, the oxide film, and the oxidizing medium. Many metals form more than one stable oxide, and some oxides exist in both amorphous and crystalline forms. The oxides may possess pores or fissures complicating the transport processes, while grain boundaries and dislocations can provide short-circuit transport paths. To this potpourri must be added surface and space charges and the ever-elusive properties of at least two interfaces and their attendant processes. The result is an overwhelming range of possible—and no doubt actual—kinetic behavior.

Keywords

Oxide Film Space Charge Defect Injection Anodic Film Anodic Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Hoar, The anodic behavior of metals, in Modern Aspects of Electrochemistry, Vol. 2, J. O’M. Bockris, ed., Academic Press, New York (1959).Google Scholar
  2. 2.
    U. R. Evans, The Corrosion and Oxidation of Metals, St. Martins, New York (1960).Google Scholar
  3. 3.
    L. Young, Anodic Oxide Films, Academic Press, New York (1961).Google Scholar
  4. 4.
    F. J. Burger and L. Young, Electrolytic capacitors, in Progress in Dielectrics, Vol. 5, Heywood, London (1962).Google Scholar
  5. 5.
    M. Fleischmann and H. R. T. Thirsk, Metal deposition and electrocrystallization, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 3, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1963).Google Scholar
  6. 6.
    D. A. Vermilyea, Anodic films, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 3, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1963).Google Scholar
  7. 7.
    N. G. Bardina, Anodic oxide films, Russ. Chem. Rev 33, 286 (1964).CrossRefGoogle Scholar
  8. 8.
    T. P. Hoar, in Encyclopedia of Electrochemistry, C. A. Hampel, ed., Reinhold, New York (1964).Google Scholar
  9. 9.
    L. Young, W. S. Goruk, and F. G. R. Zobel, Ionic and electronic currents at high fields in anodic oxide films, in Modern Aspects of Electrochemistry, Vol. 4, J. O’M. Bockris, ed., Butterworths, London (1966).Google Scholar
  10. 10.
    J. W. Diggle, T. C. Downie, and C. W. Goulding, Anodic oxide films on aluminum, Chem. Rev 69, 365 (1969).CrossRefGoogle Scholar
  11. 11.
    F. Fehlner and N. F. Mott, Low-temperature oxidation, Oxid. Met 2, 59 (1970).CrossRefGoogle Scholar
  12. 12.
    C. J. Dell’Oca, D. J. Pulfrey, and L. Young, Anodic oxide films, in Physics of Thin Films, Vol. 6, Academic Press, London (1971).Google Scholar
  13. 13.
    U. R. Evans, Inhibition, passivity and resistance: a review of acceptable mechanisms, Electrochim. Acta 16, 1825 (1971).CrossRefGoogle Scholar
  14. 14.
    S. M. Ahmed, Electrocal double layer at metal oxide-solution interfaces, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).Google Scholar
  15. 15.
    V. Brusic, Passivation phenomena, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).Google Scholar
  16. 16.
    M. J. Dignam, Mechanisms of ionic transport through oxide films, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).Google Scholar
  17. 17.
    A. K. Vijh, Electrochemistry of Metals and Semiconductors, Marcel Dekker, New York (1973).Google Scholar
  18. 18.
    G. C. Wood, Porous anodic films on aluminum, in Oxides and Oxide Films, Vol. 2, J. W. Diggle, ed., Marcel Dekker, New York (1974).Google Scholar
  19. 19.
    A. T. Fromhold, Jr., Space-charge effects on anodic film formation, in Oxides and Oxide FilmsVol. 3, J. W. Diggle and A. K. Vijh, Eds., Marcel Dekker, New York (1976) Google Scholar
  20. 20.
    G. Belanger and A. K. Vijh, Anodic oxides on noble metals, in Oxides and Oxide Films, Vol. 5, A. K. Vijh, ed., Marcel Dekker, New York (1977).Google Scholar
  21. 21.
    L. Young, Trans. Faraday Soc 53, 841 (1957).CrossRefGoogle Scholar
  22. 22.
    M. R. Arora and R. Kelly, J. Electrochem. Soc 124, 1493 (1977).CrossRefGoogle Scholar
  23. 23.
    J. L. Ord, D. J. DeSmet, and M. A. Hopper, J. Electrochem. Soc 123, 1352 (1976).CrossRefGoogle Scholar
  24. 24.
    J. L. Ord, J. C. Clayton, and D. J. DeSmet, J. Electrochem. Soc 124, 1714 (1977).CrossRefGoogle Scholar
  25. 25.
    G. C. Wood and A. J. Brock, Nature 209, 773 (1966).CrossRefGoogle Scholar
  26. 26.
    G. Parsons and G. C. Wood, Corros. Sci 9, 367 (1969).CrossRefGoogle Scholar
  27. 27.
    G. C. Wood and S. W. Khoo, J. Appl. Electrochem 1, 189 (1971).CrossRefGoogle Scholar
  28. 28.
    M. J. Dignam and P. J. Ryan, Can. J. Chem 41, 3108 (1963).CrossRefGoogle Scholar
  29. 29.
    M. J. Dignam, unpublished data.Google Scholar
  30. 30.
    M. J. Dignam and D. Goad, J. Electrochem. Soc 113, 381 (1966).CrossRefGoogle Scholar
  31. 31.
    D. J. Young and M. J. Dignam, Oxid. Met 5, 241 (1972).CrossRefGoogle Scholar
  32. 32.
    N. Cabrera and N. F. Mott, Rep. Prog. Phys 12, 163 (1948).CrossRefGoogle Scholar
  33. 33.
    D. J. Young and M. J. Dignam, J. Phys. Chem. Solids, 34, 1235 (1973).CrossRefGoogle Scholar
  34. 34.
    M. J. Dignam and R. K. Kalia, Surface Sci. 100, 154 (1980).CrossRefGoogle Scholar
  35. 35.
    M. J. Dignam, H. M. Barrett, and G. D. Nagy, Can. J. Chem 47, 4253 (1969).CrossRefGoogle Scholar
  36. 36.
    M. J. Dignam, D. J. Young, and D. G. W. Goad, J. Phys. Chem. Solids 34, 1227 (1973); M. J. Dignam, Can. J. Chem 57, 1329 (1979).CrossRefGoogle Scholar
  37. 37.
    E. J. W. Verwey, Physica (The Hague) 2, 1059 (1935).CrossRefGoogle Scholar
  38. 38.
    J. F. Dewald, J. Electrochem. Soc 102, 1 (1955).CrossRefGoogle Scholar
  39. 39.
    L. Young, Can. J. Chem 37, 276 (1959).CrossRefGoogle Scholar
  40. 40.
    N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed., Oxford University Press, London (1957).Google Scholar
  41. 41.
    C. P. Bean, J. C. Fisher, and D. A. Vermilyea, Phys. Rev 101, 551 (1956).CrossRefGoogle Scholar
  42. 42.
    J. F Dewald, J. Phys. Chem. Solids 2 55 (1957).Google Scholar
  43. 43.
    M. J Dignam and D. F. Taylor, Can. J. Chem 49 416 (1971).Google Scholar
  44. 44.
    M. J. Dignam, J. Electrochem. Soc 126, 2188 (1979).CrossRefGoogle Scholar
  45. 45.
    L. Young, Proc. R. Soc. (London) Ser. A 258, 496 (1960).CrossRefGoogle Scholar
  46. 46.
    M. J. Dignam, Can. J. Chem 42, 1155 (1964).CrossRefGoogle Scholar
  47. 47.
    L. Young, J. Electrochem. Soc 110, 589 (1963).CrossRefGoogle Scholar
  48. 48.
    N. Ibl, Electrochim. Acta 14, 1043 (1967).CrossRefGoogle Scholar
  49. 49.
    M. J. Dignam and D. B. Gibbs, J. Phys. Chem. Solids 30, 375 (1969).CrossRefGoogle Scholar
  50. 50.
    J. L. Ord, M. A. Hopper, and W. P. Wang, J. Electrochem. Soc 119, 439 (1972).CrossRefGoogle Scholar
  51. 51.
    J. C. Polanyi and J. L. Schreiber, in Physical Chemistry, An Advanced Treatise, Vol. VIA, Kinetics of Gas Reactions, W. Jost, ed., Academic Press, New York (1974).Google Scholar
  52. 52.
    G. W. Morey, The Property of Glass, Reinhold, New York (1954).Google Scholar
  53. 53.
    K. Otto, Phys. Chem. Glasses 7, 29 (1966).Google Scholar
  54. 54.
    J. P. S. Pringle, Electrochim. Acta 25, 1403, 1423 (1979).Google Scholar
  55. 55.
    M. J. Dignam, J. Phys. Chem. Solids 29, 249 (1968).CrossRefGoogle Scholar
  56. 56.
    A. R. Von Hippel, Dielectrics and Waves, Wiley, London (1954).Google Scholar
  57. 57.
    F. S. Stone, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).Google Scholar
  58. 58.
    A. G. Ritchie, J. Chem. Soc. Faraday Trans. 1 10, 1650 (1977).Google Scholar
  59. 59.
    S. M. Ahmed, in Symposium on Oxide—Electrolyte Interfaces, R. S. Alwitt, ed., The Electrochemical Society, Princeton, New Jersey (1973).Google Scholar
  60. 60.
    M. J. Dignam, Can. J. Chem 56, 595 (1978).Google Scholar
  61. 61.
    S. Levine and A. L. Smith, Discuss. Faraday Soc 52, 290 (1971).CrossRefGoogle Scholar
  62. 62.
    L. Young, Proc. R. Soc. London Ser. A 244, 41 (1958).Google Scholar
  63. 63.
    J. Siejka, J. P. Nadai, and G. Amsel, J. Electrochem. Soc 118, 727 (1971).CrossRefGoogle Scholar
  64. 64.
    D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1299 (1973).CrossRefGoogle Scholar
  65. 65.
    D. A. Vermilyea, J. Electrochem. Soc 103, 690 (1956).CrossRefGoogle Scholar
  66. 66.
    S. J. Basinska, J. J. Polling, and A. Charlesbry, Acta Metall. 2, 313 (1954).CrossRefGoogle Scholar
  67. 67.
    A. L. Bacerella and A. L. Sutton, Electrochem. Technol 4, 117 (1966).Google Scholar
  68. 68.
    D. A. Vermilyea, Acta Metall. 2, 482 (1954).CrossRefGoogle Scholar
  69. 69.
    P. H. G. Draper, Electrochim. Acta 8, 847 (1963).CrossRefGoogle Scholar
  70. 70.
    C. J. Dell’Oca and L. Young, J. Electrochem. Soc 117, 1545, 1548 (1970).CrossRefGoogle Scholar
  71. 71.
    R. J. Maurer, J. Chem. Phys 9, 579 (1941).CrossRefGoogle Scholar
  72. 72.
    J. J. Randall, W. J. Bernard, and R. R. Wilkinson, Electrochim. Acta 10, 183 (1965).CrossRefGoogle Scholar
  73. 73.
    G. Amsel and D. Samuel, J. Phys. Chem. Solids 23, 1707 (1962).CrossRefGoogle Scholar
  74. 74.
    J. P. S. Pringle, J. Electrochem. Soc 120, 1931 (1973).Google Scholar
  75. 75.
    J. P. S. Pringle, Electrochemical Society, Extended Abstracts, Vol. 78–1, Abstract No. 195, Seattle, Washington (May 1978).Google Scholar
  76. 76.
    J. A. Davies, J. P. S. Pringle, R. L. Graham, and F. Brown, J. Electrochem. Soc. 109, 999 (1962); R. L. Graham, F. Brown, J. A. Davies, and J. P. S. Pringle, Can. J. Chem. 41, 1686 (1963); J. A. Davies and B. Domeij, J. Electrochem. Soc. 110, 85 (1963); J. A. Davies, B. Domeij, J. P. S. Pringle, and F. J. Brown, J. Electrochem. Soc 112, 675 (1965).Google Scholar
  77. 77.
    J. W. Whitton, J. Electrochem. Soc 115, 58 (1968).CrossRefGoogle Scholar
  78. 78.
    J. Perriere, S. Rigo, and S. Siejka, J. Electrochem. Soc 125, 1549 (1978).CrossRefGoogle Scholar
  79. 79.
    M. J. Dignam and P. J. Ryan, Can. J. Chem 46, 535 (1968).CrossRefGoogle Scholar
  80. 80.
    D. G. W. Goad and M. J. Dignam, Can. J. Chem 50, 3250 (1972).Google Scholar
  81. 81.
    D. A. Vermilyea, J. Electrochem. Soc 104, 427 (1957).CrossRefGoogle Scholar
  82. 82.
    L. Young, Proc. R. Soc. (London) A263, 395 (1961).CrossRefGoogle Scholar
  83. 83.
    L. Masing and L. Young, Can. J. Chem 40, 903 (1962).CrossRefGoogle Scholar
  84. 84.
    M. J. Dignam and P. J. Ryan, Can. J. Chem 46, 549 (1968).CrossRefGoogle Scholar
  85. 85.
    D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1306 (1973).CrossRefGoogle Scholar
  86. 86.
    J. L. Ord and J. H. Bartlett, J. Electrochem. Soc 112, 160 (1965).CrossRefGoogle Scholar
  87. 87.
    J. L. Ord, J. Electrochem. Soc 113, 213 (1966).CrossRefGoogle Scholar
  88. 88.
    J. L. Ord and D. J. DeSmet, J. Electrochem. Soc. 113, 1876 (1966); 116, 762 (1969); 123, 1876 (1976).CrossRefGoogle Scholar
  89. 89.
    D. J. DeSmet and M. A. Hopper, J. Electrochem. Soc 116, 1184 (1969).CrossRefGoogle Scholar
  90. 90.
    B. H. Ellis, M. A. Hopper, and D. J. DeSmet, J. Electrochem. Soc 118, 860 (1971).CrossRefGoogle Scholar
  91. 91.
    M. A. Hopper, T. A. Wright, and D. J. DeSmet, J. Electrochem. Soc 124, 44 (1977).CrossRefGoogle Scholar
  92. 92.
    J. L. Ord and F. C. Ho, J. Electrochem. Soc 118, 46 (1971).CrossRefGoogle Scholar
  93. 93.
    J. L. Ord, J. C. Clayton, and K. Brudzewski, J. Electrochem. Soc 125 (6), 908 (1978).CrossRefGoogle Scholar
  94. 94.
    J. L. Ord, J. C. Clayton, and W. P. Wang, J. Electrochem. Soc 124, 1671 (1977).CrossRefGoogle Scholar
  95. 95.
    L. Young and P. J. Smith, J. Electrochem. Soc 126, 1972 (1979).CrossRefGoogle Scholar
  96. 96.
    L. Young, Can. J. Chem 50, 574 (1972).CrossRefGoogle Scholar
  97. 97.
    L. Young and D. J. Smith, J. Electrochem. Soc 126, 765 (1979).CrossRefGoogle Scholar
  98. 98.
    H. J. de Wit, C. Wijenberg, and C. Crevecoeur, J. Electrochem. Soc. 126, 779 (1979).CrossRefGoogle Scholar
  99. 99.
    M. J. Dignam and D. F. Taylor, Can. J. Chem. 48, 1971 (1970); D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1306 (1973).CrossRefGoogle Scholar
  100. 100.
    G. Schwartz, J. Phys. Chem 71, 4021 (1967).CrossRefGoogle Scholar
  101. 101.
    M. J. Dignam, J. Electrochem. Soc. 109, 184 (1962).Google Scholar
  102. 102.
    L. Young, J. Electrochem. Soc 111, 1289 (1964).CrossRefGoogle Scholar
  103. 103.
    C. Crevecoeur and H. J. de Wit, J. Electrochem. Soc 121, 1465 (1974).CrossRefGoogle Scholar
  104. 104.
    J. P. O’Sullivan and G. C. Wood, Proc. R. Soc. London Ser. A 317, 511 (1970).CrossRefGoogle Scholar
  105. 105.
    C. J. Dell’Oca and P. J. Fleming, J. Electrochem. Soc 123, 1487 (1976).CrossRefGoogle Scholar
  106. 106.
    A. Dekker and A. Middelhoek, J. Electrochem. Soc 117, 440 (1970).CrossRefGoogle Scholar
  107. 107.
    D. B. Gibbs, B. Rao, R. A. Griffin, and M. J. Dignam, J. Electrochem. Soc 122, 1167 (1975).CrossRefGoogle Scholar
  108. 108.
    J. A. McMillan, Chem. Rev 62, 65 (1962).CrossRefGoogle Scholar
  109. 109.
    J. A. Allen, in Proceedings of the First Australian Conference on Electrochemistry, Pergamon, London (1965).Google Scholar
  110. 110.
    K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, (1967), pp. 317–325.Google Scholar
  111. 111.
    L. L. Bircumshaw and A. C. Reddiford, Quart. Rev. (London) 6, 157 (1952).CrossRefGoogle Scholar
  112. 112.
    W. J. Dunning, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).Google Scholar
  113. 113.
    J. W. Mitchell, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).Google Scholar
  114. 114.
    G. T. Wright, Solid State Electron. 2, 165 (1961).CrossRefGoogle Scholar
  115. 115.
    R. G. Barradas and G. H. Fraser, Can. J. Chem 42, 2488 (1964).CrossRefGoogle Scholar
  116. 116.
    H. Angerstein-Kozlowska, B. E. Conway, and W. B. A. Sharp, J. Electroanal. Chem 43, 9 (1973).CrossRefGoogle Scholar
  117. 117.
    T. Biegler, Aust. J. Chem 26, 2571 (1973).CrossRefGoogle Scholar
  118. 118.
    M. D. Goldstein, T. I. Zalkind, and V. I. Veselovskii, Elektrokhim. 10, 1533 (1974).Google Scholar
  119. 119.
    B. V. Tilak, B. E. Conway, and H. Angerstein-Kozlowska, J. Electronanal. Chem 48, 1 (1973).CrossRefGoogle Scholar
  120. 120.
    K. J. Vetter and J. W. Schultze, J. Electroanal. Chem 34, 131 (1972).CrossRefGoogle Scholar
  121. 121.
    D. Gilroy and B. E. Conway, Can. J. Chem 46, 875 (1968).CrossRefGoogle Scholar
  122. 122.
    K. J. Vetter and J. W. Schultze, J. Electroanal. Chem 34, 141 (1972).CrossRefGoogle Scholar
  123. 123.
    W. Visscher and M. A. V. Devanathan, J. Electroanal. Chem 8, 127 (1964).Google Scholar
  124. 124.
    T. Biegler, D. A. J. Rand, and R. Woods, J. Electroanal. Chem 29, 269 (1971).CrossRefGoogle Scholar
  125. 125.
    J. Balej and O. Spalek, Collect. Czecho. Chem. Commun 47, 499 (1972).CrossRefGoogle Scholar
  126. 126.
    T. P. Hoare, The Electrochemistry of Oxygen, Interscience, New York (1968).Google Scholar
  127. 127.
    P. W. Jacobs and F. C. Tompkins, in Chemistry of the Solid State, W. E. Garner, Eds., Butterworths, London (1955).Google Scholar
  128. 128.
    M. J. Dignam and D. B. Gibbs, Can. J. Chem 48, 1242 (1970).CrossRefGoogle Scholar
  129. 129.
    V. Ashworth and D. Fairhurst, J. Electrochem. Soc 124, 506 (1977).CrossRefGoogle Scholar
  130. 130.
    S. Fletcher, R. G. Barradas, and J. D. Porter, J. Electrochem. Soc 125, 1960 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. J. Dignam
    • 1
  1. 1.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations