Advertisement

Electrochemical Passivation of Metals

  • Norio Sato
  • Go Okamoto
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)

Abstract

It is common knowledge that metallic iron and nickel placed in acidic solutions corrode with evolution of hydrogen gas. In concentrated nitric acid, however, they suddenly become protected against corrosion some time after violent metal dissolution and gas evolution have occurred. A sudden decrease of metal dissolution is also observed when they are anodically polarized in acid and neutral solutions. The unstable surface of actively corroding metals in aqueous solutions can thus sometimes be made stable in the presence of a strong oxidant or by polarizing the electrode potential in the anodic (positive) direction. The phenomena, which was found in the days of Faraday,(1) is called the electrochemical passivation of metals, and the corrosion-resistance state of the stable surface is called the passive state, as contrasted with the active state of the corroding surface; the term chemical passivation is sometimes used for the passivation caused by oxidants and the anodic passivation for the anodic formation of passivity.

Keywords

Passive Film Sulfuric Acid Solution Anodic Current Density Anodic Polarization Curve Normal Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Faraday, Experimental Research in Electricity, Vol. II,University of London, London (1844), pp. 2 and 244.Google Scholar
  2. 2.
    C. Wagner, Corros. Sci. 5, 751 (1963).CrossRefGoogle Scholar
  3. 3.
    M. Jänchen and K. Schwabe, Z. Phys. Chem. (Leipzig) 237, 129 (1976).Google Scholar
  4. 4.
    Ya. M. Kolotyrkin and G. G. Kossii, Zaschtschita Metallov 1, 272 (1965).Google Scholar
  5. 5.
    K. E. Heusler, Z. Elektrochem. 62, 582 (1958).Google Scholar
  6. 6.
    J. O’M. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 315 (1961).Google Scholar
  7. 7.
    L. Franke, W. Forker, and P. Schultheiss, Electrochim. Acta 18, 877 (1973).CrossRefGoogle Scholar
  8. 8.
    N. Sato, Trans. Japan, Inst. Metals 6, 63 (1965).Google Scholar
  9. 9.
    W. J. Plieth and I. J. Vetter, Ber. Bunsenges. Phys. Chem. 73, 1977 (1969).Google Scholar
  10. 10.
    I. Epelboin and M. Keddam, Electrochim. Acta 17, 177 (1972).CrossRefGoogle Scholar
  11. 11.
    R. D. Armstrong and M. H. Henderson, J. Electroanal. Chem. 39, 222 (1972).CrossRefGoogle Scholar
  12. 12.
    R. D. Armstrong, M. Henderson, and H. R. Thirsk, J. Electroanal. Chem. 35, 119 (1972).CrossRefGoogle Scholar
  13. 13.
    R. D. Armstrong and R. E. Firman, J. Electroanal. Chem. 34, 391 (1972).CrossRefGoogle Scholar
  14. 14.
    T. Heuman and M. Klimmeck, in Proceedings of 5th ICMC-Tokyo, Japan, 1972, NACE, Houston (1975), p. 115.Google Scholar
  15. 15.
    I. Epelboin, C. Gabrielli, M. Keddam, and H. Takenouchi, Electrochim. Acta 20, 913 (1975).CrossRefGoogle Scholar
  16. 16.
    F. Flade, Z. Phys. Chem. 76, 513 (1911).Google Scholar
  17. 17.
    K. R. Bonhoeffer, Z. Metallk. 44, 77 (1953).Google Scholar
  18. 18.
    M. J. Pryor, J. Electrochem. Soc. 106, 557 (1959).CrossRefGoogle Scholar
  19. 19.
    C. Wagner, Ber. Bunsenges. Phys. Chem. 77, 1090 (1973).Google Scholar
  20. 20.
    W. Schottky, Halbleiter Problem II, 233 (1958).Google Scholar
  21. 21.
    M. Nagayama and M. Cohen, J. Electrochem. Soc. 110, 670 (1963).CrossRefGoogle Scholar
  22. 22.
    H. H. Uhlig, Z. Elektrochem. 62, 626 (1958).Google Scholar
  23. 23.
    U. F. Franck, Z. Naturforsch. 49, 378 (1949).Google Scholar
  24. 24.
    Th. Heuman and F. W. Diekötter, Z. Elektrochem. 62, 745 (1958).Google Scholar
  25. 25.
    R. Landsberg and M. Hollnagel, Z. Elektrochem. 58, 680 (1954).Google Scholar
  26. 26.
    R. Landsberg and M. Hollnagel, Z. Elektrochem. 60, 1098 (1956).Google Scholar
  27. 27.
    K. F. Bonhoeffer and K. J. Vetter, Z. Phys. Chem. 196, 127 (1950).Google Scholar
  28. 28.
    U. Ebersbach, K. Schwabe, and K. Ritter, Electrochim. Acta 12, 927 (1967).CrossRefGoogle Scholar
  29. 29.
    H. G. Feller, M. Kesten, and J. Krupki, in Proceedings of 5th ICMC-Tokyo, Japan, 1972, NACE, Houston (1975), p. 155.Google Scholar
  30. 30.
    N. Sato, K. Kudo, and K. Nishimura, J. Electrochem. Soc. 123, 1419 (1976).CrossRefGoogle Scholar
  31. 31.
    N. Sato, K. Kudo, and T. Noda, Z. Phys. Chem. N.F. 98, 217 (1975).Google Scholar
  32. 32.
    M. Seo, N. Sato, J. B. Lumsden, and R. W. Staehle, Corros. Sci. 17, 209 (1977).CrossRefGoogle Scholar
  33. 33.
    C. L. Foley, J. Kruger, and C. J. Bechtoldt, J. Electrochem. Soc. 114, 994 (1967).CrossRefGoogle Scholar
  34. 34.
    H. T. Yolken, J. Kruger, and J. P. Calvert, Corros. Sci. 8, 103 (1968).CrossRefGoogle Scholar
  35. 35.
    K. Kudo, T. Shibata, G. Okamoto, and N. Sato, Corros. Sci. 8, 809 (1963).CrossRefGoogle Scholar
  36. 36.
    R. W. Revie, B. G. Baker, and J. O’M. Bockris, J. Electrochem. Soc. 122, 1560 (1975).CrossRefGoogle Scholar
  37. 37.
    W. E. O’Grady and J. O’M. Bockris, Surf. Sci. 38, 249 (1973).CrossRefGoogle Scholar
  38. 38.
    R. Nishimura and N. Sato, Boshoku Gijutsu ( Corrosion Engineering, Japan ) (1977).Google Scholar
  39. 39.
    K. J. Vetter and F. Gorn, Z. Phys. Chem. N.F. 86, 113 (1973a).Google Scholar
  40. 40.
    E. K. Oshe, I. L. Rosenfeld, and V. G. Doroskenko, Dokl. Akad. Nauk SSSR 194, 614 (1970).Google Scholar
  41. 41.
    N. Sato and K. Kudo, Electrochim. Acta 16, 447 (1971).CrossRefGoogle Scholar
  42. 42.
    K. E. Heusler and K. Schoner, Ber. Bunsenges Phys. Chem. 77, 885 (1973).Google Scholar
  43. 43.
    H. Gobrecht, W. Paatsch, and R. Thull, Ber. Bunsenges. Phys. Chem. 75, 1353 (1971).Google Scholar
  44. 44.
    T. Ohtsuka, Dissertation, Hokkaido University, Japan, 1976.Google Scholar
  45. 45.
    G. W. Simmons, E. Kellerman, and H. Leidheiser, Jr., J. Electrochem. Soc. 123, 1276 (1976).CrossRefGoogle Scholar
  46. 46.
    K. Sugimoto, K. Kishi, S. Ikeda, and Y. Sawada, J. Japan Inst. Metals 38, 54 (1974).Google Scholar
  47. 47.
    K. J. Vetter, Z. Elektrochem. 59, 67 (1955).Google Scholar
  48. 48.
    K. J. Vetter, J. Electrochem. Soc. 110, 597 (1963).Google Scholar
  49. 49.
    V. M. Novakovski and Y. A. Likkackev, Electrochim. Acta 12, 267 (1967).Google Scholar
  50. 50.
    K. E. Heusler, Ber. Bunsenges. Phys. Chem. 72, 1197 (1968).Google Scholar
  51. 51.
    K. J. Vetter and F. Gorn, Electrochim. Acta 18, 321 (1973b).CrossRefGoogle Scholar
  52. 52.
    K. G. Weil, Z. Elektrochem. 59, 711 (1955).Google Scholar
  53. 53.
    R. V. Moshtev, Ber. Bunsenges. Phys. Chem. 71, 1079 (1967).Google Scholar
  54. 54.
    N. Sato and M. Cohen, J. Electrochem. Soc. 111, 52 (1963).Google Scholar
  55. 55.
    A. M. Kuznetsov and R. R. Dogonadze, Izv. Akad. Nauk SSSR Ser. Him., No. 12, 2140 (1964); English Translation, Consultants Bureau, New York, p. 2042.Google Scholar
  56. 56.
    C. L. McBee and J. Kruger, Localized Corrosion, R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, Eds., NACE, Houston (1974), p. 252.Google Scholar
  57. 56a.
    N. Sato, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 1.Google Scholar
  58. 57.
    W. Paatsch, Ber. Bunsenges. Phys. Chem. 77, 895 (1973).Google Scholar
  59. 58.
    G. Okamoto, K. Tachibana, S. Nishiyama, and T. Sugita, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 106.Google Scholar
  60. 59.
    J. Kruger, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 91.Google Scholar
  61. 60.
    N. Sato, Electrochim. Acta 16, 1683 (1971).CrossRefGoogle Scholar
  62. 61.
    T. Shibata and T. Takeyama, Nature 260, 315 (1976).CrossRefGoogle Scholar
  63. 62.
    N. Sato, J. Electrochem. Soc. 123, 1197 (1976).CrossRefGoogle Scholar
  64. 63.
    U. F. Franck, Korrosion 13, 3 (1960).Google Scholar
  65. 64.
    Y. Hisamatsu, in Passivity and Its Breakdown on Iron and Iron Base Alloys, USA–Japan Seminar, 1975, R. W. Staehle and H. Okada, eds., NACE, Houston (1976), p. 99.Google Scholar
  66. 65.
    H. W. Pickering and R. P. Frankenthal, J. Electrochem. Soc. 119, 1297 (1972).CrossRefGoogle Scholar
  67. 66.
    J. R. Galvele, J. Electrochem. Soc. 123, 464 (1976).CrossRefGoogle Scholar
  68. 67.
    T. P. Hoar, Corros. Sci. 7, 341 (1967).CrossRefGoogle Scholar
  69. 68.
    T. Morozumi and M. Moriya, in Proceedings of 5th ICMC–Tokyo, 1972, NACE, Houston (1975), p. 322.Google Scholar
  70. 69.
    T. E. Hartman, J. Appl. Phys. 35, 3238 (1964).Google Scholar
  71. 70.
    U. F. Franck and K. Weil, Z. Elektrochem. 56, 814 (1952).Google Scholar
  72. 71.
    A. C. Makrides, J. Electrochem. Soc. 111, 394 (1964).Google Scholar
  73. 72.
    R. V. Moshtev, Electrochim. Acta 16, 2039 (1972).Google Scholar
  74. 73.
    J. W. Schultze and U. Stimming, Z. Phys. Chem. N.F. 98, 285 (1976).Google Scholar
  75. 74.
    N. D. Tomashov, Theory of Corrosion and Protection of Metals, MacMillan, New York (1966), p. 325.Google Scholar
  76. 75.
    G. Okamoto and N. Sato, J. Japan Inst. Metals 23, 725 (1959).Google Scholar
  77. 76.
    N. Sato and G. Okamoto, J. Electrochem. Soc. 110, 605 (1963).CrossRefGoogle Scholar
  78. 77.
    Ya. M. Kolotyrkin, Z. Elektrochem. 62, 664 (1958).Google Scholar
  79. 78.
    U. F. Franck, Werkstoffe Korr. 9, 504 (1958).CrossRefGoogle Scholar
  80. 79.
    N. D. Tomashov, G. P. Chernova, Yu. S. Ruskol, and G. A. Ayuyan, in Proceedings 5th ICMC–Tokyo, Japan, 1972, NACE, Houston (1975), p. 248.Google Scholar
  81. 80.
    G. Okamoto, Corros. Sci. 13, 471 (1973).CrossRefGoogle Scholar
  82. 81.
    L. Kiss, L. DoNgoc, and M. L. Varsanyi, Coll. Czech. Chem. Commun. 36, 914 (1971).CrossRefGoogle Scholar
  83. 82.
    T. Noda, Dissertation, Hokkaido University, Japan, 1973; T. Noda, K. Kudo, and N. Sato, Japan. Inst. Metals 37, 951, 1088 (1973).Google Scholar
  84. 83.
    M. Nagayama and M. Cohen, J. Electrochem. Soc. 109, 781 (1962).CrossRefGoogle Scholar
  85. 84.
    N. Sato, Dissertation, Hokkaido University, Japan, 1961.Google Scholar
  86. 85.
    K. J. Vetter and K. Arnold, Z. Elektrochem. 64, 244 (1960).Google Scholar
  87. 86.
    J. Kruger and J. P. Colvert, J. Electrochem. Soc. 114, 43 (1967).Google Scholar
  88. 87.
    N. Sato, K. Kudo, and M. Miki, J. Japan. Inst. Metals 35, 1007 (1971).Google Scholar
  89. 88.
    G. M. Florianovich, Ya. M. Kolotyrkin, and D. Kononova, Proceedings of the 4th ICMCAmsterdam, 1969, NACE, Houston (1972), p. 694.Google Scholar
  90. 89.
    W. Visscher and A. Damjanovic, Extended Abstracts, I.S.E. 27th Meeting, Zurich, 1976, No. 138.Google Scholar
  91. 90.
    E. K. Oshe and I. L. Rosenfeld, Extended Abstracts, 6th ICMC—Sydney, 1975, No. 1–23.Google Scholar
  92. 91.
    T. Shibata and G. Okamoto, Boshoku Gijutsu 21, 263 (1972).Google Scholar
  93. 92.
    T. Noda and N. Sato, J. Japan Inst. Metals 28, 1143 (1974).Google Scholar
  94. 93.
    R. D. Armstrong, D. F. Porter, and H. R. Thirsk, J. Phys. Chem. 72, 2300 (1968).CrossRefGoogle Scholar
  95. 94.
    H. P. Leckie and H. H. Uhlig, J. Electrochem. Soc. 113, 1262 (1966).CrossRefGoogle Scholar
  96. 95.
    Ya. M. Kolotyrkin, J. Electrochem. Soc. 108, 209 (1961).CrossRefGoogle Scholar
  97. 96.
    E. Brauns and W. Schwenk, Arch. Eisenhuttenw. 387 (1961); Werkstoffe Korr.12, 73 (1961).Google Scholar
  98. 97.
    W. Schwenk, Corrosion (Houston) 20, 129t (1964).CrossRefGoogle Scholar
  99. 98.
    G. Herbsleb, Werkstoffe Korr. 16, 929 (1965).CrossRefGoogle Scholar
  100. 99.
    H. J. Engell and N. D. Stolica, Z. Phys. Chem. N.F. 20, 113 (1959).Google Scholar
  101. 100.
    N. Sato, T. Nakagawa, K. Kudo, and M. Sakashita, in Localized Corrosion, R. W. Staehle, B. F. Brown, J. Kruger, and A. Agarawal, eds., NACE, Houston (1974), p. 447.Google Scholar
  102. 101.
    K. E. Heusler and L. Fischer, Werkstoffe Korr. 27, 551 (1976).CrossRefGoogle Scholar
  103. 102.
    R. Saito, graduation thesis, Hokkaido University, Japan, 1976.Google Scholar
  104. 103.
    H. H. Strehblow and J. Wenners, Z. Phys. Chem. N.F. 98, 199 (1975).Google Scholar
  105. 104.
    K. J. Vetter and F. Gorn, Werkstoffe Korr. 21, 703 (1970).CrossRefGoogle Scholar
  106. 105.
    H. Göhr and E. Lange, Z. Elektrochem. 62, 1292 (1957).Google Scholar
  107. 106.
    N. Sato and R. Nishimura, Boshoku Gijutsu (Corrosion Engineering, Japan) 26, 305 (1977); 27, 457 (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Norio Sato
    • 1
  • Go Okamoto
    • 2
  1. 1.Electrochemistry Laboratory, Faculty of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Applied Chemistry Division, Faculty of ScienceScience University of TokyoTokyoJapan

Personalised recommendations