The Study of the Passivation Process by the Electrode Impedance Analysis

  • Israël Epelboin
  • Claude Gabrielli
  • Michel Keddam
  • Hisasi Takenouti
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)


The passivity of metals has been known for a long time and an enormous amount of work has been done to characterize the nature of the passive state. An historical survey of the problem has been recently published(1) and modern contributions to the field can be found in the four International Symposia on Passivity(2–5) and in other meetings devoted to related topics.(6,7) In the course of the last decade, surface spectroscopy and optical techniques have improved our knowledge of the passive layer(8) During the same period, advanced electrochemical techniques become applicable to the solid electrode—electrolyte interface and were successfully introduced in the study of the anodic behavior of metals including the passivity phenomenon.(9) Among these techniques, the present chapter deals with ac impedance measurements,(10) extended to the subacoustic frequency range, which provide information about the kinetics of the passivation process.


Polarization Curve Passive Film Negative Real Part Passivation Process Electrode Impedance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. Uhlig, Passivity of metals and alloys, Corros. Sci. 19, 777–792 (1979); History of passivity, experiments and theories, in Passivity of Metals, R. P. Frankenthal and J. Kruger, Eds., pp. 1–28, The Electrochemical Society of America, Princeton, New Jersey (1978).Google Scholar
  2. 2.
    First International Symposium on the Passivity of Metals, Heiligenberg near Darmstadt, Germany, 1957, proceedings in Z. Elektrochem. 62, No. 6 /7 (1958).Google Scholar
  3. 3.
    Second International Symposium on the Passivity of Metals, Toronto, Canada, 1962, contribution papers in J. Electrochem. Soc. 111 (1964).Google Scholar
  4. 4.
    Third International Symposium on the Passivity of Metals, Cambridge, England, 1970, contribution papers in Electrochim. Acta 17, No. 2 (1972).Google Scholar
  5. 5.
    Fourth International Symposium on the Passivity of Metals, Warrenton, Virginia, 1976, Passivity of Metals, Corrosion Monograph Series, R. P. Frankenthal and J. Kruger, Eds., The Electrochemical Society of America, Princeton, New Jersey (1978).Google Scholar
  6. 6.
    USA-Japan Seminar, Hawaii, 1975, Passivity and Its Breakdown on Iron and Iron Base Alloys, R. W. Staehle and H. Okada, Eds., NACE, Houston (1976).Google Scholar
  7. 7.
    Proceedings of the First Soviet Japanese Seminar on Corrosion and Protection of Metals, Moscow,1977, Ya. M. Kolotyrkin, ed., Nauka, Moscow (1979).Google Scholar
  8. 8.
    A. T. Fromhold Jr., Ionic transport in passive layers, in Passivity of Metals, R. P. Frankenthal and J. Kruger, Eds., The Electrochemical Society of America, Princeton, New Jersey (1978), pp. 57–81.Google Scholar
  9. 9.
    I. Epelboin and M. Keddam, Electrochemical techniques for studying passivity and its breakdown, in Passivity of Metals, R. P. Frankenthal and J. Kruger, Eds., The Electrochemical Society of America, Princeton, New Jersey (1978), pp. 184–222.Google Scholar
  10. 10.
    I. Epelboin, C. Gabrielli, and M. Keddam, Non-steady-state techniques, Chapter 3 in a forthcoming volume of Comprehensive Treatise of Electrochemistry,S. Sarangapani et al.,Eds., Plenum Press, New York.Google Scholar
  11. 11.
    R. P. Frankenthal, On passivity of iron and its alloys, in Passivity and Its Breakdown on Iron and Iron Base Alloys, R. W. Staehle and H. Okada, Eds., NACE, Houston (1976), pp. 10–18.Google Scholar
  12. 12.
    U. F. Franck and R. Fitzhugh, Periodische Elektrodenprozesse und ihre Beschreibung durch ein mathematische Modell, Z. Elektrochem. 65, 156–168 (1961).Google Scholar
  13. 13.
    I. Epelboin, C. Gabrielli, M. Keddam, J.-C. Lestrade, and H. Takenouti, The passivation of iron in a sulfuric acid medium, J. Electrochem. Soc. 119, 1632–1637 (1972).CrossRefGoogle Scholar
  14. 14.
    D. D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, New York (1977).CrossRefGoogle Scholar
  15. 15.
    D. C. Grahame, Mathematical theory of the faradaic admittance (pseudocapacity and polarization resistance), J. Electrochem. Soc. 99, 370C - 385C (1952).CrossRefGoogle Scholar
  16. 16.
    E. Warburg, Ueber das Verhalten sogennter impolarisirebarer Elektroden gegen Wechselstrom, Ann. Phys. Chem. (Wiedermann) 67, 493–499 (1899).CrossRefGoogle Scholar
  17. 17.
    J. E. B. Randles, Kinetics of rapid electrode reactions, Disc. Faraday Soc. 1, 11–19 (1947).CrossRefGoogle Scholar
  18. 18.
    H. Gerischer, Wechselstrompolarisation von Electroden mit einem potential bestimmenden Schritt beim gleichgewichtspotential, Z. Phys. Chem. 198, 286–313 (1951).Google Scholar
  19. 19.
    H. Gerischer and W. Mehl, Zum Mechanismus der kathodischen Wasserstoffabscheidung an Quecksilber, Silber und Kupher, Z. Elektrochem. 59, 1049–1059 (1955).Google Scholar
  20. 20.
    R. D. Armstrong and K. Edmonson, The impedance of metals in the passive and transpassive region, Electrochim. Acta 18, 937–943 (1973).CrossRefGoogle Scholar
  21. 21.
    I. Epelboin and M. Keddam, Faradaic impedance: diffusion impedance and reaction impedance, J. Electrochem. Soc. 117, 1052–1056 (1970).CrossRefGoogle Scholar
  22. 22.
    A. Finkelstein, Über passives Eisen, Z. Phys. Chem. 39, 91–110 (1902).Google Scholar
  23. 23.
    J. L. Ord and J. H. Bartlett, Electrochemical behavior of passive iron, J. Electrochem. Soc. 112, 160–161 (1965).CrossRefGoogle Scholar
  24. 24.
    M. Prazâk, V. Praia, and V. L. Cíhal, Über den Aufbau der Passivschicht auf Chromstählen, Z. Elektrochem. 62, 739–745 (1958).Google Scholar
  25. 25.
    N. Sato and G. Okamoto, Kinetics of the anodic dissolution of nickel in sulfuric acid solutions, J. Electrochem. Soc. 111, 897–903 (1964).CrossRefGoogle Scholar
  26. 26.
    H. J. Engell and B. Ilschner, Wechselstrom-und Impulsmessungen an passivieren Eisen electroden, Z. Elektrochem. 59, 716–722 (1955).Google Scholar
  27. 27.
    N. E. Wisdom and N. Hackerman, Surface studies on passive iron, J. Electrochem. Soc. 110, 318–325 (1963).CrossRefGoogle Scholar
  28. 28.
    J. L. Ord, Measurement of overpotential parameters on passive electrodes, J. Electrochem. Soc. 112, 46–49 (1965).CrossRefGoogle Scholar
  29. 29.
    G. Arnowitz and N. Hackerman, The passivity of iron-chromium alloys, J. Electrochem. Soc. 110, 633–640 (1963).CrossRefGoogle Scholar
  30. 30.
    G. M. Schmidt and N. Hackerman, Electrical double layer capacity of iron during forced cathodic decay of passivity, J. Electrochem. Soc. 109, 1096–1099 (1962).CrossRefGoogle Scholar
  31. 31.
    R. V. Moshtev, Capacitance studies of passive iron in neutral solution by potentiostatic pulse method, Ber. Bunsenges. Phys. Chem. 72, 452–459 (1968).Google Scholar
  32. 32.
    M. L. Boyer, I. Epelboin, and M. Keddam, Une nouvelle méthode potentiocinétique d’étude des processus électrochimiques rapides, Electrochim. Acta 11, 221–235 (1966).CrossRefGoogle Scholar
  33. 33.
    C. Gabrielli and M. Keddam, Progrès récents dans la mesure des impédances électrochimiques en régime sinusoidal, Electrochim. Acta 19, 355–362 (1974).CrossRefGoogle Scholar
  34. 34.
    R. D. Giles, A. Hampson, N. A. Marshall, and R. J. Latham, The electrode impedance of iron in a borate buffer solution, J. Electroanal. Chem. 47, 535–538 (1973).CrossRefGoogle Scholar
  35. 35.
    K. G. Weil, Die Beziehung zwischen Ionenstrom und Spannung Innerhalb des Oxydschicht auf passivem Eisen, Z. Elektrochem. 59, 711–715 (1955).Google Scholar
  36. 36.
    A. M. Sukhotin and K. M. Kartashova, Study of the passive iron electrode by dynamic measurement of its capacitance, Russ. J. Phys. Chem. 33, 562–564 (1959).Google Scholar
  37. 37.
    R. R. Sayano and K. Nobe, Capacitance measurements during activation of passive nickel, Corrosion NACE 23, 27–28 (1967).CrossRefGoogle Scholar
  38. 38.
    A. M. Sukhotin and K. M. Kartashova, The passivity of iron in acid and alkaline solutions, Corros. Sci. 5, 393–407 (1965).CrossRefGoogle Scholar
  39. 39.
    B. Lovrecek and J. Sefaja, Semiconducting aspects of the passive layer on chromium, Electrochim. Acta 17, 1151–1155 (1972).CrossRefGoogle Scholar
  40. 40.
    U. Stimming and J. W. Schultze, The capacity of passivated iron electrodes and the band structure of the passive layer, Ber. Bunsenges. Phys. Chem. 80, 1297–1302 (1976).CrossRefGoogle Scholar
  41. 41.
    T. Murakawa, T. Kato, and S. Nagaura, Differential capacity curves of iron in perchloric acid in the presence of anions, Corros. Sci. 7, 657–664 (1967).CrossRefGoogle Scholar
  42. 42.
    C. D. Kim and B. E. Wilde, Analog bridge method for differential capacitive measurements during the passivation of stainless steel in halide media, Corrosion (Houston) 28, 26–29 (1972).CrossRefGoogle Scholar
  43. 43.
    K. Sugimoto and Y. Sawada, Interfacial impedance of stainless steel under anodic polarization, Boshoku-Gijutsu 23, 63–67 (1974).Google Scholar
  44. 44.
    K. J. Vetter, Über den Zustand des passiven Eisens, insbesondere in Salpetersäure, Z. Elektrochem. 55, 274–280 (1951).Google Scholar
  45. 45.
    J. W. Schultze and U. Stimming, Tunnelprozess an passivierten Eisenelectroden, Z. Phys. Chem., N.F., 98, 285–302 (1975).Google Scholar
  46. 46.
    N. Hara, K. Sugimoto, and Y. Sawada, Impedance diagram of 18–8 stainless steel in passive and transpassive states in Na2SO4 solutions, Bul. Met. Soc. Japan 40, 1304–1310 (1976).Google Scholar
  47. 47.
    S. Haruyama and T. Tsuru, Impedance characteristics of passive iron, in Passivity of Metals, R. P. Frankenthal and J. Kruger, Eds., The Electrochemical Society of America, Princeton, New Jersey (1978), pp. 564–585.Google Scholar
  48. 48.
    I. Epelboin, M. Keddam, and Ph. Morel, Evidence of multistep reactions on iron, nickel and chromium electrodes immersed in a sulfuric acid solution, in Proceedings of the Third International Congress on Metallic Corrosion, MIR Publishers, Moscow (1966), pp. 110–118.Google Scholar
  49. 49.
    R. D. Armstrong, M. Henderson, and H. R. Thirsk, Impedance of chromium in the active—passive transition, J. Electroanal. Chem. 35, 119–128 (1972).CrossRefGoogle Scholar
  50. 50.
    R. D. Armstrong and M. Henderson, Impedance of transpassive chromium, J. Electroanal. Chem. 40, 121–131 (1972).CrossRefGoogle Scholar
  51. 51.
    R. D. Armstrong and M. Henderson, Active—passive transition of nickel in sulfuric acid, J. Electroanal. Chem. 39, 222–224 (1972).CrossRefGoogle Scholar
  52. 52.
    I. Epelboin and M. Keddam, Kinetics of formation of primary and secondary passivity in sulfuric aqueous media, Electrochim. Acta 17, 177–186 (1972).CrossRefGoogle Scholar
  53. 53.
    A. Jouanneau, M. Keddam, and M.-C. Petit, A general model of the anodic behavior of nickel in acidic media, Electrochim. Acta 21, 287–292 (1976).CrossRefGoogle Scholar
  54. 54.
    M. Cid, A. Jouanneau, D. Nganga, and M.-C. Petit, Comparison between the dissolution and passivity of nickel in sulfuric and hydrochloric acids, Electrochim. Acta 23, 945–951 (1978).CrossRefGoogle Scholar
  55. 55.
    C. Gabrielli, Régulation et analyse de systèmes à états stationnaires multiples: application à l’identification des processus de passivation électrochimique du fer, Thèse d’Etat, No. C.N.R.S., AO 8060 Paris (1973); Métaux, Corrosion, Industrie, Nos. 573, 574, 577, and 578 (1973).Google Scholar
  56. 56.
    I. Epelboin, C. Gabrielli, M. Keddam, and H. Takenouti, Model of the anodic behavior of iron in sulfuric acid medium, Electrochim. Acta 20, 913–916 (1975).CrossRefGoogle Scholar
  57. 57.
    I. Epelboin, C. Gabrielli, M. Keddam, and H. Takenouti, A coupling between charge transfer and mass transport leading to multi-steady states: application to localized corrosion, Z. Phys. Chem., N.F., 98, 215–232 (1975).CrossRefGoogle Scholar
  58. 58.
    I. Epelboin, C. Gabrielli, and M. Keddam, Rôle de la diffusion dans les phénomènes de passivation et de corrosion localisée du fer en milieu acide, Corros. Sci. 15, 155–171 (1975).CrossRefGoogle Scholar
  59. 59.
    M. Baddi, C. Gabrielli, M. Keddam, and H. Takenouti, Kinetic interpretation of open-circuit potential decay curve of iron electrode in sulfuric acid medium, in Passivity of Metals, R. P. Frankenthal and J. Kruger, Eds., The Electrochemical Society of America, Princeton, New Jersey (1978), pp. 625–645.Google Scholar
  60. 60.
    R. D. Armstrong and R. E. Firman, Impedance of titanium in the active-passive transition, J. Electroanal. Chem. 34, 391–397 (1972).CrossRefGoogle Scholar
  61. 61.
    A. Caprani, I. Epelboin, and Ph. Morel, Valence de dissolution du titane en milieu sulfurique fluoré, J. Electroanal. Chem. 43, App. 2–9 (1973).Google Scholar
  62. 62.
    A. Caprani and J. P. Frayret, Behaviour of titanium in concentrated hydrochloric acid; dissolution-passivation mechanism, Electrochim. Acta 24, 835–842 (1979).CrossRefGoogle Scholar
  63. 63.
    I. Epelboin, M. Keddam, O. R. Mattos, and H. Takenouti, The application of the impedance method to the study of corrosion: the passivation of iron and Fe-Cr alloys, in Proceedings of Seventh International Congress on the Metallic Corrosion, Abraco, Rio de Janeiro (1979), pp. 1977–1988.Google Scholar
  64. 64.
    I. Epelboin, M. Keddam, O. R. Mattos, and H. Takenouti, The dissolution and passivation of Fe and Fe-Cr alloys in acidified sulfate medium: influence of pH and Cr content, Corros. Sci. 19, 1105–1112 (1979).Google Scholar
  65. 65.
    C. Gabrielli, M. Keddam, and H. Takenouti, Interprétation phénoménologique de la passivation spontanée du fer en milieu nitrique concentré, J. Electroanal. Chem. 61, 367–371 (1975).CrossRefGoogle Scholar
  66. 66.
    C. Gabrielli, M. Keddam, E. Stupnigek-Lisac, and H. Takenouti, Etude du comportement anodique de l’interface fer-acide nitrique à l’aide d’une régulation à résistance négative, Electrochim. Acta 21, 757–766 (1976).CrossRefGoogle Scholar
  67. 67.
    H. Shirai, A-c polarography study; 4. the minimum wave of nickel, indium and copper (in Japanese), J. Chem. Soc. Japan 81, 1248–1253 (1960).Google Scholar
  68. 68.
    N. Tanaka, T. Takeuchi, and R. Tamamushi, The reduction of indium(III) in thiocyanate solutions at the dropping mercury electrode, Bull. Chem. Soc. Japan 37, 1435–1439 (1964).CrossRefGoogle Scholar
  69. 69.
    G. Salié, Zur Deutung von Impedanzen mit negativen Realteil bei elektrochemischen Phasengrenzreactionen, Z. Phys. Chem. 253, 406–410 (1973).Google Scholar
  70. 70.
    R. de Levie and A. A. Husovsky, On the negative faradaic admittance in the region of the polarographic minimum of In(III) in aqueous NaSCN solution, J. Electroanal. Chem. 22, 29–48 (1969).CrossRefGoogle Scholar
  71. 71.
    P. F. King and H. H. Uhlig, Passivity in iron-chromium binary alloys, J. Phys. Chem. 63, 2026–2032 (1959).CrossRefGoogle Scholar
  72. 72.
    Ya. M. Kolotyrkin, Electrochemical behaviour and anodic passivity mechanism of certain metals in electrolyte solution, Z. Elektrochem. 62, 664–669 (1958).Google Scholar
  73. 73.
    R. P. Frankenthal, On the passivity of iron-chromium alloys, J. Electrochem. Soc. 114, 542–547 (1967).CrossRefGoogle Scholar
  74. 74.
    R. D. Parmentier, Neutristor analysis techniques for non-linear distributed electronic systems, Proc. IEEE 58, 1829–1837 (1970).CrossRefGoogle Scholar
  75. 75.
    M. Keddam, O. R. Mattos, and H. Takenouti, Reaction model for iron dissolution studies by electrode impedance, J. Electrochem. Soc. 128, 257–274 (1981).CrossRefGoogle Scholar
  76. 76.
    J. O’M. Bockris, D. Drazic, and A. R. Despic, The electrode kinetics of the deposition and dissolution of iron, Electrochim. Acta 4, 325–361 (1961).CrossRefGoogle Scholar
  77. 77.
    A. A. El Miligy, D. Geana, and W. J. Lorenz, A theoretical treatment of the kinetics of iron dissolution and passivation, Electrochim. Acta 20, 273–281 (1975).CrossRefGoogle Scholar
  78. 78.
    N. Sato and M. Cohen, The kinetics of anodic oxidation of iron in neutral solution, J. Electrochem. Soc. 111, 512–522 (1964).CrossRefGoogle Scholar
  79. 79.
    H. Wroblowa, V. Brusic, and J. O’M. Bockris, Ellipsometric investigation of anodic film growth on iron in neutral solution; the passive film, J. Phys. Chem. 75, 2823–2829 (1971).CrossRefGoogle Scholar
  80. 80.
    Ph. Morel, Contribution à l’étude des mécanismes de dissolution du fer, du nickel et du chrome, par l’analyse des courbes de polarisation anodique, Thèse d’Etat, No. C.N.R.S. AO 2346, Paris (1968).Google Scholar
  81. 81.
    N. Sato, K. Kudo, and M. Miki, Anodic passivation behaviour of nickel in neutral solutions, Bull. Japan. Inst. Met. 35, 1007–1016 (1971).Google Scholar
  82. 82.
    J. Osterwald, Die Stromspannungskurve des Eisens in Schwefelsäure beim Übergang von aktiven in des passiven Zustand, Z. Elektrochem. 66, 401–406 (1962).Google Scholar
  83. 83.
    I. Epelboin, M. Keddam, and J.-C. Lestrade, Faradaic impedances and intermediates in electrochemical reactions, Disc. Faraday Soc. 56, 264–275 (1973).CrossRefGoogle Scholar
  84. 84.
    I. Epelboin, C. Gabrielli, M. Keddam, and H. Takenouti, Oscillatory and non-oscillatory phenomena connected with passivity of metals, in Kinetics of Physicochemical Oscillations, U. F. Franck, ed., preprint II (1979), pp. 297–306.Google Scholar
  85. 85.
    K. J. Vetter and F. Gorn, Die instationäre Korrosion des passiven Eisens in saurer Lösung, Werst. Korros. 21, 703–711 (1970).CrossRefGoogle Scholar
  86. 86.
    K. E. Heusler, Untersuchung des Auflösung des passiven Eisens in Schwefelsäure mit des rotierenden Scheiben-Ring Elektrodes, Ber. Bunsenges. Phys. Chem. 72, 1197–1205 (1968).Google Scholar
  87. 87.
    N. Cabrera and N. F. Mott, Theory of the oxidation of metals, Rep. Prog. Phys. 12, 163–184 (1948).CrossRefGoogle Scholar
  88. 88.
    L. Young, Anodic Oxide Films, Academic Press, New York (1960).Google Scholar
  89. 89.
    D. J. Wheeler, A-c electromodulated spectroscopy and its application to the study of passive layers on iron, Ph.D., Case Western Reserve University, Cleveland, Ohio (1976).Google Scholar
  90. 90.
    M. Keddam, P. Mirebeau, and H. Takenouti, An a-c impedance approach of the passive behavior of crystalline Fe and amorphous Fes0B18Mo2 in sulfuric medium, in Extended Abstracts of the Fall Meeting of the Electrochemical Society of America, Los Angeles, 1979, paper No. 262, Electrochemical Society of America, Princeton, New Jersey (1979), pp. 675–678.Google Scholar
  91. 91.
    K. J. Vetter, Electrochemical Kinetics, Academic Press, New York (1967).Google Scholar
  92. 92.
    B. MacDougall and M. Cohen, Mechanism of the anodic oxidation of nickel, J. Electrochem. Soc. 123, 1783–1789 (1976).CrossRefGoogle Scholar
  93. 93.
    J. J. Podestâ, R. C. V. Piatti, and A. J. Arvia, The potentiostat current oscillations at iron-sulfuric acid solution interface, J. Electrochem. Soc. 126, 1363–1367 (1979); Discussions by M. Keddam, C. Gabrielli, and H. Takenouti, J. Electrochem. Soc. 127, 26482649 (1980).Google Scholar
  94. 94.
    P. Glansdorff and I. Prigogine, Structure, Stabilité et Fluctuations, Masson, Paris (1971).Google Scholar
  95. 95.
    C. G. Law and J. Newman, A model for the anodic dissolution of iron in sulfuric acid, J. Electrochem. Soc. 126, 2150–2155 (1979).CrossRefGoogle Scholar
  96. 96.
    J. J. Miksis and J. Newman, Primary resistances for ring-disk electrodes, J. Electrochem. Soc. 123, 1030–1036 (1976).CrossRefGoogle Scholar
  97. 97.
    M. Keddam, O. R. Mattos, and H. Takenouti, Ohmic drop and multiplicity of the steady-states: Case of Fe-5Cr in 1M H2SO4, Electrochim. Acta 24, 103–105 (1979).CrossRefGoogle Scholar
  98. 98.
    C. Gabrielli and M. Keddam, Réactions hétérogènes couplées par la diffusion: Etats stationnaires multiples, impédance et stabilité, J. Electroanal. Chem. 45, 267–277 (1973).CrossRefGoogle Scholar
  99. 99.
    K. F. Bonhoeffer, Über periodische chemische Reaktionen, Z. Elektrochem. 51, 24–37 (1948).Google Scholar
  100. 100.
    M. Kargulin, M. Stepinac-Gatin, and E. Stupnisek-Lisac, 22nd Meeting of ISE, Dubrovnik, Yugoslavia, 1970; E. Stupnisek-Lisac, Oksidacija zeljezo/II/-iona u dugièoj Kiselini, Dissertation, University of Zagreb, Zagreb, 1975.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Israël Epelboin
    • 1
  • Claude Gabrielli
    • 1
  • Michel Keddam
    • 1
  • Hisasi Takenouti
    • 1
  1. 1.Physique des Liquides et Electrochimieassocié à l’Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations