Thermodynamics of Corrosion

  • Jean Van Muylder
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)


One designates by the word corrosion the unwanted destruction of a material through the chemical or electrochemical action of the surrounding environment. It is well known that iron and commonly used kinds of steel corrode very easily. If appropriate and burdensome precautions are not taken to protect them (e.g., by means of protective coverings, such as paints), the bridges, cranes, wagons, car bodies, ship hulls—in short, iron objects of all kinds—are generally and very rapidly ruined by corrosion. In this respect, the unique case of the ancient iron column of Delhi (India), which, although not protected, has until now not been noticeably damaged by corrosion, seems to be an entirely exceptional case, which can be attributed to very particular circumstances in the metal composition (low content of S, high content of P) and the dryness and purity of the local air.(1,2)


Electrode Potential Stress Corrosion Crack Localize Corrosion Ferric Oxide Standard Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Bardgett and J. F. Stanners, The Delhi pillar: a study of the corrosion aspects, J. Iron Steel Inst 201, 3–10 (1963).Google Scholar
  2. 2.
    G. Wranglen, The “rustless” iron pillar at Delhi, Corros. Sci 10, 761–770 (1970).Google Scholar
  3. 3.
    M. Pourbaix, Leçons en Corrosion Electrochimique, 2nd ed., Cebelcor, Brussels (1975).Google Scholar
  4. 4.
    Société Shell, Exposition de la Corrosion,organisée par la Société Shell de Belgique, sous le patronage de la Commission Belge pour l’Etude de la Corrosion, Brussels, 1937.Google Scholar
  5. 5.
    H. H. Uhlig, Cost of corrosion in the United States, Corrosion 6, 29–33 (1950).Google Scholar
  6. 6.
    S. Liechtenstein, The many faces of corrosion, Technical News STR-3454, National Bureau of Standards NBS, Washington, D.C. (1966).Google Scholar
  7. 7.
    S. Liechtenstein, Corrosion costs $10 billions per year, Materials Protect. 16, 24 (1967).Google Scholar
  8. 8.
    M. Pourbaix, Lectures on Electrochemical Corrosion, Plenum Press, New York and Cebelcor, Brussels (1973).Google Scholar
  9. 9.
    T. P. Hoar, The cost of corrosion and protection of metals in U.K.: a review, Inst. Corros. Technol 32, 19–22 (1972).Google Scholar
  10. 10.
    U. R. Evans, The electrochemical character of corrosion, J. Inst. Metals 30, 263–267 (1923).Google Scholar
  11. 11.
    M. Pourbaix, Corrosion et protection de toitures en zinc, Publication CEBELCOR F. 11 (1951).Google Scholar
  12. 12.
    M. Pourbaix, Deux expériences de cours en thermodynamique électrochimique, Proceedings of the 2nd CITCE Meeting, Milan, 1950, Tamburini, Milan (1951), pp. 371–378.Google Scholar
  13. 13.
    M. Pourbaix and J. Feron, Potentiels de passivation et d’activation du fer. Corrosion cathodique du fer en présence d’oxygène, Proceedings of the 3rd CITCE Meeting, Bern, 1951, Manfredi, Milan (1952), pp. 128–134.Google Scholar
  14. 14.
    J. Van Muylder and M. Pourbaix, Corrosion et protection cathodiques du fer. Expérience de démonstration, Rapports Techniques CEBELCOR 11, RT. 11 (1953).Google Scholar
  15. 15.
    M. Dodero, Sur la corrosion cathodique du fer et la formation anodique de ferrite cristallisée par l’électrolyse de la soude fondue, J. Chim. Phys 49C, 210–213 (1952).Google Scholar
  16. 16.
    R. K. Freier, Thermodynamik der Schutzschichtbildung bei niedrigen Temperaturen. Betriebliche Erfahrungen, Allianz-Berichte 16, 8–13 (1971).Google Scholar
  17. 17.
    U. R. Evans, An Introduction to Metallic Corrosion, Arnold, London (1948), pp. V II, XX.Google Scholar
  18. 18.
    I. Prigogine and R. Defay, Thermodynamique Chimique, Desoer, Liège, Vol. I (1944), Vol. I I (1946).Google Scholar
  19. 19.
    I. Prigogine and R. Defay, Thermodynamique Chimique, Desoer, Liège (1950).Google Scholar
  20. 20.
    G. N. Lewis and M. Randall, Thermodynamics, 2nd ed., McGraw-Hill, New York (1961).Google Scholar
  21. 21.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd ed., Reinhold, New York (1958).Google Scholar
  22. 22.
    Th. De Donder, L’Affinité (Rédaction nouvelle par P. van Rysselberghe), Gauthier Villars, Paris (1936).Google Scholar
  23. 23.
    M. Pourbaix, Thermodynamique des Solutions Aqueuses Diluées. Représentation Graphique du Rôle du pH et du Potentiel, Thèse Delft (October 1945), Ch. Béranger, Paris et Liége (1945), CEBELCOR (new edition, 1963 ).Google Scholar
  24. 24.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halows, S. M. Bailey, and R. M. Schumm, Selected values of chemical thermodynamic properties, Nat. Bur. Stand. (U.S.) Tech. Note 270–3 (1968), 4 (1969), 5 (1971).Google Scholar
  25. 25.
    D. R. Stull and H. Prophet, JANAF Thermodynamical Tables, NRDS-NBS 37 (June 1970), Reference data Service, National Bureau of Standards, Washington, D.C.Google Scholar
  26. 26.
    N. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, JANAF Thermodynamical Tables, 1974 Supplement, Reprint No. 50, J. Phys. Chem. Ref. Data 3 (2), 311–480 (1974).Google Scholar
  27. 27.
    Cebelcor, Enthalpies libres de formation standard, à 25°C, Rapports Techniques CEBELCOR 72, RT. 87 (1960).Google Scholar
  28. 28.
    C. E. Wicks and F. E. Block, Thermodynamic Properties of 65 Elements. Their oxides, halides, carbides and nitrides, Bulletin 605, Bureau of Mines, Department of the Interior, Washington, D.C.Google Scholar
  29. 29.
    G. B. Naoumov, B. N. Rijenko, and I. L. Khodakovski, Handbook of Thermodynamic Data, transi. G. J. Soleimani, U.S. Geological Survey P.B. 226722, NTIS U.S. Department of Commerce (1974).Google Scholar
  30. 30.
    R. K. Freier, Aqueous Solutions. Data for Inorganic and Organic Compounds, Walter de Gruyter, Berlin, Vol. 1 (1976), Vol. 2 (1978).Google Scholar
  31. 31.
    W. M. Latimer, The Oxidation States of the Elements and their Potentials in Aqueous Solutions, Prentice-Hall, New York (1952).Google Scholar
  32. 32.
    R. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria, Harper and Row, New York (1965).Google Scholar
  33. 33.
    M. Pourbaix, Atlas d’Equilibres Electrochimiques à 25°C, Gauthier-Villars, Paris and Cebelcor, Brussels (1963).Google Scholar
  34. 34.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, London and Cebelcor, Brussels (1965).Google Scholar
  35. 35.
    G. Charlot, Les réactions chimiques en solution. L’analyse qualitative minérale, 6th ed., Masson and Cie, Paris (1969).Google Scholar
  36. 36.
    L. G. Sillen and A. E. Martell, Stability constants of metal-ion complexes, Special Publication No. 17, The Chemical Society, London (1964) and Supplement No. 1, Special Publication No. 25 (1971).Google Scholar
  37. 37.
    W. Nernst, Die elektromtorische Wirksamheit des Ionen, Z. Phys. Chem. (Leipzig) 4, 129–181 (1889).Google Scholar
  38. 38.
    F. Haber, Über die elektrische Reduktion von Nichtelektrolyten, Z. Phys. Chem. (Leipzig) 32, 193–270 (1900).Google Scholar
  39. 39.
    R. Piontelli et al., Etudes sur les méthodes de mesure des tensions de polarisation, Proceedings of the IIIrd CITCE Meeting, Bern, 1951, Manfredi, Milan (1952).Google Scholar
  40. 40.
    A. J. de Béthune and N. A. Swendeman Loud, Standard Aqueous Electrode Potentials and Temperature Coefficients at 25°C, Clifford A. Hampel, Illinois (1964).Google Scholar
  41. 41.
    J. A. Christiansen and M. Pourbaix, Conventions concernant les signes des forces électromotrices et des potentiels d’électrode, Proceedings of the 17th Conference International Union of Pure and Applied Chemistry, Stockholm (1953), pp. 82–85.Google Scholar
  42. 42.
    J. Detournay, L. de Miranda, R. Derie, and M. Ghodsi, “Rouille Verte II.” Enthalpie libre de formation et domaine de stabilité dans le diagramme d’équilibres tension-pH du fer, Rapports Techniques CEBELCOR 123, RT. 215 (January 1974).Google Scholar
  43. 43.
    M. Pourbaix, Quelques applications de la thermodynamique électrochimique, Proceedings of the 2° Convegno Nazionale, Associazione Italiana di Metallurgia, Milano, 1948.Google Scholar
  44. 44.
    M. Pourbaix, Bases thermodynamiques de la théorie de la corrosion, Association Belge pour l’Étude, l’Essai et l’Emploi des matériaux, ABEM, P.V. 13ème séance, Brussels, 20 April 1945.Google Scholar
  45. 45.
    M. Pourbaix, Thermodynamique et corrosion, Mét. Corros 13 (159), 189–193 (1938).Google Scholar
  46. 46.
    M. Pourbaix, Potential-pH equilibrium diagrams for the iron-water system, at 25°C, and their applications to the study of the passivation of iron, Rapports Techniques CEBELCOR 13, RT. 226 (May 1975).Google Scholar
  47. 47.
    L. de Miranda, Les aspects électrochimiques de la corrosion atmosphérique des aciers patinables, Thèse Bruxelles (October 1974), Rapports Techniques CEBELCOR 125, RT. 221 (October 1974).Google Scholar
  48. 48.
    J. E. O. Mayne and M. J. Pryor, The mechanism of inhibitors of corrosion of iron; I. By chromic acid and potassium chromate, J. Chem. Soc 1831–1835 (1949).Google Scholar
  49. 49.
    M. Nagayama and M. Cohen, The anodic oxidation of iron in neutral solution, J. Electrochem. Soc. 109, 781–790 (1962); 110, 670–680 (1963), 114, 994–1001 (1967).Google Scholar
  50. 50.
    M. C. Bloom and L. Goldenberg, Fe2O3 and the passivity of iron, Corros. Sci 5, 623–630 (1965).Google Scholar
  51. 51.
    C. L. Foley, J. Kruger, and C. J. Bechtoldt, Electron diffraction studies on active, passive and transpassive oxide films formed on iron, J. Electrochem. Soc 114, 994–1001 (1967).Google Scholar
  52. 52.
    H. T. Yolken, J. Kruger, and J. P. Calvert, Hydrogen in passive films on Fe, Corros. Sci 8, 103–108 (1968).Google Scholar
  53. 53.
    M. Pourbaix, Corrosion, passivité et passivation du fer. Le rôle du pH et du potentiel, Thèse Bruxelles (1945), Mémoires Soc. Royale Belge des Ingénieurs et Industriels No. 1 (March 1951).Google Scholar
  54. 54.
    N. Feitknecht and P. Schindler, Löslickkeitskonstanten von Metalloxide, -hydroxiden, -und -hydroxidzalen in wässerigen Lösungen, Butterworths, London (1963).Google Scholar
  55. 55.
    N. de Zoubov, J. Van Muylder, P. Van Laer, and M. Pourbaix, Sur le comportement de cuivre en présence de solutions de bicarbonate de sodium, Rapports Techniques CEBELCOR 101, RT. 133 (August 1965).Google Scholar
  56. 56.
    J. Van Muylder, N. de Zoubov, and M. Pourbaix, Diagrammes d’équilibres tension-pH des systèmes Cu-H2O et Cu-C1–H2O, à 25°C, Rapports Techniques CEBELCOR 85, RT. 101 (July 1972).Google Scholar
  57. 57.
    CEBELCOR’s Rapports Techniques on potential-pH diagrams of binary metal/water systems (a) In French: Cd (RT.3, 1953); Ti (RT.4, 1953); CN (RT.5, 1953); Co (RT.6, 1954); Fe (RT.7, 1954); Mn (RT.18, 1954); Ni (RT.23, 1955); Sn (RT.25, 1955); Ge (RT.27, 1955); V (RT.29, 1956); U (RT.31, 1956); W (RT.32, 1956); Te (RT.33, 1956); Mo (RT.35, 1956); Mg (RT.39, 1956); Cr (RT.41, 1956); Al (RT.42, 1956); Cl (RT.44, 1957); Zr (RT.45, 1957); As (RT.46, 1957); B (RT.47, 1957); Bi (RT.48, 1957); Te (RT.50, 1957); Re (RT.51, 1957); Ta (RT.52, 1957); Nb (RT.53, 1957); Sb (RT.55, 1957); Ru (RT.58, 1958); Rh (RT.59, 1959); Pd (RT.60, 1958); Os (RT.61, 1958); Ir (RT.62, 1958); Pt (RT.63, 1958); H (RT.69, 1958); Li, Na, K, Rb, Cs (RT.70, 1958); Be.(RT.71, 1958); Ca, Sr, Ba (RT.72, 1958); Ra (RT. 73, 1958); Ga (RT.74, 1958); In (RT.75, 1958); Tl (RT.76, 1958); Cu (RT.100, 1962); Ti (RT.146, 1968). Some reports have also been published in French in the Proceedings of CITCE meetings: CITCE 2 (Milan, 1950): Pb, 15–28; Ag, 34–41; 0 and H2O2, 42–50; CITCE 3 (Bern, 1951): Al, As, Au, Be, Cd, Co, Hg, Se, Sn, Ti, TI, 15–29; CITCE8 (Madrid, 1956): Mg, 218–237; Mo, 238–249; W, 250–257; U, 258–269; CITCE9 (Paris, 1957): As, 20–31; Sb, 32–46; Bi, 47–56; Tc, 57–65; Re, 66–76; Nb, 77–83; Ta, 84–91; Zr, 92–101; B, 102–116; Al, 117–129; Cl, 130–154. (b) In English,Proceedings of CITCE meetings: CITCE 6 (Poitiers, 1954): Fe, 118–123; Cd, 133–137; CN, 138–152; Co, 153–166; Ti, 167–179; Mn, 390–409; Pb, 334–341, 342–350; CITCE 7 (Lindau, 1955): Ni, 193–215; Sn, 216–239.Google Scholar
  58. 58.
    CEBELCOR’s Rapports Techniques on Potential! pH diagrams of ternary systems in the presence of water, at 25°C (a) In French: Fe-CO2 (RT.8, 1954); Pb-CO2 and Pb-S03 (RT.13, 1953); Mg-CO2 and Mg-H3PO4 (RT.39, 1956); Cu-Cl (RT.101, 1962); Cu-CO2 (RT.133, 1965); Cu-S (RT.221, 1974); Fe-S (RT.221, 1974); Fe-S03 (RT.215 and 221, 1972). (b) In English: Proceedings of CITCE meetings. CITCE 6 (Poitiers, 1954) Fe-CO2, 124–132; Pb-CO2, 334–341.Google Scholar
  59. 59.
    J. P. Gabano and J. P. Brenet, Quelques vérifications expérimentales du diagramme tension-pH du manganèse, Electrochim. Acta 1, 242–245 (1959).Google Scholar
  60. 60.
    J. P. Brenet, J. P. Gabano, and J. Reynaud, Compléments apportés au diagramme tension-pH du manganèse, Electrochim. Acta 8, 207–216 (1963).Google Scholar
  61. 61.
    T. S. de Gromobov and L. L. Shreir, The formation of nickel oxides during the passivation of nickel in relation to potential-pH diagram, Electrochim. Acta 11, 895–904 (1966).Google Scholar
  62. 62.
    G. Valensi, Phénomènes de corrosion par le soufre, Corros. Anticorros. 2, 189–200, 246–251 (1954).Google Scholar
  63. 63.
    G. Valensi, Comportement électrochimique du soufre. Diagrammes d’équilibres tension-pH du système S-H2O, à 25°C et 1 atmosphère, Rapports Techniques CEBELCOR 121, RT. 207 (1973).Google Scholar
  64. 64.
    T. R. Beck, Stress corrosion cracking of titanium alloys: electrochemistry of freshly generated titanium surfaces, Q. Prog. Rep No. 9 (period 1 July 1968 to 30 September 1968), contract NBS 7–489.Google Scholar
  65. 65.
    F. Letowski and J. Niemiec, Diagrammes d’équilibres électrochimiques du système U—0O2H20, à 25°C (in Polish), Nukleonica 11 (1966).Google Scholar
  66. 66.
    P. Duby, The thermodynamic properties of aqueous inorganic copper systems, International Copper Research Association INCRA, Monograph IV, N.S.R.D.S., N.B.S. (June 1977).Google Scholar
  67. 67.
    F. Letowski, J. Serkies, and J. Niemiec, Application of potential—pH diagrams for determination of the occurrence forms of trace elements in some economic mineral deposits, Econ. Geol 61, 1272–1279 (1966).Google Scholar
  68. 68.
    K. Post and R. G. Robins, Thermodynamic diagrams for the vanadium-water system at 298.15 K, Electrochim. Acta 21, 401–405 (1976).Google Scholar
  69. 69.
    T. Misawa, The thermodynamic consideration for Fe—H20 system at 25°C, Corros. Sci.13(9), 659–676 (1973).Google Scholar
  70. 70.
    L. Sathler, Contribution à l’étude du comportement électrochimique du fer en présence de solutions de chlorure ferreux, en liaison avec la corrosion localisée, Thèse de Doctorat, Université Libre de Bruxelles (June 1978). L. Sathler, J. Van Muylder, R. Winand, and M. Pourbaix, Electrochemical behaviour of iron in localized corrosion cells in the presence of chloride, Proc. 7th Int. Cong. Metal Corr, Rio de Janeiro (Brazil) 2, 705–717 (1979).Google Scholar
  71. 71.
    M. H. Froning, M. E. Shanley, and E. D. Verink, An improved method for calculation of potential—pH diagrams of metal—ion—water systems by computer, Corros. Sci.16(6), 371–377 (1976).Google Scholar
  72. 72.
    E. Mattsson, Stress corrosion in brass considered against the background of potential—pH diagram, Electrochim. Acta 3, 279–291 (1961); Diagramme tension—pH pour l’étude de la corrosion avec exemples de calculs relatifs au système Cu—Cl—H20 (in Swedish), Svensk Kemisk Tidskrif 74 (2), 76–88 (1962).Google Scholar
  73. 73.
    G. Bianchi and P. Longhi, Copper in sea-water. Potential—pH diagrams, Corros. Sci 13 (11), 853–864 (1973).Google Scholar
  74. 74.
    J. Horvath and M. Novak, Electrochemical studies on the corrosion of copper in aqueous hydrogen sulphide environments. I. Interpretation of electrode-potential and polarization data on the basis of the potential—pH equilibrium diagram of the ternary system Cu—S—H20, Acta Chim. Acad. Sci. Hung 34 (4), 455–467 (1962).Google Scholar
  75. 75.
    J. Horvath and M. Novak, Potential—pH equilibrium diagrams of some Me—S—H20 ternary systems and their interpretation from the point of view of metallic corrosion, Corros. Sci 4, 159–178 (1964).Google Scholar
  76. 76.
    J. Horvath and L. Häckl, Check of the potential—pH equilibrium diagrams of different metal—sulphur—water ternary systems by intermittent galvanostatic polarization method, Corros. Sci 5, 525–538 (1965).Google Scholar
  77. 77.
    J. Horvath, L. Häckl, and A. Rauscher, Investigation of the possibilities of corrosion inhibition in metal—sulphur—water ternary systems on the basis of potential—pH equilibrium diagrams, Proceedings of the 2nd Symposium on Corrosion Inhibitors, Ferrara, 1965 (1966), pp. 477–505.Google Scholar
  78. 78.
    J. Bouet and J. P. Brenet, Contribution à l’étude du diagramme tension—pH du fer en milieux sulfurés, Corros. Sci 3, 51–63 (1963).Google Scholar
  79. 79.
    A. Bustorff and J. Van Muylder, Comportement électrochimique du cuivre en solutions sulfuriques. Diagrammes d’équilibres tension—pH du système Cu—SO4H2—H20, à 25°C, Electrochim. Acta 9, 607–612 (1964).Google Scholar
  80. 80.
    P. Delahay, M. Pourbaix, and P. van Rysselberghe, Some potential—pH diagrams and applications (Pb, Ag, Zn), J. Electrochem. Soc. 98, 57–64, 65–67, 101–105 (1951).Google Scholar
  81. 81.
    J. M. Sluyters, H. O. Wijnen, and H. J. van den Hul, The potential—pH diagram of silver in aqueous ammonium-salt solution, Electrochim. Acta 5, 72–78 (1961).Google Scholar
  82. 82.
    H. E. Hömig and G. Glass, Pourbaix-Diagramme für Kupfer in ammoniakhaltigen Lösungen, Vereinigung Grosskessel Besitzer VGB, Speisewasser Tagung, 1966 (1966), pp. 31–37.Google Scholar
  83. 83.
    Ph. Brouillet and F. Jolas, Problèmes concernant les anodes dans les cellules primaires, Electrochim. Acta 1, 246–260 (1959).Google Scholar
  84. 84.
    F. Letowski and J. Niemiec, Diagrams of electrochemical equilibria E—pH at 25°C. Part I. Cu—H2O—NH3—H2SO4 system, Roczmiki Chemii. Ann. Soc. Chim. Polonorum 40, 1149 (1966).Google Scholar
  85. 85.
    F. Letowski and J. Niemiec, Diagrams of electrochemical equilibria E—pH at 25°C. Part II. Ni—H2O—NH3—H2SO4 system, Roczniki Chemii. Ann. Soc. Chim. Polonorum 40, 1159 (1966).Google Scholar
  86. 86.
    F. Letowski and J. Niemiec, Diagrams of electrochemical equilibria E—pH at 25°C. Part III. Ag—H2O—NH3—H2SO4 system, Roczniki Chemii. Ann. Soc. Chim. Polonorum 41, 14831490 (1967).Google Scholar
  87. 87.
    F. Letowski and J. Niemiec, Diagrams of electrochemical equilibria E—pH at 25°C. Part IV. Co—H2O—NH3—H2SO4 system, Roczniki Chemii. Ann. Soc. Chim. Polonorum 43, 281–290 (1969).Google Scholar
  88. 88.
    F. Letowski and B. Kozlowska-Kolodziej, Diagrams of electrochemical equilibria E—pH at 25°C. Part V. Zn—H2O—NH3—H2SO4 system, Roczniki Chemii Ann. Soc. Chim. Polonorum 47, 1593–1601 (1973).Google Scholar
  89. 89.
    B. Kozlowska-Kolodziej and F. Letowski, Diagrams of electrochemical equilibria E—pH at 25°C. Part VI. Cd—H2O—NH3—H2SO4 system, Roczniki Chemii Ann. Soc. Chim. Polonorum 47, 1603–1610 (1973).Google Scholar
  90. 90.
    J. Niemiec, F. Letowski, W. Charewicz, and W. Wojar, Die Herstellung von Kupfer-und Nickelpulver durch Wassestoffdruckreduktion der Kupfer-Nickel-Elektrolyte, Freiberg. Forschungsh B128, 19–24 (1968).Google Scholar
  91. 91.
    R. Bartonicek and M. Lukasovska, A potential—pH diagram for the system Cu—NH3—C1H2O, Corros. Sci 9, 35–42 (1969).Google Scholar
  92. 92.
    J. van Muylder et al,Fundamental research on the electrochemical behaviour and the corrosion of copper, Final Report to the INCRA (period 1 September 1962 to 31 July 1963), Publication CEBELCOR E.53 (1964).Google Scholar
  93. 93.
    J. Serkies, F. Letowski, and J. Niemiec, Application of the potential—pH diagrams to characteristics of some Zechstein copper deposits, Econ. Geol 61, 1266–1271 (1966).Google Scholar
  94. 94.
    P. Delahay, M. Pourbaix, and P. van Rysselberghe, Potential—pH diagrams, J. Chem. Educ 27, 683–688 (1950).Google Scholar
  95. 95.
    A. G. Guy and F. N. Rhines, Pourbaix diagrams. A firm basis for understanding corrosion, Met. Treat. Drop Forg. 29, 45–54 (1962); Technical Paper No. 277, University of Florida, Eng. Prog 28 (1), (1964).Google Scholar
  96. 96.
    J. A. Campbell and R. A. Whiteker, A periodic table based on potential—pH diagrams, J. Chem. Educ 46, 90–92 (1969).Google Scholar
  97. 97.
    K. Kovacs, Das periodische System in Hinsicht auf Korrosion, Forschungsinstitut für Chemische Schwerindustrie ( November 1974 ) ( Hungary).Google Scholar
  98. 98.
    J. Horvath and M. Novak, (a) Contributions to the mechanism of anaerobic, microbiological corrosion. H. Correlation between pH-values, oxidation—reduction potentials and the composition of solid corrosion products, Acta Chim. Acad. Scientas. Hung. I, 25, 65 (1960); II, 33 (2), 221–225 (1962).Google Scholar
  99. 99.
    C. M. Criss and J. W. Cobble, The thermodynamic properties of high temperature aqueous solutions. IV. Entropies of the ions up to 200°C and the correspondence principle, J. Am. Chem. Soc. 86, 5385–5390 (1964); V. The calculation of ionic heat capacities up to 200°C. Entropies and heat capacities above 200°C, J. Am. Chem. Soc 86, 5390–5393 (1964).Google Scholar
  100. 100.
    J. W. Cobble, The thermodynamic properties of high temperature aqueous solutions. VI. Applications of entropy correspondence to thermodynamics and kinetics, J. Am. Chem. Soc 86, 5394–5401 (1964).Google Scholar
  101. 101.
    I. L. Khodakovski, B. N. Ryzhenko, and G. B. Naumov, Thermodynamics of aqueous electrolyte solutions at elevated temperatures (temperature dependence of the heat capacities of ions in aqueous solution), Geochem. Internat. 5, 1200–1219 (1968), translated from Geokhimia No. 12, 1486–1503 (1968).Google Scholar
  102. 102.
    I. L. Khodakovski, Thermodynamics of aqueous solutions of electrolytes at elevated temperatures (entropies of ions in aqueous solutions at elevated temperatures), Geochem. Internat. 6, 29–34 (1969), translated from Geokhimia No. 1, 57–63 (1969).Google Scholar
  103. 103.
    A. J. de Béthune, T. S. Licht, and N. Swendeman, The temperature coefficients of electrode potentials. The isothermal and thermal coefficients. The standard ionic entropy of electrochemical transport of the hydrogen ion, J. Electrochem. Soc 106 (7), 616–625 (1959).Google Scholar
  104. 104.
    G. R. Salvi and A. J. de Béthune, The temperature coefficients of electrode potentials. II. The second isothermal temperature coefficient, J. Electrochem. Soc 108 (7), 672–676 (1961).Google Scholar
  105. 105.
    G. D. Manning and J. Melling, Potential Eh-pH diagrams at elevated temperatures. A survey, Warren Spring Laboratory, LR. 128 (ME) (1971).Google Scholar
  106. R. T. Lowson, Potential-pH diagrams at temperatures above 298.16°K. Part I. Theoretical background, Aust. AECAAEC/E [Rep.] AAEC/E219 (July 1971).Google Scholar
  107. 107.
    P. Duby, Graphical representation of equilibria in aqueous systems at elevated temperatures, Internal Report H, Krumb School of Mines, Columbia University, New York (1973?).Google Scholar
  108. 108.
    H. L. Barnes and G. Kullerod, Equilibria in sulphur-containing aqueous solutions in the system Fe-S-O, and their correlation during redeposition, Econ. Geol 56, 648–688 (1961).Google Scholar
  109. 109.
    R. J. Biernat and R. G. Robins, High-temperature potential-pH diagrams for the sulphur-water system, Electrochim. Acta 14, 809–820 (1969).Google Scholar
  110. 110.
    H. C. Helgeson, Thermodynamics of complex dissociation in aqueous solution at elevated temperatures, J. Phys. Chem 71, 3121–3136 (1967).Google Scholar
  111. 111.
    H. C. Helgeson, Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Am. J. Sci 267, 729–804 (1969).Google Scholar
  112. 112.
    D. Lewis, Studies of redox equilibria at elevated temperatures. I. The estimation of equilibrium constants and standard potentials for aqueous systems up to 374°C, K. Sven. Vetenskapsakad. Arkiv. Kemi 32, No. 32 (1971).Google Scholar
  113. 113.
    D. Lewis, Theoretical studies of aqueous systems above 25°C. 1. Fundamental concepts for equilibrium diagrams and some general features of the water system, Ab. Atomenergi Stockholm [Rapp.] AE-431 (1971).Google Scholar
  114. 114.
    D. Lewis, Theoretical studies of aqueous systems above 25°C. I. The illustration of data in aqueous equilibria and equilibrium data for the system 02(g)-H20(l)-H2(g), Chem. Scr 6, 49 (1974).Google Scholar
  115. R. T. Lowson, Potential-pH diagrams at temperatures above 298.16°K. Part 2. Potential-pH diagrams of water for the temperature range 298.16–573.16°K, Aust. AECAAEC/E [Rep.] AAEC/219 (1972).Google Scholar
  116. D. D. MacDonald, G. R. Shierman, and P. Butler, The thermodynamics of metal-water systems at elevated temperatures. Part 1: The water and copper-water systems, At. Energ. Can. Ltd. AECL [Rep.] 4136 (December 1972).Google Scholar
  117. 117.
    R. G. Robins, The application of potential-pH diagrams to the prediction of reactions in pressure. Hydrothermal processes, Wasser Spring Laboratory, LR. 80 (MST) (1968).Google Scholar
  118. 118.
    H. E. Townsend, Potential-pH diagrams at elevated temperature for the system Fe-H20, Corros. Sci. 10, 343–358 (1970); Proceedings of the 4th International Congress on Metallic Corrosion, Amsterdam, September 7–14, 1969, NACE, Houston (1970), pp. 477–487.Google Scholar
  119. 119.
    V. Ashworth and P. J. Boden, Potential-pH diagrams at elevated temperatures, Corros. Sci 10, 709–718 (1970).Google Scholar
  120. D. Lewis, Theoretical studies of aqueous systems above 25°C. 2. The iron-water system, A. Atomenergi Stockholm [Rapp.] AE-432 (1971).Google Scholar
  121. 121.
    D. Lewis, Some aspects of electrochemical thermodynamics and equilibrium diagrams for aqueous systems at elevated temperatures and for simple molten salt systems, J. Inorg. Nucl. Chem 33, 2121–2140 (1971).Google Scholar
  122. 122.
    D. Lewis, The hydrolysis of iron (III) and iron (II) ions between 25°C and 375°C, Trans. R. Inst. Technol. Sweden, No. 252, Pure Appl. Chem 34, 59–67 (1972).Google Scholar
  123. 123.
    P. A. Brook, Potential-pH diagrams at elevated temperatures, Corros. Sci 12, 297–306 (1972).Google Scholar
  124. 124.
    E. Bardai, pH and potential measurements on mild steel and cast iron during periodic cathodic polarization at 20° and 90°C, Corros. Sci 11, 371–382 (1971).Google Scholar
  125. 125.
    R. J. Biernat and R. G. Robins, High temperature potential-pH diagrams for the iron-water and iron-water-sulphur systems, Electrochim. Acta 17, 1261–1283 (1972).Google Scholar
  126. 126.
    D. D. MacDonald, G. R. Shierman, and P. Butler, The thermodynamics of metal-water systems at elevated temperatures. Part 2. The iron-water system, At. Energ. Can. Ltd. AECL [Rep.] 4137 (December 1972).Google Scholar
  127. 127.
    J. T. Harrison and C. J. Mason, Electrode potential/pH diagrams for the iron-water system at elevated temperatures, Central Electricity Research Laboratories CERL, Laboratory note No. RD/L/N 71 /66 (July 1966).Google Scholar
  128. 128.
    R. L. Cowan and R. W. Staehle, The thermodynamics and electrode kinetic behavior of nickel in acid solution in the temperature range 25° to 300°C, J. Electrochem. Soc 118, 557–567 (1971).Google Scholar
  129. D. D. MacDonald, The thermodynamics of metal-water systems at elevated temperatures. 4. The nickel-water system, At. Energ. Can. Ltd. AECL [Rep.] 4139 (1972).Google Scholar
  130. D. D. MacDonald, G. R. Shierman, and P. Butler, The thermodynamics of metal-water systems at elevated temperatures. 3. The cobalt-water system, At. Energ. Can. Ltd. AECL [Rep.] 4138 (1972).Google Scholar
  131. 131.
    D. D. MacDonald, The thermodynamics and theoretical corrosion behavior of manganese in aqueous systems at elevated temperatures, Corros. Sci 16, 461–482 (1976).Google Scholar
  132. 132.
    R. T. Lowson, Aluminum corrosion studies. I. Potential-pH-temperature diagrams for aluminum, Aust. J. Chem 27, 105–127 (1974).Google Scholar
  133. 133.
    R. T. Lowson, Potential-pH diagrams at temperatures above 298.16°K. Part 3. Potential-pH diagrams of aluminium for the temperature range 298.16–573.16°K, Aust. AECAAEC/E [Rep.] 219 (October 1972).Google Scholar
  134. 134.
    D. D. MacDonald and P. Butler, The thermodynamics of the aluminum-water system at elevated temperatures, Corros. Sci 13, 259–274 (1973).Google Scholar
  135. 135.
    I. E. Diachkova and I. L. Khodakovski, Thermodynamic equilibria in the systems S-H2O, Se-H2O and Te-H2O in the 25–300°C temperature range and their geochemical interpretations, Geochem. Int 5 (6), 1108–1125 (1968).Google Scholar
  136. 136.
    H. Magima and E. Peters, Oxidation rates of sulphide minerals by aqueous oxidation at elevated temperatures, Trans. Met. Soc. AIME 236, 1409–1413 (1966).Google Scholar
  137. 137.
    R. C. H. Ferreira, High Temperature E-pH diagrams for the systems S-H2O, Cu-S-H2O and Fe-S-H2O, Leaching and Reduction in Hydrometallurgy, A. R. Birkin, ed., Institute of Mining and Metallurgy (1975).Google Scholar
  138. 138.
    E. F. Sergeieva and I. L. Khodakovski, Physico-chemical conditions of formation of native arsenic in hydrothermal deposits, Geochem. Int 6 (4), 681–694 (1969).Google Scholar
  139. 139.
    J. Kwok and R. G. Robins, Thermal precipitation in aqueous solutions, Proceedings of the International Symposium on Hydrometallurgy, Chicago, 1973, AIMMPE, New York, Evans and Shoemaker, New York (1973).Google Scholar
  140. 140.
    H. Kametani and A. Aoki, Potential-pH diagram of the Cu-Cl-H2O system at 90°C, Denki Kagaku 40 (10), 720–723 (1972).Google Scholar
  141. 141.
    F. Baratin, E. Peters, and M. Morris, E-pH diagrams for the Pb-S-Cl-H2O system at various temperatures (University of British Columbia, Vancouver, Canada), Chloride Metallurgy, international symposium organized by Benelux Metallurgie, Brussels, 26–28 September 1977 (not published in the proceedings).Google Scholar
  142. 142.
    H. E. Townsend, The importance of heat capacity in the construction of potential-pH diagrams at elevated temperatures, Corros. Sci 13, 311–314 (1973).Google Scholar
  143. 143.
    D. Lewis, Discussion of Cowan and Staehle, J. Electrochem. Soc. 118, 557–567 (1971); J. Electrochem. Soc 118 (12), 1968–1969 (1971).Google Scholar
  144. 144.
    H. Gräfen, Die Ergebnisse elektrochemischer Untersuchungsverfahren der Spannungsrisskorrosion und ihre praktische Anwendung, Corros. Sci 7 (4), 177–196 (1967).Google Scholar
  145. 145.
    T. P. Hoar, Electrochemical principles of the corrosion and protection of metals, J. Appl. Chem 11, 121–130 (1961).Google Scholar
  146. 146.
    M. Pourbaix, Prédétermination théorique et expérimentale des circonstances d’efficacité d’inhibiteurs de corrosion, Rapports Techniques CEBELCOR 73, RT.88 (1960); Proceedings of the European Symposium on Corrosion Inhibitors, Ferrara (Italy), 28 September-1 October 1960, Univ. degli Studi di Ferrara, Ferrara (1961).Google Scholar
  147. 147.
    G. H. Cartledge, The pertechnetate ion as an inhibitor of the corrosion of iron and steel, Corrosion (Houston) 11, 335t - 342t (1955).Google Scholar
  148. 148.
    G. H. Cartledge, Action of the X04 inhibitors, Corrosion (Houston) 15, 469t - 472t (1959).Google Scholar
  149. 149.
    T. P. Hoar and U. R. Evans, The passivity of metals. Part VII. The specific function of chromates, J. Chem. Soc 2476–2481 (1932).Google Scholar
  150. 150.
    D. M. Brasher and E. R. Stove, The use of radioactive tracers in the study of the mechanism of action of corrosion inhibitors, Chem. Ind. (London), 171–172 (1952).Google Scholar
  151. 151.
    T. Kodama and J. R. Ambrose, Effect of molybdate ion on the repassivation kinetics of iron in solutions containing chloride ions, Rapports Techniques CEBELCOR 128, RT. 231 (February 1976).Google Scholar
  152. 152.
    J. T. Conroy, The rate of dissolution of iron in hydrochloric acid, J. Soc. Chem. Ind 20, 316–320 (1901).Google Scholar
  153. 153.
    I. N. Poutilova, Metallic Corrosion Inhibitors,Pergamon Press, London (1960) (translated from Russian).Google Scholar
  154. M. Pourbaix et al,Sur le comportement d’aciers inoxydables en solution sulfurique, Rapports Techniques CEBELCOR 90 RT.106 (1962).Google Scholar
  155. 155.
    R. Piontelli and L. Fagnani, Untersuchungen über die Reaktionen zwirschen Metallen und Elektrolyten. VI. Über die Sparbeizwirkung des Antimons bei der Auflösung von Eisen, Korros. Metallschutz 19, 259–263 (1943).Google Scholar
  156. 156.
    R. M. Burns and W. W. Bradley, Protective Coatings for Metals, 2nd ed., Reinhold, New York (1955), p. 274.Google Scholar
  157. 157.
    M. Pourbaix, J. Van Muylder, and P. Van Laer, Sur la tension d’électrode du cuivre en présence d’eau de Bruxelles. Influence de la lumière et des conditions de circulation de l’eau, Rapports Techniques CEBELCOR 100, RT.125 (May 1965); Corros. Sci 7, 795–806 (1967).Google Scholar
  158. 158.
    J. Van Muylder, M. Pourbaix, P. Van Laer, and N. de Zoubov, Relation entre la tension d’électrode et les circonstances de corrosion de cuivre electrolytique en présence d’eau de Bruxelles. Influence de l’état de surface du cuivre, des circonstances de circulation de l’eau, de traitements de l’eau et d’un contact du cuivre avec du graphite ou avec du platine, Rapports Techniques CEBELCOR 100, RT. 126 (May 1965).Google Scholar
  159. 159.
    J. Van Muylder, M. Pourbaix, and P. Van Laer, Caractéristiques électrochimiques de piqûres de corrosion du cuivre en présence d’eaux et de solutions aqueuses chlorurées, Rapports Techniques CEBELCOR 100, RT. 127 (May 1965).Google Scholar
  160. 160.
    P. Van Laer, J. Van Muylder, N. de Zoubov, and M. Pourbaix, Méthodes accélérées d’appréciation du risque de piqûration du cuivre en présence d’eaux. Application à l’étude de l’influence d’un contact du cuivre avec un autre métal ou avec du graphite, Rapports Techniques CEBELCOR 100, RT. 128 (May 1965).Google Scholar
  161. 161.
    N. de Zoubov, J. Van Muylder, P. Van Laer, and M. Pourbaix, Sur le comportement du cuivre en présence de solutions de bicarbonate de sodium, Rapports Techniques CEBELCOR 101, RT. 133 (August 1965).Google Scholar
  162. 162.
    M. Pourbaix,(a) Electrochemical aspects of stress corrosion cracking, Proceedings of the NATO Science Committee, Research Evaluation Conference “The Theory of Stress Corrosion Cracking in Alloys,” J. C. Scully, ed., NATO, Brussels (1971), pp. 17–63; (b) Les facteurs electrochmiques de la corrosion sans tension, Rapports Techniques CEBELCOR 118, RT.199 (August 1971).Google Scholar
  163. 163.
    J. Van Muylder and M. Pourbaix, Test de susceptibilité du cuivre à la corrosion par piqûres en présence d’eau de distribution froide, Rapports Techniques CEBELCOR 119, RT. 201 (January 1972).Google Scholar
  164. 164.
    M. Pourbaix, J. Van Muylder, E. D. Verink, and A. Pourbaix, Etudes électrochimiques concernant les corrosions en cellules occluses C.C.O. et protection contre ces corrosions: corrosion par piqûres, corrosion caverneuse, corrosion fissurante sous tension, corrosion sélective d’alliages. Applications au fer et aux aciers, au cuivre, au cupronickels et aux laitons, Rapports Techniques CEBELCOR 123, RT. 214 (September 1973).Google Scholar
  165. 165.
    M. Pourbaix, Inhibition des phénomènes de corrosion localisée, C.R. 4th European Symposium on Corrosion Inhibitors, Ferrara (Italy), 15–19 September 1975, Univ. degli Studi di Ferrara, Ferrara (1975), pp. 674–691.Google Scholar
  166. 166.
    M. Pourbaix, Some applications of potential-pH diagrams for the study of localized corrosion, J. Electrochem. Soc 123 (2), 25C - 36C (1976).Google Scholar
  167. 167.
    J. Van Muylder, Corrosion par piqûres de tubes de cuivre pour distribution d’eau urbaine, La Tribune du Cebedeau (Centre Belge d’Etude et de Documentation des Eaux), No. 397 (December 1976), pp. 429–439.Google Scholar
  168. 168.
    H. S. Campbell, (a) Pitting corrosion in copper water pipes caused by films of carbonaceous material produced during manufacture, J. Inst. Met. 77, 345–346 (1950); (b) The influence of the composition of supply waters, and especially of traces of natural inhibitor, on pitting corrosion of copper water pipes, Proc. Soc. Water Treat. Exam. 3,110–115 (1954); (c) Pitting corrosion of copper water pipes, Proceedings of the 2nd International Congress on Metallic Corrosion, New York, 1963, pp. 237–243, NACE, Houston (1966).Google Scholar
  169. 169.
    R. May, Some observations on the mechanisms of pitting corrosion, J. Inst. Met 32, 65–74 (1953).Google Scholar
  170. 170.
    G. Lecointe, V. Plichon, Ph. Berge, and J. Legrand, Protection des condenseurs en alliage cuivreux par addition de sels ferreux dans l’eau de mer en circulation, Mét. Corros.-Ind 52, 123–131 (1977).Google Scholar
  171. 171.
    M. Pourbaix, Recherches en corrosion. Résultats de travaux récents. Voyages aux Etats-Unis d’Amérique, Rapports Techniques CEBELCOR 109, RT. 157 (June 1969).Google Scholar
  172. 172.
    M. Pourbaix, Bases fondamentales de la protection cathodique et applications, Rapports Techniques CEBELCOR 111, RT. 166 (October 1969).Google Scholar
  173. 173.
    M. Pourbaix, Aspects électrochimiques de la corrosion aqueuse, Rapports Techniques CEBELCOR 120, RT. 204 (August 1972).Google Scholar
  174. 174.
    J. R. Baylis, Natural water corrosion and H-ion concentration, Met. Chem. Eng. 32, 874–875 (1925); J. Am. W. W. Assoc 15, 606 (1926).Google Scholar
  175. 175.
    T. P. Hoar, The corrosion of tin in nearly neutral solutions, Trans. Faraday Soc 33, 1152 (1937).Google Scholar
  176. 176.
    U. R. Evans (a) The Corrosion and Oxidation of Metals, Arnold, London (1960); (b) An Introduction to Metallic Corrosion, 2nd ed., Arnold, London (1963).Google Scholar
  177. 177.
    C. Edeleanu and U. R. Evans, Trans. Faraday Soc 47, 1121 (1951).Google Scholar
  178. 178.
    I. L. Rosenfeld and I. K. Marchakov, Mechanism of crevice corrosion, Corrosion (Houston) 20, 115t - 125t (1964).Google Scholar
  179. 179.
    B. F. Brown, The concept of the occluded corrosion cell, Corrosion (Houston) 26, 249–250 (1970).Google Scholar
  180. 180.
    C. T. Fujii, Electrochemical and chemical aspects of localized corrosion, Rapports Techniques CEBELCOR 123, RT. 213 (January 1974).Google Scholar
  181. 181.
    P. Ruetschi and R. T. Anstadt, Anodic oxidation of lead at constant potential, J. Electrochem. Soc 111 (12), 1323–1330 (1964).Google Scholar
  182. 182.
    A. Pourbaix, Etude de la corrosion localisée de l’acier en solutions chlorurées, Rapports Techniques CEBELCOR 118, RT.198 (August 1971); Characteristics of localized corrosion of steel in chloride solutions, Corrosion (Houston) 27, 449–454 (1971).Google Scholar
  183. 183.
    M. Pourbaix et al., Etudes potentiocinétiques et corrosimétriques sur le comportement d’aciers alliés, Rapports Techniques CEBELCOR 96, RT. 120 (September 1962).Google Scholar
  184. M. Pourbaix, J. Van Muylder, P. Van Laer, et al,On the pitting corrosion of copper water pipes, Report CEBELCOR No. 879 (December 1973).Google Scholar
  185. 185.
    N. Verheulpen-Heymans, Etude de l’influence des chlorures sur le comportement anodique du fer, Mémoire de fin d’études, Free University of Brussels, U.L.B., Faculty of Applied Sciences (Belgium, June 1969 ).Google Scholar
  186. 186.
    B. F. Brown (a) Cracking of martensitic type 410 stainless steel in corrosive environments, NRL Prog. Rep, 40–42 (May 1958); (b) Stress corrosion cracking and related phenomena in high-strength steels, N.R.L. Report 6041 (November 1961); (c) Stress corrosion cracking and corrosion fatigue in high-strength steels, DMIC Report 210, Battelle Memorial Institute (1964).Google Scholar
  187. 187.
    B. F. Brown, C. T. Fujii, and E. Ph. Dahlberg, Methods for studying the solution chemistry within stress corrosion cracks, J. Electrochem. Soc 116, 218–219 (1969).Google Scholar
  188. 188.
    B. F. Brown (a) On the electrochemistry of stress corrosion cracking of high strength steels, CEBELCOR’s Publication E.76 (1969); (b) The role of the occluded corrosion cell in stress corrosion cracking of high-strength steels, Rapports Techniques CEBELCOR 112, RT. 170 (January 1970).Google Scholar
  189. 189.
    J. A. Smith, M. H. Peterson, and B. F. Brown, Electrochemical conditions at the tip of an advancing stress corrosion crack in AISI 4340 steel, Corrosion (Houston) 26, 539–542 (1970).Google Scholar
  190. 190.
    H. W. Pickering and R. P. Frankenthal, On the mechanism of localized corrosion of iron and stainless steel, J. Electrochem. Soc 119, 1297–1304 (1972).Google Scholar
  191. 191.
    P. A. Parrish, C. M. Cohen, and E. D. Verink, The retardation of crack propagation for D6A6 high-strength, low-alloy steel in aqueous media by addition of some inhibitors, Proceedings of the ASTM Meeting, Montreal, Canada, June 1975, “Symposium on Stress Corrosion-New Approaches, STP 610 (1976).Google Scholar
  192. 192.
    F. Haber, Ober stufenweise Reduktion des Nitrobenzols mit begsentzem Kathodenpotential, Z. Elektrochem 4, 506–514 (1898).Google Scholar
  193. 193.
    C. Wagner and W. Traud, Uber die Deutung von Korrosionsvorgängen durch Uberlagerung von elektrochemischen Teilvorgängen und über die Potentialbildung an Mischelektroden, Z. Elektrochem 44, 391–402 (1938).Google Scholar
  194. 194.
    M. Pourbaix, Méthodes électrochimiques de mesure de la corrosion des métaux, Rev. Tech. Luxemb 57, 9–27 (1965).Google Scholar
  195. 195.
    M. Stern and A. Geary, Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc 104, 56–63 (1957).Google Scholar
  196. 196.
    J. Tafel, Uber die Polarisation bei Kathodischer Wasserstoffentwicklung, Z. Phys. Chem 50, 641–712 (1905).Google Scholar
  197. 197.
    M. Pourbaix, Note concernant les méthodes d’appréciation de la vitesse de corrosion par mesure de la résistance de polarisation, Rapports Techniques CEBELCOR 108, RT. 156 (March 1969).Google Scholar
  198. 198.
    L. Clerbois, Détermination de la vitesse de corrosion par mesure de la résistance de polarisation, Rapports Techniques CEBELCOR 108, RT.155 (March 1969); Méthodes de mesure de la résistance de polarisation et leur validité pratique, Rapports Techniques CEBELCOR 122, RT. 209. 1 (April 1973).Google Scholar
  199. 199.
    S. Uneri, The utility of linear polarization method for the determination of the corrosion rate, Commun. Fac. Sci. Univ. Ankara Ser. B 16B, 37–61 (1969).Google Scholar
  200. 200.
    A. Pourbaix, Détermination de la vitesse instantanée de corrosion par la mesure de la résistance de polarisation, ou de corrodance, Rapports Techniques CEBELCOR 124, RT. 219 (April 1974).Google Scholar
  201. 201.
    I. Epelboin, M. Keddam, and H. Tekanouti, Use of impedance measurements for the determination of the instant corrosion rate of metal corrosion, J. Appl. Chem 2, 71–79 (1972).Google Scholar
  202. 202.
    M. Prajak, Über die Abhängigkeiten zwischen Polarisationswiderstand und Korrosionsgeschwindigkeit des Metalle, Werkst. Korros 19 (10), 845–848 (1969).Google Scholar
  203. 203.
    E. Röschenblech, Die Abhägigkeit der Korrosionsgeschwindigkeit von Polarisationswiderstand und pH-Wert, Metalloberflaeche 16, 38–42, 65–69 (1962).Google Scholar
  204. 204.
    M. Pourbaix, Sur l’interprétation thermodynamique des courbes de polarisation, Rapports Techniques CEBELCOR 1, RT. 1 (1952).Google Scholar
  205. 205.
    M. Pourbaix, (a) Theoretical and experimental considerations in corrosion testing, Rapports Techniques CEBELCOR 116, RT.196 (January 1971); (b) Potential–pH diagrams and metallic corrosion, Handbook on Corrosion Testing and Evaluation, W. H. Ailor, ed. John Wiley and Sons, New York (1971), No. 26, pp. 661–687.Google Scholar
  206. 206.
    E. D. Verink and M. Pourbaix, Use of potentiokinetic methods at successively increasing and decreasing electrode potentials in developing alloys for saline exposure, Rapports Techniques CEBELCOR 117, RT. 191 (June 1971).Google Scholar
  207. 207.
    Z. Sklarska-Smialowska and M. Janik-Czachor, The analysis of electrochemical methods for the determination of characteristic potentials of pitting corrosion, Corros. Sci 11 (12), 901–914 (1971).Google Scholar
  208. 208.
    A. Pourbaix, Signification et détermination des potentiels de rupture et de protection, Rapports Techniques CEBELCOR 122, RT. 210. 1 (April 1973).Google Scholar
  209. 209.
    M. Pourbaix, Une méthode électrochimique rapide de prédétermination de la corrosion atmosphérique, Rapports Techniques CEBELCOR 109, RT. 160 (August 1969).Google Scholar
  210. 210.
    L. de Miranda and M. Pourbaix, Sur la corrosion atmosphérique des aciers non alliés en atmosphère sulfureuse, Rapports Techniques CEBELCOR 119, RT.200 (January 1972); M. Pourbaix, Sur le mécanisme de la corrosion atmosphérique, Rapports Techniques CEBELCOR 119, RT. 200 ( January 1972 ) ( Discussion).Google Scholar
  211. 211.
    L. de Miranda, J. Van Muylder, and M. Pourbaix, Sur la corrosion atmosphérique des aciers patinables en atmosphère sulfureuse, Rapports Techniques CEBELCOR 121, RT. 206 (April 1973).Google Scholar
  212. 212.
    CEBELCOR’s Patents: Belgium No. 726,964; France No. 1,600,155; Germany No. P.1901.8601; Italy No. 806,082; Japan No. 764,830; Luxembourg No. 55,296; Sweden No. 347,773, United Kingdom No. 1, 261, 544.Google Scholar
  213. 213.
    J. Van Muylder and M. Pourbaix, (a) Influence des facteurs climatiques et polluants sur la corrosion atmosphérique de l’acier. Prédétermination en laboratoire, Rapports Techniques CEBELCOR 130a, RT.235a (December 1976); (b) On the influence of climatic and polluting factors on the atmospheric corrosion of steels. Predetermination in the laboratory, Proc. 7th Int. Cong. Metal. Corr, Rio de Janeiro (Brazil), Oct. 1978 3, 1177–1180 (1979).Google Scholar
  214. 214.
    P. B. Linkson, D. M. Nobbs, and I. A. Lake, Recovery of copper from leach solutions with sulphur dioxide, Adv. Extr. Met, Int. Symp, 3rd, 111–121 (1977).Google Scholar
  215. 215.
    D. D. MacDonald, B. C. Syrett, and S. S. Wing, The use of potential–pH diagrams for the interpretation of corrosion phenomena in high salinity geothermal brines, Corrosion (Houston) 35, 1–11 (1979).Google Scholar
  216. 216.
    R. J. Thibeau, C. W. Brown, A. Z. Goldfarb, and R. H. Heidersbach, Raman and infrared spectroscopy of aqueous corrosion films on lead in 0.1 M chloride solutions, J. Electrochem. Soc 127, 1702–1706 (1980).Google Scholar
  217. 217.
    S. C. Barnes and R. J. Mathieson, in A. C. Simon’s chapter in Batteries 2, D. H. Collins, ed., Pergamon Press, New York (1965), p. 41.Google Scholar
  218. 218.
    M. Pourbaix and Yang Xi-Zhen, Diagrams of chemical and electrochemical equilibria in the presence of a gaseous phase. 6. Iron–oxygen–hydrogen, Rapports Techniques CEBELCOR 138, RT. 256 (September 1980).Google Scholar
  219. 219.
    C. J. Cron, J. H. Payer, and R. W. Staehle, Dissolution behavior of Fe–Fe3 structures as a function of pH, potential, and anion—An electron microscope study, Corrosion (Houston) 27, 1–25 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Jean Van Muylder
    • 1
  1. 1.CEBELCOR and Department of Metallurgy and ElectrochemistryUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations