Cultural Heritage: Porifera (Sponges), A Taxon Successfully Progressing Paleontology, Biology, Biochemistry, Biotechnology and Biomedicine

  • Werner E. G. Müller
  • Renato Batel
  • Isabel M. Müller
  • Heinz C. Schröder
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 546)


In 1876, Campbell (Campbell, 1876 [p. 446]) wrote “those beautiful ‘glass-rope sponges’, Hyalonema etc., have been found by our researchers to be ‘the most characteristic inhabitants of the great depths all over the world, and with them ordinary siliceous sponges, some of which rival Hyalospongiae in beauty’ “. The admiration for the beauty of sponges is documented since Aristotle (cited in Camus 1783), however the nature of these organisms and their phylogenetic position remained enigmatic until less than 10 years ago. E.g., in 1988 Loomis (Loomis, 1988 [p. 186]) wrote “the sponge cells are unspecialized flagellates held together by a glycoprotein extracellular matrix... they are multicellular, but just barely so”. This view changed drastically since the introduction of modern molecular biological techniques; the informational genes investigated in detail now group the sponges to the Metazoa leaving any doubt on their evolutionary origin behind. The first breakthrough came with the study of the galectin molecule from Geodia cydonium, when it was discovered that the deduced polypeptide shared high sequence similarity only with metazoan proteins and comprised all characteristic amino acid moieties required for the binding to the sugar (Pfeifer et al., 1993).


Cultural Heritage Marine Sponge Sponge Species Sponge Cell Siliceous Sponge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, W., 1925, Die Verwendung der Spongien in der Medizin, Arch. Naturgesch. (Abt. A) 90:149–174.Google Scholar
  2. Arndt, W., 1930, Porifera (Schwämme, Spongien), in: Tabulae Biologicae, W. Junk ed., W. Junk, Berlin; Suppl. II (vol. 6): 38–120.Google Scholar
  3. Arndt, W., 1937, Schwämme. In: Die Rohstoffe des Tierreichs, F. Pax and W. Arndt, eds., Bornträger, Berlin; vol. I/2:1577–2000.Google Scholar
  4. Babi, K., 1922, Monactinellida und Tetractinellida des Adriatischen Meeres, Zool. Jahrb Abt. Syst. 46:217–302.Google Scholar
  5. Baer, L., 1906, Silicispongien von Sansibar, Kapstadt und Papeete. Inaugural Dissertation: Berlin.Google Scholar
  6. Bengtson, S., 1998, Animal embryos in deep time. Nature 391:529–530.Google Scholar
  7. Bergmann, W., and Feeney, R.J., 1951, Contribution to the study of marine sponges. 32. The nucleosides of sponges, J Org. Chem. 16:981–987.Google Scholar
  8. Bergström, J., 1991, Metazoan evolution around the Precambrian-Cambriantransition, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa, A.M. Simonetta and S. Conway Morris, eds., Cambridge University Press, Cambridge; pp. 25–34.Google Scholar
  9. Bewley, C.A., and Faulkner, D.J., 1998, Lithistid sponges: star performers or hosts to the stars? Angew. Chem. (Int. Ed. Eng.) 37:2162–2178.Google Scholar
  10. Bianchi (Planci), J., 1760, De Conchis Minvs Notis Liber, Palladis, Romae.Google Scholar
  11. Blumbach, B., Pancer, Z., Diehl-Seifert, B., Steffen, R., Münkner, J., Müller, I., and Müller, W.E.G., 1998, The putative sponge aggregation receptor: isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats, J. Cell. Sci. 111:2635–2644.PubMedGoogle Scholar
  12. Blumbach, B., Diehl-Seifert, B., Seack, J., Steffen, R., Müller, I.M., and Müller, W.E.G., 1999, Cloning and expression of new receptors belonging to the immunoglobulin superfamily from the marine sponge Geodia cydonium, Immunogenetics 49:751–763.Google Scholar
  13. Böhm, M., Hentschel, U., Friedrich, A., Fieseler, L., Steffen, R., Gamulin, V., Müller, I.M., and Müller, W.E.G., 2001, Molecular response of the sponge Suberites domuncula to bacterial infection, Marine Biology 139:1037–1045.Google Scholar
  14. Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J., Le Parco, Y., 2001, Sponge paraphyly and the origin of Metazoa, J. Evol. Biol. 14:171–179.Google Scholar
  15. Breter, H.J., Grebenjuk, V.A., Skorokhod, A., and Müller, W.E.G., 2003, Approaches for a sustainable use of the bioactive potential in sponges: analysis of gene clusters, differential display of mRNA and DNA chips. in: Sponge (Porifera), W.E.G. Müller, ed., Marine Molecular Biotechnology — Springer, Berlin; pp. 199–230.Google Scholar
  16. Bringmann, G., Lang, G, Mühlbacher, J., Schaumann, K., Steffens, S., Rytik, P.G., Hentschel, U., Morschhäuser, J., and Müller, W.E.G., 2003, Sorbicillactone A, a structurally unprecedented bioactive novel-type alkaloid From a sponge-derived fungus, in: in: Sponge (Porifera), W.E.G. Müller, ed., Marine Molecular Biotechnology -Springer, Berlin. pp. 231–253.Google Scholar
  17. Buchan, A., Collier, L.S., Neidle, E.L., and Moran, M.A., 2000, Key aromatic-ring-cleaving enzyme, protocate-chuate 3, 4-dioxygenase, in the ecologically important marine Roseobacter lineage, Appl. Environ. MicroBiol. 66:4662–4672.PubMedGoogle Scholar
  18. Burton, M., 1953, Suberites domuncula (Olivi): its synonymy, distribution, and ecology, Bull. Brit. Mus. (Nat. Hist.) 1:353–378.Google Scholar
  19. Campbell, L.G., 1876, Log Letters from “The Challenger”, MacMillan, London.Google Scholar
  20. Camus, M., 1783, Histoire des Animaux d’ Aristote. Desaint, Paris.Google Scholar
  21. Celesia, P., 1893, Delia Suberites domuncula e della sua simbiosi coi Paguri, Atti Sic. Ligustica di Sc. nat. Vol. IV, Tav. V.Google Scholar
  22. Cimino, G., and Ghiselin, M.T., 2001, Marine natural products chemistry as an evolutionary narrative, in: Marine Chemical Ecology, J.B. McClintock, B.J. Baker, eds., CRC Press, Boca Raton, pp. 115–154.Google Scholar
  23. Coupin, H., 1902, Les Animaux Excentrique. Vuibert, Paris.Google Scholar
  24. Custodio, M.R., Prokic, I., Steffen, R., Koziol, C., Borojevic, R., Brümmer, F., Nickel, M., and Müller, W.E.G., 1998, Primmorphs generated from dissociated cells of the sponge Suberites domuncula: A model system for studies of cell proliferation and cell death. Mech. Ageing Develop. 105:45–59.Google Scholar
  25. Darwin, E. — Brandis, J.D., 1799, Zoonomie oder Gesetze des Organischen Lebens. Hahn, Hannover.Google Scholar
  26. DeLage, Y., 1892, Embryogénie des éponge, Arch. De Zool. Exp. (sér. 2) 10:345–498.Google Scholar
  27. Donati, V, 1753, Auszug seiner Natur-Geschichte des Adriatischen Meers. CP Franckens, Halle.Google Scholar
  28. Dzik, J., 1991, The fossil evidence consistent with traditional views of the early metazoan phylogeny, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa, A.M. Simonetta and S. Conway Morris, eds., Cambridge University Press, Cambridge; pp. 47–56.Google Scholar
  29. Ebel, R., Brenzinger, M., Kunze, A., Gross, H., and Proksch, P., 1997, Wound activation of prototoxins in the marine sponge Aplysina aerophoba. J. Chem. Ecol. 23:1451–1462.Google Scholar
  30. Ellis, J., 1786, The Natural History of Many Curious and Uncommon Zoophytes, Collected from Various Parts of the Globe. Benjamin White, London.Google Scholar
  31. Esper, E.J.C., 1794, Die Pflanzenthiere, Raspe, Nürnberg.Google Scholar
  32. Faulkner, D.J., 1995, Marine natural products, Nat. Prod. Rep. 13:259–302.Google Scholar
  33. Faulkner, D.J., 2000, Marine natural products, Nat. Prod. Rep. 17:7–55PubMedGoogle Scholar
  34. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., and Raff, R.A., 1988, Molecular phylogeny of the animal kingdom. Science 239:748–753.PubMedGoogle Scholar
  35. Galliot, B., and Miller, D., 2000, Origin of anterior patterning — how old is our head? Trends Genet, 16:1–5.PubMedGoogle Scholar
  36. Geoffroy, M., 1731, Analyse chimique de l’eponge de la moyenne espece, Histoire de l’Acad. Roy. Scie. 1731:507–508.Google Scholar
  37. Graeffe, E., 1882, Übersicht der Seethierfauna des Golfes von Triest, Arb. Zool. Inst. Wien-Triest 4:313–321.Google Scholar
  38. Gräfe, C.F., 1826, Ueber Minderung der Gefahr beim Kaiserschnitte, nebst der Geschichte eines Falles, in welchem Mutter und Kind erhalten wurden, J. Journal der Chirurgie und Augen-Heilkunde 9/1:1–170.Google Scholar
  39. Grant, R.E., 1836, Animal Kingdom, in: The Cyclopaedia of Anatomy and Physiology, R.B. Todd, ed., vol 1. Sherwood-Gilbert-Piper, London.Google Scholar
  40. Grebenjuk, V.A., Kuusksalu, A., Kelve, M., Schütze, J., Schröder, H.C., and Müller, W.E.G., 2002, Induction of (2’-5’)oligoadenylate synthetase in the marine sponges Suberites domuncula and Geodia cydonium by the bacterial endotoxin lipopolysaccharide, Europ. J. Biochem. 269:1382–1392.PubMedGoogle Scholar
  41. Haeckel, E., 1870, Das Leben in den grössten Meerestiefen, Lüderitz-Charisius, Berlin.Google Scholar
  42. Haeckel, E., 1872, Atlas der Kalkschwämme, Reimer, Berlin.Google Scholar
  43. Haeckel, E., 1874, Die Gastrae-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblätter, Jenaische Z.f Naturwiss. 8:1–55.Google Scholar
  44. Haeckel, E., 1896, Systematische Phylogenie der Wirbellosen Thiere, Reimer, Berlin.Google Scholar
  45. Heider, K., 1886, Zur Metamorphose der Oscalella lobularis O. Schm. Arbeiten Zool. Inst. Univ. Wien 6–2:27–30.Google Scholar
  46. Henkart, R, Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor. A unique proteoglycan complex. Biochem. 12: 3045–3050.Google Scholar
  47. Hildemann, W.H., Johnston, I.S., and Jokiel, P.L., 1979, Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges, Science 204:420–422.PubMedGoogle Scholar
  48. Hirabayashi, J., and Kasai, K., 1993, The family of metazoan metal-independent ß-galactoside-binding lectins: structure, function and molecular evolution, GlycoBiol. 3:297–304.Google Scholar
  49. Hufeland, C.W., 1798, Ueber die Natur, Erkenntnißmittel und Heilart der Skrofelkrankheit, Ghelensche Schriften, Wien.Google Scholar
  50. Jameson, R., 1811, Catalogues of animals, of the class Vermes, found in the Firth of Fourth, an other parts of Scotland, Mem. Werner. Soc. I:556–565.Google Scholar
  51. Jussieu, A.L., 1789, Genera Plantarum Secundum Ordines Naturales Disposita, Herrissant, Paris.Google Scholar
  52. Khosla, C., Gokhale, R.S., Jacobsen, J.R., and Cane D.E., 1994, Tolerance and specificity of polyketide synthetases. Annu. Rev. Biochem. 68:219–253.Google Scholar
  53. Kimura, M., 1983, The Neutral Theory of Molecular Evolution, Cambridge University Press: Cambridge.Google Scholar
  54. Knoll, A.H., and Carroll, S.B., 1999, Early animal evolution: emerging views from comparative biology and geology, Science 284:2129–2137.PubMedGoogle Scholar
  55. Koziol, C., Kobayashi, N., Müller, I.M., and Müller, W.E.G., 1998, Cloning of sponge heat shock proteins: Evolutionary relationships between the major kingdoms, J. Zool. Syst. Evol. Res. 36:101–109.Google Scholar
  56. Krasko, A., Gamulin, V., Seack, J., Steffen, R., Schröder, H.C., and Müller, W.E.G., 1997, Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA, Molec. Marine Biol. & Biotechnol. 6:296–307.Google Scholar
  57. Kreuter, M.H., Robitzki, A., Chang, S., Steffen, R., Michaelis, M., Kljajic, Z., Bachmann, M., Schröder, H.C., and Müller, W.E.G., 1992, Production of the cytostatic agent, aeroplysinin by the sponge Verongia aerophoba in in vitro culture, Comp. Biochem. Physiol. 101C: 183–187.Google Scholar
  58. Kruse, M., Müller, I.M., and Müller, W.E.G., 1997, Early evolution of Metazoan serine/threonine- and tyrosine kinases: Identification of selected kinases in marine sponges, Mol. Biol. Evol. 14:1326–1334.PubMedGoogle Scholar
  59. Kruse M., Leys S.P, Müller I.M., and Müller, W.E.G., 1998, Phylogenetic position of Hexactinellida within the phylum Porifera based on amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni, J. Mol. Evolution 46:721–728.Google Scholar
  60. Kuusksalu, A., Pihlak, A., Müller, W.E.G., and Kelve, M., 1995, The (2’-5’) oligoadenylate synthetase is present in the lowest multicellular organisms, the marine sponges: demonstration of the existence and identification of its reaction products. Eur. J. Biochem. 232:351–357.PubMedGoogle Scholar
  61. Lamarck, J.B., 1797, Mémoires de Physique et d’Histoire Naturelle, Agasse-Maradan, Paris.Google Scholar
  62. Laurent, L., 1842, Recherches sur L’Hydre et L’Éponge D’Eau Douce, Bertrand, Paris.Google Scholar
  63. Lendenfeld, R. v., 1889, A Monograph of the Horny Sponges, Royal Society London.Google Scholar
  64. Lieberkühn, N., 1856, Zur Entwicklungsgeschichte der Spongillen. Arch. Anat. Physiol. 1856:399–414.Google Scholar
  65. Lieberkühn, N., 1857, Beiträge zur Anatomie der Spongien, Arch. Anat. Physiol. 1857:376–403.Google Scholar
  66. Linné, C., 1788, Systerna Naturae, 13th edition. Beer, Lipsiae.Google Scholar
  67. Loomis, W.F., 1988, Four Billion Years, Sinauer, Sunderland.Google Scholar
  68. Mabberley, D.J., 1985, Jupiter Botanicus. Robert Brown of the British Museum, J. Cramer, Braunschweig.Google Scholar
  69. Maldonado, M., and Uriz, M.J., 1999, Sexual propagation by sponge fragments, Nature 398:476.Google Scholar
  70. Mehl, D., Müller, I., and Müller, W.E.G., 1998, Molecular biological and palaeontological evidence that Eumetazoa, including Porifera (sponges), are of monophyletic origin, in: Sponge Science-Multidisciplinary Perspectives, Y Watanabe, and N Fusetani, eds., Tokyo: Springer-Verlag, pp. 133–156.Google Scholar
  71. Metchnikoff, É., 1892, Leçons sur la Pathologie Comparée de l’Inflammation. Masson, Paris.Google Scholar
  72. Moore, H.F., 1908, The commercial sponges and the sponge fisheries, Bull Bureau Fisheries 28:399–511.Google Scholar
  73. Moscona, A.A., 1968, Cell aggregation: properties of specific cell-ligands and their role in the formation of multicellular systems, Devel. Biol. 18: 250–277.Google Scholar
  74. Müller, K., 1911, Das Regenerationsvermögen der Süßwasserschwämme, Archiv f Entwicklungsmechanik 32: 397–446.Google Scholar
  75. Müller, W.E.G., 1995, Molecular phylogeny of Metazoa (animals): monophyletic origin, Naturwiss. 82:321–329.PubMedGoogle Scholar
  76. Müller, W.E.G., 1997, Origin of metazoan adhesion molecules and adhesion receptors as deduced from their cDNA analyses from the marine sponge Geodia cydonium, Cell & Tissue Res. 289:383–395.Google Scholar
  77. Müller, W.E.G., 1998, Origin of Metazoa: Sponges as living fossils, Naturwiss. 85:11–25.PubMedGoogle Scholar
  78. Müller, W.E.G., 2001, How was metazoan threshold crossed: the hypothetical Urmetazoa, Comp. Biochem. Physiol. [A] 129:433–460.Google Scholar
  79. Müller, W.E.G., 2003a, The origin of metazoan complexity: Porifera as integrated animals. Integ Comp Biol; in press.Google Scholar
  80. Müller W.E.G (ed.) 2003b, Sponge (Porifera), Marine Molecular Biotechnology — Springer, Berlin.Google Scholar
  81. Müller, W., and Zahn, R.K., 1968, Tethya limski n.sp, eine Tethyide aus der Adria (Porifera: Homosclerophorida: Tethyidae). Senckenbergiana Biol. 49:469–478.Google Scholar
  82. Müller, W.E.G., and Zahn, R.K., 1973, Purification and characterization of a species-specific aggregation factor in sponges, Exp. Cell Res. 80:95–104.PubMedGoogle Scholar
  83. Müller, W.E.G., and Schäcke, H., 1996, Characterization of the receptor protein-tyrosine kinase gene from the marine sponge Geodia cydonium, Prog. Molec. Subcell. Biol. 17:183–208.Google Scholar
  84. Müller, W.E.G., and Müller, I.M., 2003, Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr. Comp. Biol. 43; in press.Google Scholar
  85. Müller, W.E.G., Rohde, H.J., Beyer, R., Maidhof, A., Lachmann, M., Taschner, H., and Zahn, R.K., 1975, Mode of action of 9-ß-D-arabinofuranosyladenine on the synthesis of DNA, RNA and protein in vivo and in vitro. Cancer Res. 35:2160–2168.PubMedGoogle Scholar
  86. Müller, W.E.G, Zahn, R.K., Bittlingmeier, K., and Falke, D., 1977, Inhibition of herpesvirus DNA-synthesis by 9-ß-D-arabinofuranosyladenosine in vitro and in vivo, Ann. New York Acad. Sci. 284:34–48.Google Scholar
  87. Müller, W.E.G., Zahn, R.K., Rijavec, M., Britvic, S., Kurelec, B., and Müller, I., 1979, Aggregation of sponge cells. The aggregation factor as a tool to establish species. Biochem. Systematics and Ecology 7:49–55.Google Scholar
  88. Müller, W.E.G., Conrad, J., Schröder, C., Zahn, R.K., Kurelec, B., Dreesbach, K., and Uhlenbruck, G., 1983, Characterization of the trimeric, self-recognizing Geodia cydonium lectin I. Europ. J. Biochem. 133: 263–267.PubMedGoogle Scholar
  89. Müller, W.E.G., Müller, I.M., and Gamulin, V., 1994, On the monophyletic evolution of the Metazoa, Brazil. J. Med. Biol. Res. 27:2083–2096.Google Scholar
  90. Müller, W.E.G., Blumbach, B., and Müller, IM., 1999a, Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum [Porifera] and those in vertebrates, Transplantation 68:1215–1227.Google Scholar
  91. Müller, W.E.G., Wiens, M., Batel, R., Steffen, R., Borojevic, R., and Custodio, M.R., 1999b, Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Marine Ecol. Progr. Ser. 178:205–219.Google Scholar
  92. Müller, W.E.G., Böhm, M., Batel, R., De Rosa, S., Tommonaro, G., Müller, I.M., and Schröder, H.C., 2000, Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara, J. Nat. Prod. 63:1077–1081.Google Scholar
  93. Müller, W.E.G., Schröder, H.C., Skorokhod, A., Bünz, C., Müller, I.M., and Grebenjuk, V.A., 2001, Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa), Gene 276: 161–173.PubMedGoogle Scholar
  94. Müller, W.E.G., Krasko A., Skorokhod A., Bünz C., Grebenjuk V.A., Steffen R., Batel R., Müller I.M., and Schröder, H.C., 2002, Histocompatibility reaction in the sponge Suberites domuncula on tissue and cellular level: central role of the allograft inflammatory factor 1, Immunogenetics 54:48–58.PubMedGoogle Scholar
  95. Müller, W.E.G., Grebenjuk, V.A., Le Pennec, G., Schröder, H.C., Brümmer, F., Hentschel, U., Müller, I.M., and Breter, H.J., 2003a, Sustainable production of bioactive compounds by sponges: cell culture and gene cluster approach. Marine Biotechnol; in press.Google Scholar
  96. Müller, W.E.G., Krasko, A., Le Pennec, G., Steffen, R., Ammar, M.S.A., Müller, I.M., and Schröder, H.C., 2003b, Molecular mechanism of spicule formation in the demosponge Suberites domuncula: Silicatein — collagen -myotrophin, Progr. Molec. Subcell. Biol. 33:195–221.Google Scholar
  97. Müller, W.E.G., Brümmer, F, Batel, R., Müller, I.M., and Schröder, H.C., 2003c, Molecular biodiversity. Case study: Porifera (sponges). Naturwissenschaften 90:103–120.Google Scholar
  98. Müller, W.E.G., Korzhev, M., Le Pennec, G., Müller, I.M. and Schröder, H.C., 2003d, Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula). Biomolecular Engineering; in press.Google Scholar
  99. Murait, J. v., 1692, Hippocrates Helveticus oder der getreu-sichere und wohl-bewährte Eydgnössische Stadt-Land-und Hauß Artzt, König, Basel.Google Scholar
  100. Nardo, G.D., 1834, Possibile applicazione alle arti degli aghi silicei costituenti il tessuto solido di alcuni Spongiali del Mare Adriatico, Giorn. Tecno. e Belle Art., p 83.Google Scholar
  101. Nielsen, C., 2001, Animal Evolution, Oxford University Press, Oxford.Google Scholar
  102. Okulitch, V.J., 1955, Archaeocyatha and Porifera, in: Treatise on Invertebrate Paleontology, R.C. Moore, ed., University of Kansas Press, New York. pp. E1-E20.Google Scholar
  103. Olivi, G., 1792, Zoologia Adriatica ossia catalogo regionato degli animali del golfo e delle lagune di Venezia. Bassano 1–32.Google Scholar
  104. Pallas, P.S., 1787, Charakteristik der Thierpflanzen, Raspe, Nürnberg.Google Scholar
  105. Pancer, Z., Kruse, M., Schäcke, H., Scheffer, U., Steffen, R., Kovács, P, and Müller, W.E.G., 1996, Polymorphism in the immunoglobulin-like domains of the receptor tyrosine kinase from the sponge Geodia cydonium. Cell Adhesion and Commun. 4:327–339.Google Scholar
  106. Pancer, Z., Kruse, M., Müller, L, and Müller W.E.G., 1997, On the origin of adhesion receptors of metazoa: cloning of the integrin α subunit cDNA from the sponge Geodia cydonium, Molec. Biol. Evol. 14:391–398.PubMedGoogle Scholar
  107. Paris, J., 1961, Contribution a la biologie des éponges siliceuses Tethya lyncurium Lmck. et Suberites domuncula O.: histologie des greffes et sérologie, Vie et Milieu 11 (Suppl.): 1–74.Google Scholar
  108. Pfeifer, K., Haasemann, M., Gamulin, V., Bretting, H., Fahrenholz, F., and Müller, W.E.G., 1993, S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. GlycoBiol. 3:179–184.Google Scholar
  109. Pfeifer, K., Schröder, H.C., Rinkevich, B., Uhlenbruck, G., Hanisch, F.-G., Kurelec, B., Scholz, P., and Müller, W.E.G., 1992, Immunological and biological identification of tumor necrosis factor in sponges: role of this factor in the formation of necrosis in xenografts. Cytokine 4:161–169.PubMedGoogle Scholar
  110. Phipson, T.L., 1864, The Utilization of Minute Life. Groombridge, London.Google Scholar
  111. Proksch, P., 1994, Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs, Toxicon 32:639–655.PubMedGoogle Scholar
  112. Proksch, P., Edrada, R. A., and Ebel, R., 2002, Drugs from the seas — current status and microbiological implications, Appl. Microbiol. Biotechnol. 59:125–134.PubMedGoogle Scholar
  113. Pronzato, R., 1999, Sponge-fishing, disease and farming in the Mediterranean Sea, Aquatic Conser. Mar. Freshw. Ecosys. 9:485–493.Google Scholar
  114. Rawlings, B.J., 1997, Biosynthesis of polyketides, Natural Product Rep. 1997:523–556.Google Scholar
  115. Reiswig, H., 1971, In situ pumping activities of tropical demospongiae. Mar. Biol. 9:38–50.Google Scholar
  116. Rodrigues-Nieto, S., Gozáles-Iriarte, M., Carmona, R., Munoz-Chápuli, R., Medina, M.A., and Quesada, A.R., 2001, Anti-angiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J. (published online Dec. 28, 2001).Google Scholar
  117. Rust, J.N., 1835, Theoretisch-praktisches Handbuch der Chirurgie, mit Einschluss der syphilitischen und Augen-Krankheiten. Vol. 15. Enslin, Berlin.Google Scholar
  118. Sarma, A.S., Daum, T., and Müller, W.E.G., 1993, Secondary metabolites from marine sponges. Akademie gemeinnütziger Wissenschaften zu Erfurt, Ullstein-Mosby Verlag, Berlin.Google Scholar
  119. Saville Kent, W., 1880–1881, A Manual of the Infusoria: Including a Description of all Known Flagellate, Ciliate, and Tentaculiferous Protozoa, British and Foreign, and an Account of the Organization and Affinities of the Sponges. David Bouge, London.Google Scholar
  120. Scheuer, P.J., 1990, Some marine ecological phenomena: chemical basis and biomedical potential, Science 248:173–177.PubMedGoogle Scholar
  121. Schillak, L., Ammar, M.S.A., and Müller, W.E.G., 2001, Transplantation of coral species to electrochemical produced hard substrata: Stylophora pistillata (Esper, 1797) and Acropora humilis (Dana, 1846). Mombasa, Kenya, 19–22 June 2000, Brussels, ACP-EU Fish. Res. Rep., (10): p. 68–84Google Scholar
  122. Schmidt, O., 1862, Die Spongien des Adriatischen Meeres, Engelmann, Leipzig.Google Scholar
  123. Schmidt, O., 1864, Spongien des Adriatischen Meeres — Supplement, Engelmann, Leipzig.Google Scholar
  124. Schröder, H.C., Efremova, S.M., Itskovich, V.B., Krasko, A., Müller, I.M., and Müller, W.E.G., 2003a, Molecular phylogeny of the freshwater sponges in Lake Baikal. J. Zool. Syst. Evol. Research 41:80–86.Google Scholar
  125. Schröder, H.C., Brümmer, F., Fattorusso, E., Aiello, A., Menna, M., De Rosa, S., Batel, R., and Müller, W.E.G., 2003b, Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors, in: Marine Molecular Biotechnology, W.E.G. Müller, ed., pp. 163–197.Google Scholar
  126. Schröder, H.C., Krasko, A., Le Pennec, G., Adell, T., Hassanein, H., Müller, I.M., Müller, W.E.G., 2003c, Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula, Progr. Molec. Subcell. Biol. 33:250–268.Google Scholar
  127. Schröder, H.C., Sudek, S., De Caro, S., De Rosa, S., Perovic, S., Steffen, R., Müller, IM., and Müller, W.E.G., 2002d, Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analyses, Marine Biotechnol. 4:546–558.Google Scholar
  128. Schuhmacher, H., and Schillak, L., 1994, Integrated electrochemical and biogenic deposition of hard material: a nature-like colonization substrate, Bull. Marine Sci. 55: 672–679.Google Scholar
  129. Schulze, F.E., 1887, Zur Stammesgeschichte der Hexactinelliden, Reimer, Berlin.Google Scholar
  130. Scott, L., 1910, Über Spongin, Biochem. Z. 27:266–269.Google Scholar
  131. Simpson, T.L., 1984, The Cell Biology of Sponges, Springer-Verlag, New YorkGoogle Scholar
  132. Sipkema, D., van Wielink, R., van Lammeren, A.A.M., Tramper, J., Osinga, R., and Wijffels, R.H., 2003, Primmorphs from seven marine sponges: formation and structure, J. Biotechnol. 100:127–139.PubMedGoogle Scholar
  133. Skorokhod, A., Gamulin, V., Gundacker, D., Kavsan, V., Müller, I.M., and Müller, W.E.G., 1999, Origin of insulin receptor tyrosine kinase: cloning of the cDNAs from marine sponges, Biol. Bull. 197:198–206.PubMedGoogle Scholar
  134. Sollas, W.J., 1888, Report on the Tetractinellida, in: Report on the Scientific Results of the Voyage of H.M.S. Challenger, vol. 25.Google Scholar
  135. Spencer, H., 1867, The Principles of Biology, Williams and Nogate, London.Google Scholar
  136. Steuer, A., 1933, Zur Fauna des Canal di Lerne bei Rovigno, Thalassia 1:1–43.Google Scholar
  137. Sumerel, J.L., and Morse, D.E., 2003, Biotechnological advances in biosilicification, Progr. Molec. Subcell. Biol. 33:225–247.Google Scholar
  138. Thakur, N.L., Hentschel, U., Krasko, A., Anil, A.C., and Müller, W.E.G., 2003, Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for chemical defense, Aquatic Microbiol. Ecol. 31:77–83.Google Scholar
  139. Thomson, C.W., 1868, On the “vitreous” sponges. Ann. Mag. Natur. Hist. 1:114–115.Google Scholar
  140. Van Soest, R.W.M., 1994, Demosponge distribution patterns. in: Sponges in Time and Space, R.W.M. van Soest, and A.A. Balkema, eds., Brookfield, Rotterdam, pp. 213–223.Google Scholar
  141. Van Soest, R.W.M., and Braekman, J.C, 1999, Chemosystematics of Porifera: a review. Memoire of the Queensland Museum 44:569–589.Google Scholar
  142. Wagner, C., Steffen, R., Koziol, C., Batel, R., Lacorn, M., Steinhart, H., Simat, T.m and Müller, W.E.G., 1998, Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria), Marine Biol. 131:411–421.Google Scholar
  143. Weinbaum, G., and Burger, M.M., 1973, A two-component system for surface guided reassociation of animal cells, Nature 244:510–512.PubMedGoogle Scholar
  144. Weismann, A., 1892, Das Keimplasma: Eine Theorie der Vererbung, Fischer, Jena.Google Scholar
  145. Wiens, M., Kuusksalu, A., Kelve, M., and Müller, W.E.G., 1999, Origin of the interferon-inducible (2’-5’)oligoadenylate synthetases: cloning of the (2’-5’)oligoadenylate synthetase from the marine sponge Geodia cydonium, FEBS Letters 462:12–18.Google Scholar
  146. Wiens, M., Krasko, A., Müller, CL, and Müller, W.E.G., 2000a, Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships, J. Mol. Evol. 50:520–531.Google Scholar
  147. Wiens, M., Krasko, A., Müller, I.M., and Müller, W.E.G., 2000b, Increased expression of the potential proapoptotic molecule DD2 and increased synthesis of leukotriene B4 during allograft rejection in a marine sponge, Cell Death Diff. 7:461–469.Google Scholar
  148. Wiens, M., Diehl-Seifert, B., and Müller, W.E.G., 2001, Sponge Bcl-2 homologous protein (BHP2-GC) confers distinct stress resistance to human HEK-293 cells, Cell Death Diff. 8:887–898.Google Scholar
  149. Wiens, M., Mangoni, A., D’Esposito, M., Fattorusso, E., Korchagina, N., Schröder, H.C., Grebenjuk, V.A, Krasko, A., Batel, R., Müller, I.M., and Müller, W.E.G., 2003a, The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges, J. Molec. Evol.; in press.Google Scholar
  150. Wiens M., Krasko A., Perovic S., and Müller W.E.G., 2003b, Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from metazoa, Biochim. Biophys. Acta 1593:179–189.Google Scholar
  151. Wilson, H.V., 1907, On some phenomena of coalescence and regeneration in sponges, J. Exptl. Zool. 5:245–258.Google Scholar
  152. Xiao, S., Zhang, Y, and Knoll, A.H., 1998, The three-dimensional preservation of algae and animal embryos in a neoproterozoic phosphorite, Nature 391:553–558.Google Scholar
  153. Xue, Y, Zhou, C., and Tang, T., 1999, “Animal embryos”, a misinterpretation of neoproterozoic microfossils, Acta Micropalaeontol Sinica 16:1–4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Werner E. G. Müller
    • 1
  • Renato Batel
  • Isabel M. Müller
  • Heinz C. Schröder
  1. 1.Institut für Physiologische Chemie, Abteilung Angewandte MolekularbiologieUniversitätMainzGermany

Personalised recommendations