Advertisement

Fluorescent Minerals of the United States

  • Manuel Robbins

Abstract

Possibly the most interesting and consistently fluorescing sphalerites are found at Franklin, New Jersey, and the Sterling mine at Ogdensburg, New Jersey. These sphalerites occur as resinous blebs or masses, colored gray, yellow-gray, tan, or pink-tan in ordinary light. In contrast to most of the other numerous and famous fluorescent minerals from these two mines, sphalerite fluoresces best under long wave ultraviolet. Material from Franklin usually fluoresces bright, clear orange with an enduring orange phosphorescence. The fluorescent response of the material from Ogdensburg is more varied. It may be an orange with a slight brown tone, pink-orange, brick red, or orange-yellow. Frequently, the phosphorescence is of the same color. This sphalerite is found with dark green fluorescing willemite, or pink or red fluorescing calcite, and occasionally with a violet fluorescing calcite, all under long wave. Such combinations are extremely attractive.

Keywords

Short Wave Uranium Mineral Fluorescent Response Fluorescent Color Ordinary Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avouris P. and Morgan T. N. 1981. A tunneling model for the decay of luminescence in inorganic phosphors: the Case of Zn2SiO4Mn. The Journal of Chemical Physics 74: 4347–4355.CrossRefGoogle Scholar
  2. Banks E. and Schwartz R. W. 1969. Phosphorescence mechanism in CdF2:Eu3. The Journal of Chemical Physics 51: 1956–1959.CrossRefGoogle Scholar
  3. Blasse G. 1980. The luminescence of closed-shell transition-metal complexes: new developments. Structure and Bonding 42: 1–41.CrossRefGoogle Scholar
  4. Blasse G. and Bril A. 1967. Investigations on Bi3+-activated phosphors. The Journal of Chemical Physics 48: 217–222.CrossRefGoogle Scholar
  5. Butler K. H. 1947. Fluorescence of silicate phosphors. Journal of the Optical Society of America 37: 566–571.CrossRefGoogle Scholar
  6. Curie D. 1960. Luminescence in Crystals. New York: John Wiley & Sons.Google Scholar
  7. Dexter D. L. 1952. A theory of sensitized luminescence in solids. The Journal of Chemical Physics 21: 836–850.CrossRefGoogle Scholar
  8. Duboc C. A. 1956. Nonlinearity in photoconducting phosphors. British Journal of Applied Physics, Supplement 4: 107–111.Google Scholar
  9. Engle D. G. and Hopkins B. S. 1925. Studies in luminescence. Journal of the Optical Society of America and the Review of Scientific Instruments 11: 599–606.CrossRefGoogle Scholar
  10. Etzel, H. W., Schulman, J. H., Ginther, R. J., and Claffy, E. W. 1952. Silver-activated alkali halides. A letter in Physical Review 1063-1064.Google Scholar
  11. Fonda G. R. 1939. Characteristics of silicate phosphors. Journal of Physical Chemistry 43: 561–577.CrossRefGoogle Scholar
  12. Fonda G. R. 1940. The preparation of fluorescent calcite. Journal of Physical Chemistry 44: 435–439.CrossRefGoogle Scholar
  13. Fonda G. R. 1940. The yellow and red zinc silicate phosphors. Journal of Physical Chemistry 44: 851–861.CrossRefGoogle Scholar
  14. Fonda G. R. 1949. The enigma of multiple band emission. Journal of the Electrochemical Society 96: 4242–44.Google Scholar
  15. Fonda G. R. 1950. Dependence of emission spectra of phosphors upon activator concentration and temperature. Journal of the Optical Society of America 40: 347–352.CrossRefGoogle Scholar
  16. Fonda G. R. 1956. Energy transfers in the calcium halophosphate phosphors. British Journal of Applied Physics, Supplement 4: 69–73.Google Scholar
  17. Fonda G. R. 1956. Two arsenate phosphors and the significance of their emission. Journal of the Electrochemical Society 103: 400–403.CrossRefGoogle Scholar
  18. Froelich H. C. 1948. Manganese activated calcium silicate phosphors. Journal of the Electrochemical Society 33: 101–113.CrossRefGoogle Scholar
  19. Gallivan J. B. and Deb S. K. 1973. Photoluminescence of mercurous halides. Journal of Luminescence 6: 77–82.CrossRefGoogle Scholar
  20. Garlick G. F. J. and Gibson A. F. 1948. The electron trap of luminescence in sulphide and silicate phosphors. Physical Society Proceedings 60: 574–590.CrossRefGoogle Scholar
  21. Garlick G. F. J. 1949. Luminescent Materials. Oxford: Clarendon Press.Google Scholar
  22. Garlick G. F. J. 1956. Absorption, emission and storage of energy in phosphors. British Journal of Applied Physics, Supplement 4: 85–90.Google Scholar
  23. Gobrecht H. and Weiss W. 1955. Lumineszenzuntersuchungen an Uranaktivierten Erdalkaliwolframaten und-molybdaten. Zeitschrift für Physik 140: 139–149.CrossRefGoogle Scholar
  24. Goldberg P. 1966. Luminescence of Inorganic Solids. New York: Academic Press.Google Scholar
  25. Goldschmidt V. M. 1954. Geochemistry. Oxford: Clarendon Press.Google Scholar
  26. Gorbenko-Germanov D. S. and Zenkova R. A. 1964. On the vibrational structure of the ground and excited levels of UO2 ++ in K4 [UO2(CO3)3]. Optics and Spectroscopy 20: 467–469.Google Scholar
  27. Groenink J. A. and Blasse G. 1979. Some new observations on the luminescence of PbMoO4 and PbWO4. Journal of Solid State Chemistry 32: 9–20.CrossRefGoogle Scholar
  28. Haberlandt H., Hernegger F., and Scheminzky F. 1949. Die Fluoreszenzspektren von Uranmineralien im filtrierten ultravioletten Licht. Spectrochimica Acta 4: 21–35.CrossRefGoogle Scholar
  29. Halsted R. E., Apple E. F., and Prener J. S. 1959. Two-stage optical excitation in sulfide phosphors. Physical Review Letters 2: 420–421.CrossRefGoogle Scholar
  30. Hensler J. R. 1959. Chemistry: synthesis of colour centres in silica and their thermoluminescence. Letter in Nature 183:672–673.CrossRefGoogle Scholar
  31. Hummel F. A. 1961. Cordierite-indialite: a new manganese-activated phosphor. Journal of the Electrochemical Society 108: 809–810.CrossRefGoogle Scholar
  32. Hunt B. E. and McKeag A. H. 1959. Copper and tin-activated halophosphate phosphors. Journal of the Electrochemical Society 106: 1032–1036.CrossRefGoogle Scholar
  33. Jaffe P. M. 1964. Iron activated ZnS phosphors. Electrochemical Society 111: 52–61.CrossRefGoogle Scholar
  34. Jenkins H. G., McKeag A. H., and Ranby P. W. 1949. Alkaline earth halophosphates and related phosphors. Electrochemical Society Journal 96: 1–12.CrossRefGoogle Scholar
  35. Klasens H. A. 1953. On the nature of fluorescent centers and traps in zinc sulfide. Electrochemical Society Journal 100: 72–80.CrossRefGoogle Scholar
  36. Klasens H. A., Hoekstra A. H., and Cox A. P. M. 1957. Ultraviolet fluorescence of some ternary silicates activated with lead. Electrochemical Society Journal 104: 93–100.CrossRefGoogle Scholar
  37. Klick C. C. 1957. Divalent manganese as a luminescent centre. British Journal of Applied Physics, Supplement 4: 74–78.Google Scholar
  38. Klick C. C. and Schulman J. H. 1952. On the luminescence of divalent manganese in solids. Journal of the Optical Society of America 42: 910–916.CrossRefGoogle Scholar
  39. Koda T. and Shionoya S. 1964. Nature of the self-activated blue luminescence center in cubic ZnS:Cl single crystals. Physical Review 136: 541–555.CrossRefGoogle Scholar
  40. Kotera Y., Yonemura M., and Sekine T. 1961. Activation by anions in the oxy-acid phosphors. Journal of the Electrochemical Society 108: 540–545.CrossRefGoogle Scholar
  41. Kreidl N. J. 1945. Recent studies on the fluorescence of glass. Journal of the Optical Society of America 35: 249–257.CrossRefGoogle Scholar
  42. Kroger F. A. and Bakker J. 1941. Luminescence of cerium compounds. Physica 8: 628–646.CrossRefGoogle Scholar
  43. Kroger F. A. 1947. Tetravalent manganese as an activator in luminescence. Nature 159: 706–707.CrossRefGoogle Scholar
  44. Kroger F. A. 1947. Luminescence of solid solutions of the system CaMoO4PbMoO4 and of some other systems. Phillips Research Report 2: 183–189.Google Scholar
  45. Kroger F. A. and Hellingman J. E. 1948. The blue luminescence of zinc sulfide. Journal of the Electrochemical Society 93: 156–171.CrossRefGoogle Scholar
  46. Kroger F. A. and Hoogenstraten W. 1948. Decay and quenching of fluorescence in willemite. Physica 14: 425–441.CrossRefGoogle Scholar
  47. Kroger F. A., Overbeek J. T. G., Goorissen J., and Boomgaard J. van den. 1949. Bismuth as activator in fluorescent solids. Electrochemical Society Journal 96: 132–141.CrossRefGoogle Scholar
  48. Kroger F. A. and Hellingman J. E. 1949. Chemical proof of the presence of chlorine in blue fluorescent zinc sulfide. Journal of the Electrochemical Society 95: 68–69.CrossRefGoogle Scholar
  49. Kroger F. A. 1949. A proof of the associated-pair theory for sensitized luminophore. Physica 15: 801–806.CrossRefGoogle Scholar
  50. Kroger F. A. 1949. Sodium and lithium as activators of fluorescence in zinc sulfide. Journal of the Optical Society of America 39: 670–672.CrossRefGoogle Scholar
  51. Kroger F. A. and Hoogenstraaten W. 1949. Temperature quenching and decay of fluorescence in zinc-beryllium silicates activated with manganese. Physica 15: 557–568.CrossRefGoogle Scholar
  52. Kroger F. A. and Hoogenstraaten W. 1950. The location of dissipative transitions in luminescent systems. Physica 16: 30–32.CrossRefGoogle Scholar
  53. Kroger F. A. 1949. Some Aspects of the Luminescence of Solids. New York: Elsevier.Google Scholar
  54. Kroger F. A. and Vink H. J. 1953. The origin of the fluorescence in self-activated ZnS, CdS, and ZnO. The Journal of Chemical Physics 22: 250–252.Google Scholar
  55. Leverenz, H. W. 1944. Phosphors versus the periodic system of the elements. Proceedings of the I.R.E. 256-263.Google Scholar
  56. Leverenz H. W. 1968. An Introduction to the Luminescence of Solids. New York: Dover Publications Inc.Google Scholar
  57. Lewis G. N., Lipkin D., and Magel T. T. 1941. Reversible photochemical processes in rigid media: a study of the phosphorescent state. Journal of the American Chemical Society 63: 3005–3018.CrossRefGoogle Scholar
  58. Linwood S. H. and Weyl W. A. 1942. The fluorescence of manganese in glasses and crystals. Journal of the Optical Society of America 32: 443–453.CrossRefGoogle Scholar
  59. Makai E. 1949. High valent manganese as activator of luminescence. Journal of the Electrochemical Society 95: 107–111.CrossRefGoogle Scholar
  60. Medlin W. L. 1963. Emission centers in thermoluminescent calcite, dolomite, magnesite, aragonite, and anhydrite. Journal of the Optical Society of America 53: 1276–1285.CrossRefGoogle Scholar
  61. Meixner H. von. 1940. Fluoreszenzanalytische, optische und chemische Beobachtungen an Uranmineralen. Chem. Erde 12: 433–450.Google Scholar
  62. Merrill J. B. and Schulman J. H. 1948. The CaSiO3:(Pb + Mn) phospor. Journal of the Optical Society of America 38: 471–479.CrossRefGoogle Scholar
  63. Millson H. E. and Millson E. M., Jr. 1950. Observations on exceptional duration of mineral phosphorescence. Journal of the Optical Society of America 40(7):430–435.CrossRefGoogle Scholar
  64. Murata K. J. and Smith R. L. 1946. Manganese and lead as coactivators of red fluorescence in halite. A merican Mineralogist 31: 527–538.Google Scholar
  65. Nichols E. L. and Howes H. L. 1926. Note of the rare earths as activators of luminescence. Journal of the Optical Society of America and Review of Scientific Instruments 13: 573–587.CrossRefGoogle Scholar
  66. Orgel L. E. 1958. Phosphorescence of solids containing the manganous or Ferric ions. Journal of Chemical Physics 23:195–8.Google Scholar
  67. Prener J. S. and Williams F. E. 1956. Activator systems in zinc sulfide phosphors. Electrochemical Society Journal 103: 342–346.CrossRefGoogle Scholar
  68. Pringsheim P. and Vogel M. 1943. Luminescence of Solids and Liquids. New York: Interscience Publishers.Google Scholar
  69. Przibram K. 1956. Irradiation Colors and Luminescence. London: Pergamon Press.Google Scholar
  70. Przibram K. 1949. The light emitted by europium compounds. Letter in Nature 163:989.CrossRefGoogle Scholar
  71. Randall J. T. and Wilkins M. H. F. 1941. Phosphorescence and electron traps: I. The study of trap distributions. Proceedings of the Royal Society of London 184: 366–407.Google Scholar
  72. Rankama K. and Sahama T. G. 1950. Geochemistry. Chicago: University of Chicago Press.Google Scholar
  73. Schein M. and Katz M. L. 1936. Ultra-violet luminescence of sodium chloride. Letter in Nature 138:883.CrossRefGoogle Scholar
  74. Schulman J. H. 1946. Luminescence of (Zn, Be)2 SiO4:Mn and other manganese-activated phosphors. Journal of Applied Physics 17: 902–908.CrossRefGoogle Scholar
  75. Schulman J. H., Evans L. W., Ginther R. J., and Murata K. J. 1947. The sensitized luminescence of manganese-activated calcite. Journal of Applied Physics 18: 732–739.CrossRefGoogle Scholar
  76. Schulman J. H., Ginther R. J., and Klick C. C. 1950. A study of the mechanism of sensitized luminescence of solids. Journal of the Electrochemical Society 97: 123–132.CrossRefGoogle Scholar
  77. Schulman J. H. 1955. Physical measurements and the nature of the luminescent centers. British Journal of Applied Physics, Supplement 4: 64–69.CrossRefGoogle Scholar
  78. Seitz F. 1938. Interpretation of the properties of alkali halide-thallium phosphors. Journal of Chemical Physics 6: 150–162.CrossRefGoogle Scholar
  79. Shionoya S. 1955. Sensitized luminescence of zinc sulfide phosphors activated with copper and manganese. Letter in Journal of Chemical Physics 23:1173.Google Scholar
  80. Shionoya S. 1955. Thermoluminescence of zinc sulfide phosphors doubly activated with copper and manganese. Journal of Chemical Physics 23: 1976–1977.CrossRefGoogle Scholar
  81. Studer F. J. and Fonda G. R. 1949. Optical properties of calcium silicate phosphors. Journal of the Optical Society of America 39: 655–660.CrossRefGoogle Scholar
  82. Studer F. J. and Rosenbaum A. 1949. The phosphorescence decay of halophosphates and other doubly activated phosphors. Journal of the Optical Society of America 39: 685–689.CrossRefGoogle Scholar
  83. Suzuki A. and Shionoya S. 1970. Evidence for the pair emission mechanism of the green-Cu luminescence in ZnS. Letter in Journal of Luminescence 3:74–76.CrossRefGoogle Scholar
  84. Tanaka T. 1924. On the cathodo luminescence of solid solutions of forty-two metals. Optical Society of America Journal 8: 287–318.CrossRefGoogle Scholar
  85. Williams F. E. 1949. Review of the interpretations of luminescence phenomena. Journal of the Optical Society of America 39: 648–654.CrossRefGoogle Scholar
  86. Williams F. E. 1955. Theory of activator systems in luminescent solids. British Journal of Applied Physics 6: 97–102.CrossRefGoogle Scholar
  87. Williams F. E. and Eyring H. 1955. The mechanism of the luminescence of solids. The Journal of Chemical Physics 15: 289–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Manuel Robbins

There are no affiliations available

Personalised recommendations