Advertisement

Selenium Content and Oxidation States in Fly Ashes from Western U.S. Coals

  • Shas V. Mattigod
  • Thomas R. Quinn
Chapter

Abstract

A selective extraction scheme was developed for the determination of the oxidation states of Se species in coal ashes. As compared to HF dissolution, extractions with 70% HClO4 mobilized 90 to 100% of all compound and redox forms of Se from four of the five fly ashes. Extractions with 16M HNO3 did not mobilize all forms of Se as effectively as perchloric acid. Both oxidized forms of Se (IV and VI) were completely mobilized by 12M HCl extraction. Deionized-distilled water was not an effective extractant for mobilizing all compound forms of Se(IV) from fly ashes. Extraction data (70% HClO4, 16M HNO3, 12M HCI, DI water) indicated that the solid:solution ratio is a critical factor in Se extractability from fly ashes. Maximum extractions in all cases were obtained only with very high (1:500) solid:solution ratios. Extraction times from 1.5 to 25 hours did not significantly change Se extractability with any of the extractants except with 12M HCI, which required a minimum reaction time of 48 hours to attain maximum Se extractability. Reaction times shorter than the critical time and low solid:solution ratios significantly affected Se extractability from these fly ashes. Measurements of Se content and redox state in particle size and density fractions five western United States coal ashes indicated that typically, the Se content increased with decreasing particle size.. However, no consistent trend in Se concentration between the light and heavy density fractions of <2.7-µm size fraction was observed. Selenium redox state data indicated that only Se(0) and Se(IV) forms were present in these five coal ashes. The presence of Se(IV) is significant since it is much more easily mobilized than the elemental form. Examination of fly ashes by the proposed scheme to determine Se redox species could permit better estimation of the Se content of plants grown on fly ash amended soils.

Keywords

Density Fraction Solution Ratio Redox Form Minimum Reaction Time Wrist Action Shaker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Mining Association. Mining Facts/About Coal. http://www.nma.org/coalfacts.html, 2001.
  2. 2.
    EPA, httn://www.epa.gov/epaoswer/non-w/recycle/jtr/comm/cfa.htm, 2001
  3. 3.
    Adriano, D.C., A.L. Page, A.A. Elseewi, A.C. Chang, and I. Straughan. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J. Environ. Qual. 9, 333, 1980.CrossRefGoogle Scholar
  4. 4.
    Page, A. L., Elseewi, A. A., and I. Straughan, I., Physical and chemical properties of fly ash from coal-fired power plants with reference to environment impacts. Residue Rev. 71, 88, 1979.Google Scholar
  5. 5.
    Mattigod, S. V., Dhanpat Rai, Eary, E., and Ainsworth, C. C., Geochemical factors controlling the mobilization of selected inorganic constituents from fossil fuel combustion residues. Part 1: Review of the major elements. J. Env. Qual. 19, 187, 1990.CrossRefGoogle Scholar
  6. 6.
    Martens, D.C., Availability of plant nutrients in fly ash. Compost Sci. 12, 15, 1971.Google Scholar
  7. 7.
    Adams, L.M., Capp, J. P., and Gillmore, D. W., Coal mine spoil and refuse bank reclamation with power plant fly ash. Compost Sci. 13, 20, 1972.Google Scholar
  8. 8.
    Doran, J.W., and Martens, D. C., Molybdenum availability as influenced by application of fly ash to soil. J. Environ. Qual., 1:186, 1972.Google Scholar
  9. 9.
    Plank, C.O., and Martens, D. C., Boron availability as influenced by application of fly ash to soil. Soil Sci. Soc. Am. Proc. 38, 974, 1974.CrossRefGoogle Scholar
  10. 10.
    Elseewi, A.A., Bingham, F. T., and A.L. Page, A. L., Growth and mineral composition of lettuce and Swiss chard grown on fly ash amended soils. In D.C. Adriano and I.L. Brisbin, Jr. (Eds.): Environmental chemistry and cycling processes. Proc. Symp. Augusta, GA April 28-May 1 (1976). DOE Symposium Series 45, CONF-760429, pp. 568, 1976.Google Scholar
  11. 11.
    Elseewi, A.A., Bingham, F. T., and Page, A. L., Availability of sulfur in fly ash to plants. J. Environ. Qual. 7, 69, 1978.CrossRefGoogle Scholar
  12. 12.
    Chang, A.C., Lund, L. J., A.L. Page, A. L., and Wameke, J. E., Physical properties of fly ash-amended soils. J. Environ. Qual. 6, 167, 1977.Google Scholar
  13. 13.
    Phung, H.T., Lund, L. J. and Page, A. L., Potential use of fly ash as a liming material. p. 504–515. In D.C. Adriano and I.1. Brisben (ed.) in Environmental chemistry and cycling processes. CONE-760429. U.S. Dep. Commerce, Springfield, Va., 1978.Google Scholar
  14. 14.
    Straughan, I.R., Elseewi, A. A., and Page, A. L., Mobilization of selected trace elements in residues from coal combustion with special reference to fly ash. pp. 389–402. In: 0.0. Hemphill (ed.), Trace Substances in Environmental Health XII Symposium. 1978.Google Scholar
  15. 15.
    Lakin, H.W., Selenium in our Environment. In Trace elements in the environment. Ed. E. L. Kothny. Adv. Chern. Ser. 123. Am. Chem. Soc. Washington D. C. pp. 96, 1973.Google Scholar
  16. 16.
    Mbagwu, J., Selenium concentrations in crops grown on low-selenium soils as affected by fly-ash amendment. Plant and Soil. 74, 75, 1983.CrossRefGoogle Scholar
  17. 17.
    Furr, A.K., Kelly, W. C., Bauche, C. A., Gutenmann, W. H., and Lisk, D. J., Multielement uptake by vegetables and millet grown in pots on fly ash amended soil. J. Agric. Food Chem. 24, 885, 1976.Google Scholar
  18. 18.
    National Academy of Sciences. Selenium in Nutrition. Revised Edition. National Academy of Sciences Press. Washington, D.C. 174, 1983.Google Scholar
  19. 19.
    Hurd-Karrer, A.M., Factors affecting the absorption of selenium from soils by plants. Jour. Agr. Res. 50, 413, 1935.Google Scholar
  20. 20.
    Williams, K. T., and Byers, H. G., Selenium Compounds in Soils. Ind. Eng. Chem. 28, 914, 1936Google Scholar
  21. 21.
    Gissel-Nielson, G. and Bisbjerg. B., The uptake of applied selenium by agricultural plants 2. The utilization of various selenium compounds. Plant Soil 32, 382, 1970.Google Scholar
  22. 22.
    Arthur, M. A., Rubin, G., Schneider, R. E.,and Weinstein, L. H., Uptake and accumulation of selenium by terrestrial plants growing on a coal fly ash landfill: Part 1. Corn, Environ. Toxiol. Chem., 11, 541, 1992.CrossRefGoogle Scholar
  23. 23.
    Arthur, M. A., Rubin, G., Schneider, R. E.,and Weinstein, L. H., Uptake and accumulation of selenium by terrestrial plants growing on a coal fly ash landfill: Part 2. Forage and Root Crops, Environ. Toxiol. Chem., 11, 1289, 1992.Google Scholar
  24. 24.
    Arthur, M. A., Rubin, G., Schneider, R. E., and Weinstein, L. H., Uptake and accumulation of selenium by terrestrial plants growing on a coal fly ash landfill: Part 3. Forbs and grasses, Environ. Toxiol. Chem., 11, 1301, 1992.CrossRefGoogle Scholar
  25. 25.
    Woodbury, P. B., McCune, D. C., and Qweinstein, L. H., A Review of Selenium Uptake, Transformation, and Accumulation by Plants with Particular Reference to Coal Fly Ash Land Fills. in Biogeochemistry of Trace Elements in Coal and Coal Combustion Byproducts, Sajwan, K.E, Alva, A. K., and Keefer, R.F. Kluwer Academic/Plenum Publishers, New York, U. S. A., 309, 1999.Google Scholar
  26. 26.
    Andren, H.W., D.H. Klein, and V. Talmi. 1975. Selenium in coal-fired steam plant emissions. Environ. Sci. Technol. 9, 856, 1975.Google Scholar
  27. 27.
    Cutter, G. A. Anal. Cheni. 57, 2951, 1985.Google Scholar
  28. 28.
    Chao, T. T., and Sanzolone, R. F., Fractionation of soil selenium by sequential partial dissolution, Soil Sci. Soc. Am., 53, 385, 1989.CrossRefGoogle Scholar
  29. 29.
    Kang, Y., Yamada, H., Kyuma, K, and Hattori, T. Soil Sci. Plant Nair. 39, 331, 1993.CrossRefGoogle Scholar
  30. 30.
    Niss, N. D., Schabron, J. F., and Brown, T. H., determination of selenium species in coal fly ash extracts., Env. Sci. Technol. 27, 827, 1993.Google Scholar
  31. 31.
    Martens, D. A., and Suarez, D. L., Selenium speciation of soil/sediment determined with sequential extractios and hydride generation atomic absorption spectrophotometry, Environ. Sci. Technol, 31, 133, 1996.CrossRefGoogle Scholar
  32. 32.
    Jackson, B. P., and Miller, W. P., Soluble arsenic and selenium species in flyash/organic waste-amended soils using ion chromatography-inductively coupled plasma mass spectrometry, Environ. Sci. Technol, 33, 270, 1999.CrossRefGoogle Scholar
  33. 33.
    van der Hoek, E. E., van Elteren, J. T., and Comans, R. N. J., Determination of As, Sb, and Se speciation in fly ash leachates, Intern. J. Environ. Anal. Chem, 63, 67, 1996.CrossRefGoogle Scholar
  34. 34.
    Jackson, B. P., and Miller, W. P., Arsenic and selenium speciation in coal flyash extracts by ion chromatography-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom, 13, 1107, 1998.CrossRefGoogle Scholar
  35. 35.
    Soltanpour, P. N., A. Khan, and W. L. Lindsay., Factors affecting DTPA extractable zinc, iron, manganese and copper from soils. Comm. Soil Sci. Plant Anal. 7, 791, 1976.CrossRefGoogle Scholar
  36. 36.
    Eary, L. E., Dhanpat Rai, S. V. Mattigod, S. V., and Ainsworth, C. C., Geochemical factors controlling the mobilization of selected inorganic constituents from fossil fuel combustion residues. Part 1: Review of the major elements. J. Env. Qual. 19, 202, 1990.CrossRefGoogle Scholar
  37. 37.
    Mattigod, S. V. and Ervin, J., Scheme for density separation and identification of compound forms in size-fractionate fly ash. Fuel 16, 927, 1983.CrossRefGoogle Scholar
  38. 38.
    Bernas, B., A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chem. 40, 1682, 1968.CrossRefGoogle Scholar
  39. 39.
    Cary, E. E., Wieczorek, G. A., and Allaway, W. W., Reactions of selenite-selenium added to soils that produce low-selenium forages. Soil Sci. Soc. Am. Proc. 31, 21, 1967.CrossRefGoogle Scholar
  40. 40.
    Pierce, F. J., Dowdy, R. H., and O. F. Grigal, O. F., Concentrations of six trace elements in some major Minnesota soil series. J. Environ. Qual. 11, 416, 1982Google Scholar
  41. 41.
    Nadkarni, R., Applications of hydride generation-atomic absorption spectrometry to coal analysis. Anal. Chem. Acta. 135, 363, 1982.Google Scholar
  42. 42.
    Davison, R.L., Natusch, D. F. S., J.R. Wallace, J. R., and Evans Jr., C. A., Trace elements in fly ash: Dependence of concentration on particle size. Environ. Sci. Technol. 8, 1107, 1974.CrossRefGoogle Scholar
  43. 43.
    Natusch, D.F.S., Wallace, J. R., and Evans, Jr., C. A., Toxic trace elements: Preferential concentration in respirable particles. Science 183, 202, 1974.CrossRefGoogle Scholar
  44. 44.
    Lee, R. E., Jr., Crist, H. L., Riley, A. E., and MacLeod., K. E., Concentration and size of trace metal emissions from a power plant, a steel plant, and a cotton gin. Environ. Sci. Technol 9, 646, 1975.Google Scholar
  45. 45.
    Linton, R.W., Loh, A. Natusch, D.F.S., Evans, C. A. Jr., and P. Williams, P., Surface predominance of trace elements in air-borne particles: Science 191, 853, 1975.Google Scholar
  46. 46.
    Klein, D.H., A.W. Andren, J.A. Carter, J.F. Emery, C. Feldman, W. Fulkerson, W.S. Lyon, J.C. Ogle, Y. Talmi, R.I. Van Hook, and N. Bolton., Pathways of thirty-seven trace elements through coal-fired power plants. Environ. Sci. Technol. 9, 973, 1975.CrossRefGoogle Scholar
  47. 47.
    Campbell, J. A., Laul, J. C., Nielson, K. K., and Smith, R. D., Separation and chemical characterization of finely sized fly ash particles. Anal. Chem. 50, 1032, 1978.CrossRefGoogle Scholar
  48. 48.
    Smith, R., Campbell, J., K. Nielson, K., Concentration dependence upon particle size of volatilized elements in fly ash. Environ. Sci. Technol. 13, 553, 1979.Google Scholar
  49. 49.
    Coles, D., Ragaini, R., Ondov, J., Fisher, G., Silberman, D., and Prentice, B., Chemical studies of stack fly ash from a coal-fired power plant.Environ. Sci. Technol. 13, 455, 1979.Google Scholar
  50. 50.
    Mattigod, S. V. Dhanpat Rai, and Amonette, J. E. Concentrations and distributions of major and and selected trace elements in size-density fractionated fly ashes, inBiogeochemistry of Trace Elements in Coal and Coal Combustion Byproducts Sajwan, K.E, Alva, A. K., and Keefer, R.F. Kluwer Academic/Plenum Publishers, New York, U. S. A., 115, 1999.Google Scholar
  51. 51.
    Finkelman, R., The modes of occurence of trace elements in coals. Ph.D. dissertation. University of Maryland. 1980.Google Scholar
  52. 52.
    Leutwein, F., Solubilities of Compounds which control Selenium concentrations in Natural Waters; Valence States in Natural Environments; Adsorption. In. Handbook of Geochemistry Ed. K. H. Wedephol. Vol 11/3,34- H-3, Springer-Verlag, New York. 1978.Google Scholar
  53. 53.
    Dreesen, D.R., Gladney, E. S., Owens, J. W., Perkins, B.L., Wienke, C. L., and Hansen L. E., Comparison of levels of trace elements extracted from fly ash and levels found in effluent waters from a coal-fired power plant. Environ. Sci. Technol. 11, 1017, 1977.CrossRefGoogle Scholar
  54. 54.
    Fun, A.K., Parkinsen, T. F., Hinrichs, R. A. van Camper, D. R., Bauche, C. A., Gutenmann, W. H., St. John, Jr., L. E., Pakkala, I. S., and Lisk, D. J., National survey of elements and radioactivity in fly ashes. Absorption of elements by cabbage grown in fly ash-soil mixtures. Environ. Sci. Technol. 11, 1104, 1977.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Shas V. Mattigod
    • 1
  • Thomas R. Quinn
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations