Advertisement

Mine Soil Remediation Using Coal Ash and Compost Mixtures

  • John J. Sloan
  • Don Cawthon
Chapter

Abstract

Combinations of coal combustion ashes and composted animal manures may accelerate revegetation of drastically disturbed landscapes, such as surface mines. The objective of this study was to evaluate the effect of coal ash plus compost mixtures on soil chemistry and plant growth in acid mine soils. Scrubber sludge (flue gas desulfurization residue + fly ash) or bottom ash was mixed with three types of compost (dairy manure, poultry litter, and biosolids) at rates of 0, 33, 67 and 100% (v/v). The coal ash + compost mixtures were blended with acid mine soil (pH4.0) at rates of 15, 30, and 45% (v/v) (equivalent to 150, 300, and 450 dm3 m−3) and placed in pots in a greenhouse. Ryegrass seeds were planted in each pot and harvested after two months growth with no fertilization. Applying scrubber sludge residue alone at rates of 15, 30 and 45% (v/v) decreased ryegrass yield, but increased soil pH from 4.0 to 7.2, 7.1, and 7.6, respectively. The same rates of bottom ash increased soil pH to 5.2, 5.6, and 6.5, respectively, but had little effect on ryegrass yield. Composted dairy manure and biosolids increased ryegrass growth at rates up to 45% (v/v) when applied alone. Composted poultry litter increased ryegrass growth at a 15% rate, but decreased it at rates of 30 and 45% due to excess dissolved salts. Copper and Zn uptake were correlated to organic matter application rate. Leachate concentrations of P were increased by the addition of organic amendments and sulfur concentrations were increased by the addition of scrubber sludge. Bottom ash had no significant effect on heavy metal uptake or leachate composition. The results demonstrate that combinations of animal manure compost with coal combustion ashes can effectively stimulate biomass production in acidic surface mine soils.

Keywords

Mine Soil Poultry Litter Dairy Manure Compost Manure Heavy Metal Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schutter, M.E. and J.J. Fuhrmann 1999. Microbial responses to coal fly ash under field conditions. J. Environ. Qual. 28: 648–652.Google Scholar
  2. 2.
    Kalra, N., M.C. Jain, H.C. Joshi, R. Choudhary, R.C. Harit, B.K. Vatsa, S.K. Sharma, and V. Kumar. 1998. Fly ash as a soil conditioner and fertilizer. Bioresource Technology. 64: 163–167.CrossRefGoogle Scholar
  3. 3.
    Korcak, R.F. 1995. Utilization of coal combustion by-products in agriculture and horticulture. Agricultural Utilization of Urban and Industrial By-products. ASA Special Publication no. 58: 107–130.Google Scholar
  4. 4.
    Carlson, C.L. and D.C. Adriano. 1993. Environmental impacts of coal combustion residues. J. Environ. Qual. 22: 227–247.CrossRefGoogle Scholar
  5. 5.
    Henry, C., and S. Brown. 1997. Restoring a superfund site with biosolids and fly ash. Biocycle (Nov) 79–83.Google Scholar
  6. 6.
    U.S. Environmental Protection Agency. 1988. Wastes from the combustion of coal by electric utility power plants. EPA/530-SW-88–002. U.S. Govt. Print. Office, Washington D.C.Google Scholar
  7. 7.
    Ransome, L.S., and R.H. Dowdy. 1987. Soybean growth and boron distribution in a sandy soil amended with scrubber sludge. J. Environ. Qual. 16: 171–175.CrossRefGoogle Scholar
  8. 8.
    Sloan, J.J., R.H. Dowdy, M.S. Dolan, and G.W. Rehm. 1999. Plant and soil responses to field-applied flue gas desulfurization residue. Fuel. 78: 169–174.CrossRefGoogle Scholar
  9. 9.
    Butler, S.H. and B.C. Bearce. 1995. Greenhouse rose production in media containing coal bottom ash. J. Environ. Hortic. 13 (4): 160–164.Google Scholar
  10. 10.
    Cary, E.E., M. Gilbert, C.A. Bache, and W.H. Gutenmann. 1983. Elemental composition of potted vegetables and millet grown on hard coal bottom ash-amended soil. Bull. Environ. Contam.Toxic. 31: 418–423.CrossRefGoogle Scholar
  11. 11.
    Chen,Y, A. Gottesman, T. Aviad, and Y. Inbar. 1991. The use of bottom-ash coal-cinder amended with compost as a container medium in horticulture. Second symposium on horticultural substrates and their analysis, Guernsey, UK, 10–14 Sep. 1990; Acta-Horticulturae. 294: 173–181Google Scholar
  12. 12.
    Woodard, M.A., B.C. Bearce, S. Cluskey. and E.C. Townsend. 1993. Coal bottom ash and pine wood peelings as root substrates in a circulating nutriculture system. HortScience. 28 (6): 636–638.Google Scholar
  13. 13.
    Klubek, B., C.L. Carlson, J. Oliver, and D.C. Adriano. 1992. Characterization of microbial abundance and activity from three coal ash basins. Soil Biol. Biochem. 24 (11): 1119–1125.CrossRefGoogle Scholar
  14. 14.
    American Coal Ash Association. 2002. Coal Combustion Products (CCP) Production and Use Survey — 2000. American Coal Ash Assoc. 6940 South Kings Hwy., Suite 207, Alexandria, VA 22310–3344Google Scholar
  15. 15.
    Foy, C.D. Acid soil tolerances of two wheat cultivars related to soil pH, KCl-Extractable aluminum and degree of aluminum saturation. J. Plant Nutr. 10: 609–623, 1987CrossRefGoogle Scholar
  16. 16.
    Pavan, M.A., F.T. Bingham, and P.F. Pratt. 1984. Redistribution of exchangeable calcium, magnesium, and aluminum following lime or gypsum applications to a Brazilian oxisol. Soil Sci. Soc. Am. J. 48: 33–38.CrossRefGoogle Scholar
  17. 17.
    Sloan, J.J. and N.T. Basta. 1995. Remediation of acid soils by using alkaline biosolids. J. Environ. Qual. 24: 1097–1103.CrossRefGoogle Scholar
  18. 18.
    Stehouwer, R.C. P. Sutton, R.K. Fowler, and W.A. Dick. 1995a. Minespoil amendment with dry flue gas desulfurization by-products: Element solubility and mobility. J. Environ. Qual. 24: 861–869.CrossRefGoogle Scholar
  19. 19.
    Stehouwer, R.C. P. Sutton, and W.A. Dick. 1995b. Minespoil amendment with dry flue gas desulfurization by-products: Plant Growth. J. Environ. Qual. 24: 861–869.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • John J. Sloan
    • 1
  • Don Cawthon
    • 2
  1. 1.Texas Agricultural Experiment StationDallasUSA
  2. 2.Texas Agricultural Experiment Station and Tarlton State UniversityStephenvilleUSA

Personalised recommendations