Advertisement

CVD of Conductors

  • Srinivasan Sivaram

Abstract

Conductor systems in very large scale integrated VLSI circuits act as the conduits for signals to be transported to and away from electrical devices. As device dimensions and film thicknesses scale down, thin film properties of conductors (see Chapter 2) begin to dominate and special processing conditions become necessary. For instance, it becomes essential to lower the processing temperature so as to minimize undesirable thermally activated processes, such as hillock formation in aluminum-based metallization, or interdiffusion and reaction between adjacent films. Similarly, incorporation of impurities in the film matrix can result in significant degradation in properties, such as resistivity, film roughness, and stress, as the films get thinner. In this chapter, we will first review the requirements for conductor systems in VLSI circuits, without regard to the mode of deposition of the conductors. We will then consider the CVD of individual films, keeping in mind the device requirements. Finally we will examine more recent trends in CVD of conductors, with respect to new materials and with respect to newer CVD processes for established films.

Keywords

Chemical Vapor Deposition Material Research Society Hydrogen Reduction Tungsten Deposition Step Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Weste, and K. Eshraghian, Principles of CMOS VLSI Design, p. 141, Addison-Wesley, Reading, Mass., 1985.Google Scholar
  2. 2.
    R. S. Muller, and T.I. Kamins, Device Electronics for Integrated Circuits, p. 443, John Wiley, New York, 1986.Google Scholar
  3. 3.
    C. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, Mass., 1980.Google Scholar
  4. 4.
    I. Ames, F. d’Heurle, and R. Hortsmann, IBM J. R and D 14, 461 (1970).CrossRefGoogle Scholar
  5. 5.
    Tungsten and Other Refractory Metals for VLSI Applications, Vols. I to V, Materials Research Society, Pittsburgh, 1986, 1987, 1988, 1989 and 1990.Google Scholar
  6. 6.
    Handbook of Physics and Chemistry, 65th ed. (R. C. Weast, ed.) CRC Press, 1986.Google Scholar
  7. 7.
    R. W. Haskell, and J. G. Byrne, in Treatise on Materials Science and Technology, Vol. I, (Herman, ed.), p. 293, Academic Press, New York, 1972Google Scholar
  8. C. M. MelliarSmith, A. C. Adams, R. H. Kaiser, and R. A. Kushner, J. Electrochem. Soc., 121, 298 (1974).CrossRefGoogle Scholar
  9. 8.
    M. L. Green, in Proc. 10th Int. Conf. on Chemical Vapor Deposition, Vol. 87–8 (Cullen, ed.), p. 603, The Electrochemical Society, Pennington, N.J., 1987.Google Scholar
  10. 9.
    R.A. Levy, and M.L. Green, J. Electrochem. Soc., 134 (2), 37C (1987).CrossRefGoogle Scholar
  11. 10.
    T. Ohba, T. Suzuki, and T. Hara, in Tungsten and Other Refractory Metals for VLSI Applications III ( Blewer and McConica, eds.), p. 17, Materials Research Society, Pittsburgh, 1989.Google Scholar
  12. 11.
    JANAF Thermochemical Tables,2nd Ed. (D. R. Stull and H. Prophet, eds.) NSRD5–NBS37, 1971.Google Scholar
  13. 12.
    E. K. Broadbent, and C. L. Ramiller, J. Electrochem. Soc. 131 (6), 1427 (1984).CrossRefGoogle Scholar
  14. 13.
    H. Cheung, in Proc. 3rd Int. Conf on CVD (F. Glaski, ed.), p. 136, The American Nuclear Society, Hinsdale, 111., 1972.Google Scholar
  15. 14.
    E. J. McInerney, B. L. Chin, and E. K. Broadbent, paper presented at the Workshop on Tungsten and Other Advanced Metals for ULSI Applications VII, Dallas, Texas, Oct. 22–24, 1990.Google Scholar
  16. 15.
    C. M. McConica, and K. Krishnamani, J. Electrochem. Soc. 133 (12), 2542 (1986).CrossRefGoogle Scholar
  17. 16.
    K. Y. Ahn, T. Lin, and J. Angilello, in Tungsten and Other Refractory Metals for VLSI Applications III ( Wells, ed.), p. 25, Materials Research Society, Pittsburgh, 1988.Google Scholar
  18. 17.
    E. J. McInerney, T. W. Mountsier, B. L. Chin, and E. K. Broadbent, paper presented at the Advanced Metallization for ULSI Applications Conference, Murray Hill, N.J., Oct. 8–10, 1991.Google Scholar
  19. 18.
    S. Sivaram, E. Rode, and R. Shukla, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V(Wong and Furukawa, eds.), p. 47, Materials Research Society, Pittsburgh, 1990.Google Scholar
  20. 19.
    J. E. J. Schmitz, R. C. Ellwanger, and A. J. M. van Dijk, in Tungsten and Other Refractory Metals for VLSI Applications III (Wells, ed.), p. 55, Materials Research Society, Pittsburgh, 1988.Google Scholar
  21. 20.
    R. Blumenthal and G. C. Smith, XXX, in Tungsten and Other Refractory Metals for VLSI Applications III (Wells, ed.), p. 47, Materials Research Society, Pittsburgh, 1988.Google Scholar
  22. 21.
    V. V. S. Rana, J. A. Taylor, L. H. Holschwandner, and N. S. Tsai, in Tungsten and Other Refractory Metals for VLSI Applications II (Broadbent, ed.), p. 187, Materials Research Society, Pittsburgh, 1987.Google Scholar
  23. 22.
    S. Sivaram, M. L. A. Dass, C. S. Wei, B. Tracy, and R. Shukla, J. Vac. Sci. Technol. A11 (1), 87 (1993).CrossRefGoogle Scholar
  24. 23.
    J. R. Creighton, J. Vac. Sci. Technol. A5, 1739 (1987).CrossRefGoogle Scholar
  25. 24.
    P. van der Putte, D. K. Sadana, E. K. Broadbent, and A. E. Morgan, Appl. Phys. Lett. 49 (25), 1723 (1986).CrossRefGoogle Scholar
  26. 25.
    E. G. Colgan, P. M. Fryer, and K. Y. Ahn, in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V (Wong and Furukawa, eds.), p. 243, Materials Research Society, Pittsburgh, 1990.Google Scholar
  27. 26.
    S. P. Murarka, private communications.Google Scholar
  28. 27.
    C. Lampe-Onnerud, A. Harsta, and U. Jansson, J. Physique C2, 881, 1991.Google Scholar
  29. 28.
    D. Temple, and A. Reisman, J. Electrochem. Soc. 136 (11), 3525 (1989)CrossRefGoogle Scholar
  30. S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, and P. J. Brock, Appl. Phys. Lett. 59 (11), 2332 (1991).CrossRefGoogle Scholar
  31. 29.
    W. G. Lai, Y. Xie, and G. L. Griffin, J. Electrochem. Soc. 138 (11), 3499 (1991).CrossRefGoogle Scholar
  32. 30.
    C. Oehr, and H. Suhr, Appl. Phys. A45, 151 (1988).Google Scholar
  33. 31.
    A. E. Kaloyeros, et al., J. Electronic Materials 19 (3), 271 (1990).CrossRefGoogle Scholar
  34. 32.
    J. A. T. Norman, B. A. Muratore, P. N. Dyer, D. A. Roberts and A. K. Hochberg, XXX, in Proc. IEEE VMIC 1991, p. 123Google Scholar
  35. J. Pelletier, R. Pantel, J. C. Oberlin, Y. Pauleau, and P. Guoy-Pailler, J. Appl. Phys. 70 (1), 3862 (1991).CrossRefGoogle Scholar
  36. 33.
    S. P. Murarka, private communications.Google Scholar
  37. 34.
    R. A. Levy, and M. L. Green, J. Electrochem. Soc. 134 (2), 37C (1987).CrossRefGoogle Scholar
  38. 35.
    D. A. Mantel], J. Vac. Sci. Technol. A9 (3), 1045 (1991).Google Scholar
  39. 36.
    D. B. Breach, S. E. Blum, and F. K. LeGoues, J. Vac. Sci. Technol. A7 (5), 3117 (1989)CrossRefGoogle Scholar
  40. M. E. Gross, K. P. Cheung, C. G. Fleming, J. Kovalchick, and L. A. Heimbrook, J. Vac. Sci. Technol. A9 (1), 57 (1991).CrossRefGoogle Scholar
  41. 37.
    G. S. Higashi, K. Raghavachari, and M. L. Steigerwald, J. Vac. Sci. Technol. B8 (1), 103 (1990).CrossRefGoogle Scholar
  42. 38.
    K. P. Cheung, C. J. Case, R.Liu, R. J. Schutz, R. S. Wagner, L. Kwakman, D. Huibregtse, H. Piekaar, and E. Granneman, in Proc. IEEE VMIC, p. 303 (1990).Google Scholar
  43. 39.
    J. Y. Tsao, and D. J. Ehrlich, Appl. Phys. Lett. 45 (6), 617 (1984).CrossRefGoogle Scholar
  44. 40.
    T. Kato, T. Ito, and M. Maeda, J. Electrochem. Soc. 135 (2), 455 (1988).CrossRefGoogle Scholar
  45. 41.
    F. M. d’Heurle, and P. S. Ho, XXX, in Thin Film Interdiffusion and Reactions (Tu, Poate, and Meyer, eds.), p. 243, John Wiley, New York, 1978.Google Scholar
  46. 42.
    L. Kwakman, D. Huibregtse, H. Piekaar, E. Granneman, K. P. Cheung, C. J. Case, R. Liu, R. J. Schutz, and R. S. Wagner, in Proc. IEEE VMIC, 1990, p. 282.Google Scholar
  47. 43.
    C. Bernard, R. Madar, and Y. Pauleau, Solid State Technol. 2, 79 (1989)Google Scholar
  48. E. J. Rode, and W. R. Harshbarger, J. Vac. Sci. Technol. B8 (1), 91 (1990).CrossRefGoogle Scholar
  49. 44.
    S. P. Murarka, Silicides for VLSI Applications, Academic Press, New York, 1983.Google Scholar
  50. 45.
    D. L. Brors, J. A. Fair, K. A. Monnig, and K. C. Saraswat, Solid State Technol. 26 (4) 183 (1983).Google Scholar
  51. 46.
    T. Hara, T. Miyamoto, and T. Yokoyama, J. Electrochem Soc. 136 (4), 1177 (1989).CrossRefGoogle Scholar
  52. 47.
    C. Fuhs, private communications.Google Scholar
  53. 48.
    K. C. Saraswat, D. L. Brors, J. A. Fair, K. A. Monnig, and R. Beyers, IEEE Trans. Electron Devices ED30(11), 1497 (1983).Google Scholar
  54. 49.
    M. Wittmer, J. Vac. Sci. Technol. A3 (4), 1797 (1985).CrossRefGoogle Scholar
  55. 50.
    H. J. Goldschmidt, Interstitial Alloys, Plenum Press, New York, 1967.Google Scholar
  56. 51.
    A. Sherman, J. Electrochem. Soc. 137 (6), 1892 (1990)CrossRefGoogle Scholar
  57. M. J. Buiting, A. F. Otterloo, and A. H. Montree, J. Electrochem. Soc. 138 (2), 500 (1991).CrossRefGoogle Scholar
  58. 52.
    N. Yokoyama, K. Hinode, and Y. Homma, J. Electrochem. Soc. 138 (1), 190 (1991).CrossRefGoogle Scholar
  59. 53.
    M. R. Hilton, L. R. Narasimham, S. Nakamura, M. Salmeron, and G. A. Somorjai, Thin Solid Films, 139, 247 (1986)CrossRefGoogle Scholar
  60. E. F. Gleason, Ph.D. thesis, University of California, Berkeley, 1987.Google Scholar
  61. 54.
    R. M. Fix, R. G. Gordon, and D. M. Hoffman, Mater Res. Soc. Symp. Proc. 168, 357 (1990).CrossRefGoogle Scholar
  62. 55.
    I. J. Raaijmakers in Proc. IEEE VMIC, 1992, p. 260.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Srinivasan Sivaram

There are no affiliations available

Personalised recommendations