Skip to main content

Fundamentals of Plasma Chemistry

  • Chapter
  • 486 Accesses

Abstract

Up to now we have considered CVD processes in which the source of energy for the forward process of endothermic reactions was purely thermal. However, interactions involving charged particles produced in a plasma have been effectively utilized in various CVD processes to reduce reaction temperatures. Figure 6.1 illustrates the familiar energy diagram for a reaction: reaction pathway X is the one we have previously considered in thermal CVD, where the forward reaction between reactants A and B has to overcome the potential hill, corresponding to an activation energy. However, the presence of charged particles opens up new reaction pathways such as Y, with a lower activation energy.1 The lowering of the activation energy through the formation of excited species A* and B* allows the forward reaction to proceed at lower substrate temperatures or at increased rates for the same temperature when compared with thermal CVD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Reif, in Handbook of Plasma Processing Technology (Rossnagel, Cuomo, and Westwood, Eds.), p. 268, Noyes, Park Ridge, N.J., 1990.

    Google Scholar 

  2. J. R. Hollahan and A. T. Bell, Techniques and Applications of Plasma Chemistry, John Wiley, New York, 1974.

    Google Scholar 

  3. B. Chapman, Glow Discharge Processes, p. 53, John Wiley, New York, 1980.

    Google Scholar 

  4. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1983.

    Google Scholar 

  5. S. C. Brown, Introduction to Electrical Discharges in Gases, John Wiley, New York, 1966.

    Google Scholar 

  6. J. L. Cecchi, in Handbook of Plasma Processing Technology (Rossnagel, Cuomo, and Westwood, Eds.), p. 35, Noyes, Park Ridge, N.J., 1990.

    Google Scholar 

  7. N. A. Krall, and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.

    Google Scholar 

  8. M. Mitchner, and C. H. Kruger, Partially Ionized Gases, John Wiley, New York, 1973.

    Google Scholar 

  9. F. F. Chen, Introduction to Plasmas and Controlled Fusion, Plenum Press, New York, 1983.

    Google Scholar 

  10. J. R. Hollahan and A. T. Bell, Techniques and Applications of Plasma Chemistry, p. 28, John Wiley, New York, 1974.

    Google Scholar 

  11. A. G. Engelhardt, and A. G. Phelps, Phys. Rev. 131, 2115 (1963).

    Article  Google Scholar 

  12. M. V. Kurepa, and D. S. Belie, J. Phys. B 11 (21), 3719 (1978).

    Article  Google Scholar 

  13. D. Rapp, and W. E. Francis, J. Chem. Phys. 37 (11), 2631 (1962).

    Article  Google Scholar 

  14. G. L. Weissler, Handbuch der Physik, pp. 21, 304, Springer, Berlin, 1956.

    Google Scholar 

  15. J. W. Coburn, and E. Kay, Appl. Phys. Lett. 18 (10), 435 (1971).

    Article  Google Scholar 

  16. P. J. Ficalora, private communication.

    Google Scholar 

  17. F. Kaufman, Production of Atoms and Simple Radicals in Glow Discharges, Advanced Chemistry Series No. 80, p. 29, 1969.

    Article  Google Scholar 

  18. S. Sivaram, unpublished.

    Google Scholar 

  19. B. Chapman, Glow Discharge Processes,p. 35, John Wiley, New York, 1980.

    Google Scholar 

  20. F. Moghadam, Intel Corp., private communications.

    Google Scholar 

  21. T. S. Carlton, and B. H. Mahan, J. Chem Phys. 40, 3683 (1964).

    Article  Google Scholar 

  22. M. Hayashi, Report IPPJ-AM-19, Nagoya Institute of Technology, Nagoya, Japan, 1981.

    Google Scholar 

  23. I. Langmuir, and H. Mott-Smith, General Electric Review 26, 731 (1923).

    Google Scholar 

  24. W. R. Harshbarger, R. A. Porter, T. A. Miller, and P. Norton, Appl. Spectr. 31 (3), 201 (1977).

    Article  Google Scholar 

  25. R. V. Giridhar, “Thermal nitridation of silicon,” Ph. D. thesis, Rensselaer Polytechnic Institute, Troy, N.Y., 1984.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sivaram, S. (1995). Fundamentals of Plasma Chemistry. In: Chemical Vapor Deposition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4751-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4751-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4753-9

  • Online ISBN: 978-1-4757-4751-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics