Reactor Design for Thermal CVD

  • Srinivasan Sivaram


Classical reactor design requires the application of the principles of heat, mass, and momentum transfer for the efficient conversion of reactants to products. We will treat this subject with a narrower focus: thin films with desired properties from gaseous sources. Such a discussion may be insufficient for the design of a commercial reactor from first principles. However, for the modification of an existing reactor for the purpose of tailoring film properties or for the construction of laboratory prototypes, this discussion will be adequate.


Chemical Vapor Deposition Knudsen Number Reactor Design Residence Time Distribution Fluid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Hammond, Solid State Technol. 21 (11), 69 (1978).Google Scholar
  2. 2.
    S. Dushman and J. M. Lafferty, Scientific Foundations of Vacuum Technique, John Wiley, New York, 1962Google Scholar
  3. G. N. Patterson, Introduction to Kinetic Theory of Gas Flows, University of Toronto Press, Toronto, 1971.Google Scholar
  4. 3.
    J. B. Hudson, private communication.Google Scholar
  5. 4.
    A. Sherman, Chemical Vapor Deposition for Microelectronics, p. 16, Noyes, Park Ridge, N.J., 1987Google Scholar
  6. 5.
    J. M. Smith, Chemical Engineering Kinetics, p. 104, McGraw-Hill, New York, 1981.Google Scholar
  7. 6.
    O. Livenspiel, Chemical Reaction Engineering, John Wiley, New York, 1982.Google Scholar
  8. 7.
    A. S. Inamdar, and C. M. McConica, in Tungsten and Other Refractory Metals for VLSI/ULSI Applications V(Wong and Furukawa Eds.), p. 93, Materials Research Society, Pittsburgh, 1990.Google Scholar
  9. 8.
    G. P. Raupp, in Tungsten and Other Refractory Metals for VLSI Applications III, (Wells Ed.), p. 15, Materials Research Society, Pittsburgh, 1988.Google Scholar
  10. 9.
    J. Bloem, and L. J. Giling, Current Topics in Materials Science 1, 147 (1978).Google Scholar
  11. 10.
    A. Sherman, J. Electrochem. Soc. 137 (6), 1892 (1990).CrossRefGoogle Scholar
  12. 11.
    M. E. Coltrin, R. J. Kee, and J. A. Miller, J. Electrochem. Soc. 131, 425 (1984).CrossRefGoogle Scholar
  13. 12.
    K. Jensen, and W. Kern, in Thin Films Processes II (Vossen and Kern, eds.), p. 284, Academic Press, New York, 1991.Google Scholar
  14. 13.
    Watkins Johnson Ltd., private communications.Google Scholar
  15. 14.
    L. Bartholomew, and J. Sisson, XXX, in Proc. 3rd Ann. Dielectrics and Metallization Symp., J. C. Schumacher, San Diego, Calif. 1981.Google Scholar
  16. 15.
    E. A. Matsuzak, C. M. Hill, and D. V. Horak, SPIE Proc. 1188 (1989).Google Scholar
  17. 16.
    Applied Materials Ltd., private communications.Google Scholar
  18. 17.
    T. E. Clark, and A. P. Constant, Microelectronic Manuf. and Testing May/June, 8 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Srinivasan Sivaram

There are no affiliations available

Personalised recommendations