Carbon Metabolism in Guard Cells

  • William H. OutlawJr.
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 16)


In the past decade stomatal physiology has been the subject of review articles,1–17 two published symposia,18, 19 a multiauthored book,20 and a forthcoming book, 21 all in addition to the older but excellent book of Meidner and Mansfield.22 Two reviews23,24 have been restricted to the topic of carbon metabolism alone. Thus, there are adequate general summaries, and it will not be my purpose to update these articles. Instead, I will presently “inventory” our current knowledge about carbon metabolism in guard cells. I will rely less on the authors’ interpretations than on direct examination of the data and the methods used to obtain the data. With few exceptions (e.g. ref. 25), there were no quantitative studies on guard cell biochemistry prior to 1973. Since then, numerous reports have appeared. It is time to “take stock,” so, to an extent, this is an internal report to stomatal biologists. As a result, I anticipate that readers will spend more time evaluating the tabular data and less time with my narrative. I will retrace the steps leading to our understanding the basic outline of guard cell biochemistry involved in stomatal


Guard Cell Organic Anion Malic Enzyme Stomatal Aperture Stomatal Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaway, W. G. 1976. Influence of stomatal behavior on long distance transport. In Transport and transfer processes (I. F. Wardlaw, J. B. Passioura, eds). Academic Press, New York, pp. 295–311.Google Scholar
  2. 2.
    Barrs, H. D. 1971. Cyclic variations in stomatal aperture, transpiration and leaf water potential under constant environmental conditions. Annu. Rev. Plant Physiol. 22: 223–236.Google Scholar
  3. 3.
    Cowan, I. R. 1977. Stomatal behavior and environment. Adv. Bot. Res. 4: 117–228.Google Scholar
  4. 4.
    Hsiao, T. C. 1974. Plant responses to water stress. Annu. Rev. Plant Physiol. 24: 519–570.Google Scholar
  5. 5.
    Hsiao, T. C. 1976. Stomatal ion transport. In Transport in plants II (U. Lüttge, M. G. Pittman, eds.). Encyclopedia of Plant Physiology, New Series. Springer-Verlag, Berlin, pp. 195–221.Google Scholar
  6. 6.
    MacRobbie, E. A. C. 1977. Functions of ion transport in plant cells and tissues. In Plant Biochemistry II (D. H. Northcote, ed), International Review of Biochemistry, Vol. 13. University Park Press, Baltimore, pp. 226–234.Google Scholar
  7. 7.
    Meidner, H., C. M. Willmer. 1975. Mechanics and metabolism of guard cells. Curr. Adv. Plant Sci. 17: 1–15.Google Scholar
  8. 8.
    Milthorpe, F. L. 1970. The significance and mechanism of stomatal movement. Aust. J. Sci. 32: 31–35.Google Scholar
  9. 9.
    Milthorpe, F. L., C. J. Pearson, S. Thrower. 1974. The metabolism of guard cells. In Mechanisms of regulation of plant growth (R. L. Bieleski, A. R. Ferguson, M. M. Cresswell, eds), Bull. 12. The Royal Society of New Zealand, Wellington, pp. 439–443.Google Scholar
  10. 10.
    Palevitz, B. A. 198X. Stomatal complexes as a model of cytoskeleton participation in cell differentiation. In The cytoskeleton in plant growth and development (C. Lloyd, ed). Academic Press, New York, in press.Google Scholar
  11. 11.
    Pospíšilova, J., J. Solarova. 1980. Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermes. Photosynthetica 14: 90–127.Google Scholar
  12. 12.
    Raschke, K. 1975. Stomatal action. Annu. Rev. Plant Physiol. 26: 309–340.Google Scholar
  13. 13.
    Raschke, K. 1976. How stornata resolve the dilemma of opposing priorities. Phil. Trans. R. Soc. Lond. B. 273: 551–560.Google Scholar
  14. 14.
    Raschke, K. 1976. Transfer of ions and products of photosynthesis to guard cells. In Transport and transfer processes in plants (I. F. Wardlaw and J. B. Passioura, eds). Academic Press, New York, pp. 203–215.Google Scholar
  15. 15.
    Raschke, K. 1977. The stomatal turgor mechanism and its response to CO2 and abscisic acid: observations and a hypothesis. In Regulation of cell membrane activites in plants (E. Marré, O. Ciferri, eds). Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 173–183.Google Scholar
  16. 16.
    Raschke, K. 1979. Movements of stornata. In Physiology of movements (W. Haupt, M. E. Feinleib, eds.). Encylopedia of Plant Physiology, Vol. 7. Springer-Verlag, Berlin, pp. 383–441.Google Scholar
  17. 17.
    Zeiger, E., A. J. Bloom, P. K. Hepler. 1978. Ion transport in stomatal guard cells: a chemiosmotic hypothesis. What’s New in Plant Physiology 9: 29–32.Google Scholar
  18. 18.
    Jarvis, P. G., T. A. Mansfield (eds.). 198X. Stomatal physiology. Cambridge University Press, Cambridge, in press.Google Scholar
  19. 19.
    Rogers, C. A. 1980. Integrated view of guard cells.Symposium Series of the Southern Section of the American Society of Plant Physiologists. Houston, pp. 1–64.Google Scholar
  20. 20.
    Sen, D. N., D. D. Chawan, R. P. Bansal (eds). 1979. Structure, function and ecology of stornata. Bishen Singh Mahendra Pal Singh, Dehra Dun (India).Google Scholar
  21. 21.
    Willmer, C. M. 198X. Stornata. Longman, London. In Press.Google Scholar
  22. 22.
    Meidner, H., T. A. Mansfield. 1968. Physiology of Stornata. McGraw-Hill, New York.Google Scholar
  23. 23.
    Outlaw, W. H., Jr. 1980. Unique aspects of carbon metabolism in guard cells of Vicia faba L. In Integrated view of guard cells (C. A. Rogers, ed). Symposium Series of the Southern Section of the American Society of Plant Physiologists, Houston, pp. 4–18.Google Scholar
  24. 24.
    Willmer, C. M. 1981. Guard cell metabolism. In Stomatal Physiology (P. G. Jarvis, T. A. Mansfield, eds). Cambridge University Press, Cambridge, pp. 87–102.Google Scholar
  25. 25.
    Yemm, E. W., A. J. Willis. 1954. Stomatal movements and changes of carbohydrate in leaves of Chrysanthemum maximum. New Phytol. 53: 373–397.Google Scholar
  26. 26.
    Fischer, R. A. 1968. Stomatal opening: role of potassium uptake by guard cells. Science 160: 784–785.PubMedGoogle Scholar
  27. 27.
    Fischer, R. A. 1968. Stomatal opening in isolated epidermal strips of Vicia faba. I. Response to light and CO2-free air. Plant Physiol. 43: 1947–1952.PubMedGoogle Scholar
  28. 28.
    Fischer, R. A., T. C. Hsiao. 1968. Stomatal opening in isolated epidermal strips of Vicia faba. II. Response to KCl concentration and the role of potassium absorption. Plant Physiol. 43: 1953–1958.PubMedGoogle Scholar
  29. 29.
    Fujino, M. 1967. Adenosinetriphosphate and adenosine-triposphatase in stomatal movement. Sci. Bull. Fac. Educ. (Nagaski University) 18: 1–74.Google Scholar
  30. 30.
    Imamura, S. 1943. Research about the mechanism of the turgor-fluctuation of the stomatal guard cells (in German). Jap. J. Bot. 12: 251–346.Google Scholar
  31. 31.
    Raschke, K., G. D. Humble. 1973. No uptake of anions required by opening stornata of Vicia faba: guard cells release hydrogen ions. Planta 115: 47–57.Google Scholar
  32. 32.
    Humble, G. D., K. Raschke. 1971. Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant Physiol. 48: 447–453.PubMedGoogle Scholar
  33. 33.
    Raschke, K., M. P. Fellows. 1971. Stomatal movement in Zea mays : shuttle of potassium and choride between guard cells and subsidiary cells. Planta 101: 296–316.Google Scholar
  34. 34.
    Pallaghy, C. K., R. A. Fisher. 1974. Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba. Z. Pflanzenphysiol. 71: 332–334.Google Scholar
  35. 35.
    Penny, M. G., L. S. Kelday, D. J. F. Bowling. 1976. Active choride transport in the leaf epidermis of Commelina communis in relation to stomatal activity. Planta 130: 291–294.Google Scholar
  36. 36.
    Schnabl, H., K. Raschke. 1980. Potassium chloride as stomatal osmoticum in Allium cepa L., a species devoid of starch in guard cells. Plant Physiol. 63: 88–93.Google Scholar
  37. 37.
    Clarkson D. T. 1974. Ion transport and cell structure in plants. McGraw-Hill Ltd., Berkshire.Google Scholar
  38. 38.
    Jacoby, B., G. G. Laties. 1971. Bicarbonate fixation and malate compartmentation in relation to salt-induced stoichiometric synthesis of organic acid. Plant Physiol. 47: 525–531.PubMedGoogle Scholar
  39. 39.
    Smith, F. A., J. A. Raven. 1979. Intracellular pH and its regulation. Annu. Rev. Plant Physiol. 30: 289–311.Google Scholar
  40. 40.
    Davies, D. D. 1979. The central role of phosphoenol- pyruvate in plant metabolism. Annu. Rev. Plant Physiol. 30: 131–158.Google Scholar
  41. 41.
    Sawhney, B. L., I. Zelitch. 1969. Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. Plant Physiol. 44: 1350–1354.PubMedGoogle Scholar
  42. 42.
    Penny, M. G., D. J. F. Bowling. 1974. A study of potassium gradients in the epidermis of intact leaves of Commelina communis in relation to stomatal opening. Planta 122: 209–212.Google Scholar
  43. 43.
    Allaway, W. G., T. C. Hsiao. 1973. Preparation of rolled epidermis of Vicia faba L. so that stornata are the only viable cells: analysis of guard cell potassium by flame photometry. Aust. J. Biol. Sci. 26: 309–318.Google Scholar
  44. 44.
    Outlaw, W. H., Jr., O. H. Lowry. 1977. Organic acid and potassium accumulation in guard cells during stomatal opening. Proc. Nat. Acad. Sci. USA 74: 4434–4438.PubMedGoogle Scholar
  45. 45.
    Raschke, K., H. Schnabl. 1978. Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. Plant Physiol. 62: 84–87.PubMedGoogle Scholar
  46. 46.
    Outlaw, W. H., Jr., C. L. Schmuck, N. E. Tolbert. 1976. Photosynthetic carbon metabolism in the palisade parenchyma and spongy parenchyma of Vicia faba L. Plant Physiol. 58: 186–189.PubMedGoogle Scholar
  47. 47.
    Outlaw, W. H., Jr., B. C. Mayne, V. E. Zenger, J. Manchester. 1981. Presence of both photosystems in guard cells of Vicia faba L. Implications for environmental signal processing. Plant Physiol. 67: 12–16.PubMedGoogle Scholar
  48. 48.
    Jones, M. G. K., W. H. Outlaw, Jr., O. H. Lowry. 1977. Enzymic assay of 10”7 to 10”14 moles of sucrose in plant tissues. Plant Physiol. 60: 379–383.PubMedGoogle Scholar
  49. 49.
    Outlaw, W. H., Jr., J. Manchester, V. E. Zenger. 1981. The relationship between protein content and dry weight of guard cells and other single cell samples of Vicia faba L. leaflet. Histochem. J. 13: 329–336.PubMedGoogle Scholar
  50. 50.
    Paul, J. S., J. A. Bassham. 1977. Maintenance of high photosynthetic rates in mesophyll cells isolated from Papaver somniferum L. Plant Physiol. 60:775–778.PubMedGoogle Scholar
  51. 51.
    Hammel, K. E., K. L. Cornwell, J. A. Bassham. 1979. Stimulation of dark CO2 fixation by ammonia in isolated mesophyll cells of Papaver somniferum L. Plant Cell Physiol. 20: 1523–1529.Google Scholar
  52. 52.
    Outlaw, W. H., Jr., J. Manchester, C. A. DiCamelli, D. D. Randall, B. Rapp, G. M. Veith. 1979. Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. Proc. Nat. Acad. Sci. USA 76: 6371–6375.PubMedGoogle Scholar
  53. 53.
    Outlaw, W. H., Jr., J. Kennedy. 1978. Enzymic and substrate basis for the anaplerotic step in guard cells. Plant Physiol. 62: 648–652.PubMedGoogle Scholar
  54. 54.
    Outlaw, W. H., Jr., J. Manchester, C. A. DiCamelli. 1979. Histochemical approach to properties of Vicia faba guard cell phosphoenolpyruvate carboxylase. Plant Physiol. 64: 269–272.PubMedGoogle Scholar
  55. 55.
    Allaway, W. G. 1981. Anions in stomatal regulation. In Stomatal physiology (P. G. Jarvis, T. A. Mansfield, eds.). Cambridge University Press, Cambridge, pp. 71–85Google Scholar
  56. 56.
    Allaway, W. G. 1973. Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110: 63–70.Google Scholar
  57. 57.
    Pearson, C. J. 1973. Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. Aust. J. Biol. Sci. 26: 1035–1044.Google Scholar
  58. 58.
    Pallas, J. E., Jr., B. G. Wright. 1973. Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement. Plant Physiol. 51: 588–590.PubMedGoogle Scholar
  59. 59.
    Fischer, R. A. 1971. Role of potassium in stomatal opening in the leaf of Vicia faba. Plant Physiol. 47: 555–558.PubMedGoogle Scholar
  60. 60.
    Ogawa, T., H. Ishikawa, K. Shimada, K. Shibata. 1978. Synergistic action of red and blue light and action spectra of malate formation in guard cells of Vicia faba L. Planta 142: 61–65.Google Scholar
  61. 61.
    Van Kirk, C. A., K. Raschke. 1978. Presence of chloride reduces malate production in epidermis during stomatal opening. Plant Physiol. 61: 361–364.PubMedGoogle Scholar
  62. 62.
    Schnabl, H. 1978. The effect of CI” upon the sensitivity of starch-containing and starch-deficient stornata and guard cell protoplasts toward potassium ions, fusicoccin and abscisic acid. Planta 14: 95–100.Google Scholar
  63. 63.
    Schnabl, H. 1980. Anion metabolism as correlated with volume changes of guard cell protoplasts. Z. Naturforsch. 35: 621–626.Google Scholar
  64. 64.
    Pearson, C. J., F. L. Milthorpe. 1974. Structure, carbon dioxide fixation, and metabolism of stornata. Aust. J. Plant Physiol. 1: 221–236.Google Scholar
  65. 65.
    Bowling, D. J. F. 1976. Malate-switch hypothesis to explain the action of stornata. Nature (London) 262: 393–394.Google Scholar
  66. 66.
    Travis, A. J., T. A. Mansfield. 1977. Studies of malate formation in ‘isolated’ guard cells. New Phytol. 78: 541–546.Google Scholar
  67. 67.
    Raschke, K., P. Dittrich. 1977. [14C]carbon dioxide fixation by isolated leaf epidermis with stornata closed or open. Planta 134: 69–75.Google Scholar
  68. 68.
    Willmer, C., R. Kanai, J. E. Pallas, Jr., C. C. Black, Jr. 1973. Detection of high levels of phosphoenol-pyruvate carboxylase in leaf epidermal tissues and its significance in stomatal movements. Life Sci. 12: 151–155.Google Scholar
  69. 69.
    Squire, G. R., T. A. Mansfield. 1972. A simple method of isolating stornata on detached epidermis by low pH treatment: observations of the importance of subsidiary cells. New Phyto1. 71: 1033–1043.Google Scholar
  70. 70.
    Rutter, J. C., W. R. Johnston, C. M. Willmer. 1977. Free sugars and organic acids in the leaves of various plant species and their compartmentation between tissues. J. Exptl. Bot. 28: 1019–1028.Google Scholar
  71. 71.
    Contour-Ansel, D., P. Longuet. 1979. Comparaison entre les teneurs en acides organiques depidermis foliaires isolés de Pelargonium X hortorum, en relation avec l’état d’ouverture ou de fermeture des stomates: l’acide malique joue-t-il toujours un rôle déterminant dans les mouvements stomatiques? Physiol. Vég. 17: 337–346.Google Scholar
  72. 72.
    Lowry, O. H., J. V. Passonneau. 1972. A flexible system of enzymatic analysis. Academic Press, New York.Google Scholar
  73. 73.
    Outlaw, W. H., Jr. 1978. Biochemical analysis of single plant cells. What’s New in Plant Physiology 9: 21–24.Google Scholar
  74. 74.
    Outlaw, W. H., Jr. 1980. A descriptive evaluation of quantitative histochemical methods based on pyridine nucleotides. Annu. Rev. Plant Physiol. 31: 299–311.Google Scholar
  75. 75.
    Pallas, J. E., Jr., R. A. Dilley. 1972. Photophos- phorylation can provide sufficient adenosine 5’-triphosphate to drive K+ movements during stomatal opening. Plant Physiol. 49: 649–650.PubMedGoogle Scholar
  76. 76.
    Thorpe, N., C. J. Brady, F. L. Milthorpe. 1978. Stomatal metabolism: Primary carboxylation and enzyme activities. Aust. J. Plant Physiol. 5: 485–493.Google Scholar
  77. 77.
    Willmer, C. M., J. E. Pallas, Jr., C. C. Black, Jr. 1973. Carbon dioxide metabolism in leaf epidermal tissue. Plant Physiol. 52: 448–452.PubMedGoogle Scholar
  78. 78.
    Donkin, M., E. S. Martin. 1980. Studies on the properties of carboxylating enzymes in the epidermis of Commelina communis. J. Exptl. Bot. 31: 357–363.Google Scholar
  79. 79.
    Rama Das, V. S., A. S. Raghavendra. 1974. Control of stomatal opening by pyruvate metabolism in light. Ind. J. Exptl. Biol. 12: 425–428.Google Scholar
  80. 80.
    Schnabl, H. 1981. The compartmentation of carboxylating and decarboxylating enzymes in guard cell protoplasts. Planta 152: 307–313.Google Scholar
  81. 81.
    Outlaw, W. H., Jr., J. Manchester. 1979. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol. 64: 79–82.PubMedGoogle Scholar
  82. 82.
    Mouravieff, I. 1972. Microphotométrie des fluctuations de la teneur en amidon des stomates en rapport avec l’ouverture de l’ostiole a la lumière, en présence ou en absence de gaz carbonique. Annales des Sciences Naturelles, Botanique 1: 361–368.Google Scholar
  83. 83.
    Outlaw, W. H., Jr., D. B. Fisher. 1975. Compartmentation in Vicia faba leaves. III. Photosynthesis in the spongy and palisade parenchyma. Aust. J. Plant Physiol. 2: 435–439.Google Scholar
  84. 84.
    Schnabl, H. 1980. CO2 and malate metabolism in starch-containing and starch-lacking guard cell protoplasts. Planta 149: 52–58.Google Scholar
  85. 85.
    Schnabl, H. 1977. Isolation and identification of soluble polysaccharides in epidermal tissue of Allium cepa. Planta 135:307–311.Google Scholar
  86. 86.
    Willmer, C. M., P. Dittrich. 1974. Carbon dioxide fixation by epidermal and mesophyll tissues of Tulipa and Commelina. Pianta 117: 123–132.Google Scholar
  87. 87.
    Willmer, C. M., N. Thorpe, J. C. Rutter, F. L. Milthorpe. 1978. Stomatal mechanism: Carbon dioxide fixation in attached and detached epidermis of Commelina. Aust. J. Plant Physiol. 5: 767–778.Google Scholar
  88. 88.
    Zelitch, I., D. A. Walker. 1964. The role of glyco-lic acid metabolism in opening of leaf stornata. Plant Physiol. 39:856–862.PubMedGoogle Scholar
  89. 89.
    Zelitch, I. 1961. Biochemical control of stomatal opening of leaves. Proc. Natl. Acad. Sci. USA 47: 1423–1433.PubMedGoogle Scholar
  90. 90.
    Kaiser, W. M., J. A. Bassham. 1979. Light-dark regulation of starch metabolism in chloroplasts. I. Levels of metabolites in chloroplasts and medium during light-dark transition. Plant Physiol. 63: 105–108.PubMedGoogle Scholar
  91. 91.
    Preiss, J. 1973. Adenosine diphosphoryl glucose pyrophosphorylase. In The enzymes (P. Boyer, ed). Academic Press, New York. 8: 73–119.Google Scholar
  92. 92.
    Schnabl, H. 1980. Rapid gluconeogenesis in starch- containing guard cell protoplasts. In Plant membrane transport: current conceptual issues (R. M. Spanswick, W. J. Lucas, J. Dainty, eds). Elsevier/North Holland Biomedical Press, Amsterdam, pp. 455–456.Google Scholar
  93. 93.
    Lorimer, G. H. 198.1. The carboxylation and oxygenation of ribulose-l,5-bisphosphate: the primary event in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32: 349–383.Google Scholar
  94. 94.
    Godavari, H. R., S. S. Badour, E. R. Waygood. 173. Isocitrate lyase in green leaves. Plant Physiol. 51: 863–867.Google Scholar
  95. 95.
    Zelitch, I. 1973. Alternate pathways of glycollate synthesis in tobacco and maize leave in relation to rates of photorespiration. Plant Physiol. 51: 299–305.PubMedGoogle Scholar
  96. 96.
    Randall, D. D., N. E. Tolbert. 1971. 3-phospho-glycerate in plants. J. Biol. Chem. 17: 5510–5517.Google Scholar
  97. 97.
    Thorpe, N., C. M. Willmer, F. L. Milthorpe. 1979. Stomatal metabolism: carbon dioxide fixation and labeling patterns during stomatal movement in Commelina cyanea. Aust. J. Plant Physiol. 6: 409–416.Google Scholar
  98. 98.
    Zeiger, E., P. Armond, A. Melis. 1981. Fluorescence properties of guard cell chloroplasts. Evidence for linear electron transport and light-harvesting pigments of photosystems I and II. Plant Physiol. 67: 17–20.PubMedGoogle Scholar
  99. 99.
    Madhavan, S., B. N. Smith. 1982. Localization of ribulose bisphosphate carboxylase in guard cells by an indirect immunofluorescence technique. Plant Physiol. In Press.Google Scholar
  100. 100.
    Kirst, G. O. 1980. 14CO2 fixation in Valonia utri-cularis subjected to osmotic stress. Plant Sci. Lett. 18: 155–160.Google Scholar
  101. 101.
    Jones, M. M., C. B. Osmond, N. C. Turner. 1980. Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits. Aust. J. Plant Physiol. 7: 193–205.Google Scholar
  102. 102.
    Zimmerman, U. 1978. Physics of turgor- and osmoregulation. Annu. Rev. Plant Physiol. 29: 121–148.Google Scholar
  103. 103.
    Outlaw, W. H., Jr., D. B. Fisher. 1975. Compartmenta-tion in Vicia faba leaves. I. Kinetics of 14C in the tissues following pulse labeling. Plant Physiol. 55: 699–703.PubMedGoogle Scholar
  104. 104.
    Dittrich, P., K. Raschke. 1977. Uptake and metabolism of carbohydrate by epidermal tissue. Planta 134: 83–90.Google Scholar
  105. 105.
    Outlaw, W. H., Jr., D. B. Fisher, A. L. Christy. 1975. Compartmentation in Vicia faba leaves. Ii. Kinetics of 14C-sucrose redistribution among individual tissues following pulse labeling. Plant Physiol. 55: 704–711.PubMedGoogle Scholar
  106. 106.
    Van Kirk, C. A., K. Raschke. 1978. Release of malate from epidermal strips during stomatal closure. Plant Physiol. 61: 374–375.Google Scholar
  107. 107.
    Outlaw, W. H., Jr., J. Manchester, P. H. Brown. 1981. High levels of malic enzyme activities in Vicia faba L. epidermal tissue. Plant Physiol. 68: 1047–1051.PubMedGoogle Scholar
  108. 108.
    Hatch, M. D., C. R. Slack. 1968. A new enzyme for the interconversion of pyruvate and phosphopyruvate and its role in the C4 dicarboxylic acid pathway of photosynthesis. Biochem. J. 106: 141–146.PubMedGoogle Scholar
  109. 109.
    Outlaw, W. H., Jr., J. Manchester. 1980. Conceptual error in determination of NAD malic enzyme in extracts containing NAD malic dehydrogenase. Plant Physiol. 65: 1136–1138.PubMedGoogle Scholar
  110. 110.
    Mazelis, M., B. Vennesland. 1957. Carbon dioxide fixation into oxalacetate by higher plants. Plant Physiol. 32: 591–600.PubMedGoogle Scholar
  111. 111.
    Dittrich, P., K. Raschke. 1977. Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning. Planta 134: 77–81.Google Scholar
  112. 112.
    Willmer, C. M., J. C. Rutter. 1977. Guard cell malic acid metabolism during stomatal movements. Nature (London) 269: 327–328.Google Scholar
  113. 113.
    Spanswick, R. M., W. J. Lucas, J. Dainty. 1980. Plant Membrane Transport: Current Conceptual Issues. Elsevier, Amsterdam.Google Scholar
  114. 114.
    Poole, R. J. 1978. Energy coupling for membrane transport. Annu. Rev. Plant Physiol. 29: 437–460.Google Scholar
  115. 115.
    Kasamo, K. 1979. Characterization of membrane-bound Mg2+-activated ATPase isolated from the lower epidermis of tobacco leaves. Plant Cell Physiol. 20: 281–292.Google Scholar
  116. 116.
    Weiler, E. W., H. Schnabl, C. Hornberg. 198X. Stress-related levels of abscisic acid in guard cell protoplasts of Vicia faba L. Planta, submitted.Google Scholar
  117. 117.
    Lurie, S., D. L. Hendrix. Differential ion stimulation of plasmalemma adenosine triphosphatase from leaf epidermis and mesophyll of Nicotiana rustica L. Plant Physiol. 63:936–939.Google Scholar
  118. 118.
    Walton, D. C. 1980. Biochemistry and physiology of abscisic acid. Annu. Rev. Plant Physiol. 31: 453–489.Google Scholar
  119. 119.
    Singh, B. N., E. Galson, W. Dashek, D. C. Walton. 1979. Abscisic acid levels and metabolism in leaf epidermal tissue of Tulipa gesneriana L. and Commelina communis L. Planta 146: 135–138.Google Scholar
  120. 120.
    Melis, A., E. Zeiger. 198X. Fluorescence transients in mesophyll and guard cell chloroplasts. Evidence for CO2 modulation of photophosphorylation in guard cells. Plant Physiol., submitted.Google Scholar
  121. 121.
    Schnabl, H., R. Hampp. 1980. Vicia guard cell protoplasts lack photosystem Ii activity. Naturwissenschaften 67: 465–466.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • William H. OutlawJr.
    • 1
  1. 1.Department of Biological Science (Unit 1)Florida State UniversityTallahasseeUSA

Personalised recommendations