Skip to main content

Localization and Function of M-Line-Bound Creatine Kinase

M-Band Model and Creatine Phosphate Shuttle

  • Chapter
Cell and Muscle Motility

Abstract

The electron-opaque M line or M band that transverses the center of the A band is one of the striking features of cross-striated muscle myofibrils seen with the electron microscope (Figs. 1–5). It appears to be the only myofibrillar structure that connects thick filaments directly to each other. After in situ fixation of skeletal muscle, dehydration, and standard embedding for electron microscopic examination, the M-band structure appears as a complex structure made up of several transverse elements connecting the thick filaments through the bare zone region and giving rise to the typical hexagonal thick-filament lattice (Franzini-Armstrong and Porter, 1964; Knappeis and Carlsen, 1968; Pepe, 1971) (see Fig. 1). High-resolution electron microscopy in combination with image analysis of ultrathin transverse sections of muscle fiber bundles shows a hexagonal lattice of thick filaments interconnected by primary m-bridge structures (nomenclature according to Sjöström and Squire, 1977a,b) (Fig. 1, M4) often seen to have a circular thickening in the middle (Luther and Squire, 1978; Luther et al, 1981). At a different level in transverse sections, Y-shaped secondary m bridges (M3) connecting the nodular enlargements (MF) are observed as well (Luther and Squire, 1978; Luther et al., 1981) (Fig.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuld, R. A. , and Brierley, G. P. , 1977, Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation, J. Mol. Cell Cardiol. 9:875–896.

    PubMed  CAS  Google Scholar 

  • Anversa, P. , Olivetti, G. , Bracchi, P. G. , and Loud, A. V. , 1981, Postnatal development of the M- band in rat cardiac myofibrils, Circ. Res. 48:561–568.

    PubMed  CAS  Google Scholar 

  • Arnold, H. , and Pette, D. , 1970, Binding of aldolase and TDH to F-actin and modification of catalytic properties of aldolase, Eur. J. Biochem. 15:360–366.

    PubMed  CAS  Google Scholar 

  • Arps, P. J. , and Harrington, W. F. , 1982, Purification and properties of rabbit muscle M-line, Biophys. J. 37:45a.

    Google Scholar 

  • Ashby, B. , and Frieden, D. , 1977, Interaction of AMP aminohydrolase with myosin and its subfragments, J. Biol. Chem. 252:1869–1872.

    PubMed  CAS  Google Scholar 

  • Ashby, B. , Frieden, C. , and Bischoff, R. , 1979, Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle, J. Cell Biol. 81:361–373.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. M. , Cooke, D. A. , and Cheadle, W. G. , 1977, Enzyme alterations in neonatal heart muscle during development, J. Mol. Cell Cardiol. 9:651–660.

    PubMed  CAS  Google Scholar 

  • Barany, M. , and Barany, K. , 1972, A proposal for the mechanism of contraction in intact frog muscle, Cold Spring Harbor Symp. Quant. Biol. 37:157–168.

    Google Scholar 

  • Barrantes, F. J. , Mieskes, G. , and Wallimann, T. , 1983a, A membrane-associated CK identified as an acidic species of the non-receptor, peripheral v-proteins in Torpedo acetylcholine receptor membranes, FEBS Lett. 152:270–276.

    PubMed  CAS  Google Scholar 

  • Barrantes, F. J. , Mieskes, G. , and Wallimann, T. , 1983b, CK-activity in the Torpedo electrolyte and in the non-receptor, peripheral v-proteins from acetylcholine receptor-rich membranes, Proc. Natl. Acad. Sci. USA 80:5440–5444.

    Google Scholar 

  • Baskin, R. J. , and Deamer, D. W. , 1970, A membrane-bound creatine Phosphokinase in fragmented sarcoplasmic reticulum, J. Biol. Chem. 245:1345–1347.

    PubMed  CAS  Google Scholar 

  • Bessmann, S. P. , and Fonyo, A. , 1966, The possible role of the mitochondrial-bound creatine kinase in regulation of mitochondrial respiration, Biochem. Biophys. Res. Commun. 22:597–602.

    Google Scholar 

  • Bessman, S. P. , and Geiger, P. J. , 1981, Transport of energy in muscle. The phosphorylcreatine shuttle, Science 211:448–452.

    PubMed  CAS  Google Scholar 

  • Bessman, S. P. , Yang, W. C. T. , Geiger, P. , and Erickson-Viitanen, S. , 1980, Intimate coupling of CK and myofibrillar ATPase, Biochem. Biophys. Res. Commun. 96:1414–1420.

    PubMed  CAS  Google Scholar 

  • Booth, R. F. G. , and Clark, J. B. , 1978, Studies on the mitochondrial-bound form of rat brain creatine kinase, Biochem. J. 170:145–151.

    PubMed  CAS  Google Scholar 

  • Borrebaek, B. , 1980, The lack of direct coupling between ATP/ADP-translocase and CK in isolated rabbit heart mitochondria, Arch. Biochem. Biophys. 203:827–829.

    PubMed  CAS  Google Scholar 

  • Botts, J. , and Stone, M. , 1968, Kinetics of coupled enzymes: CK and myosin A, Biochemistry 7:2688–2696.

    PubMed  CAS  Google Scholar 

  • Botts, J. , Stone, D. B. , Wang, A. T. L. , and Mendelson, R. A. , 1975, EPR and nanosecond fluorescence depolarisation studies on creatine kinase interaction with myosin and its fragments, J. Supramol. Struct. 3:141–145.

    PubMed  CAS  Google Scholar 

  • Breckler, J. , and Lazarides, E. , 1982, Isolation of a new high Mr protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle, J. Cell Biol. 92:795–806.

    PubMed  CAS  Google Scholar 

  • Bronstein, W. W. , and Knull, H. R. , 1981, Interaction of muscle glycolytic enzymes with thin filament proteins, Can. J. Biochem. 59:494–499.

    PubMed  CAS  Google Scholar 

  • Brown, T. R. , 1982, Is creatine Phosphokinase in equilibrium in skeletal muscle? Fed. Proc. 41:174–175.

    PubMed  CAS  Google Scholar 

  • Brown, T. R. , Gadian, D. G. , Garlick, P. B. , Radda, G. K. , Seeley, P. J. , and Styles, P. , 1978, Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR, in: Frontiers of Biological Energetics (P. L. Dutton, J. S. Leigh, and A. Scarpa, eds. ), Vol. 2, pp. 1341–1349, Academic Press, New York.

    Google Scholar 

  • Brumback, R. A. , Gerst, G. W. , and Knull, H. R. , 1983, High energy phosphate depletion in a model of defective muscle glycolysis, Muscle Nerve 6:52–55.

    PubMed  CAS  Google Scholar 

  • Burt, C. T. , Glonek, T. , and Barany, M. , 1976, Analysis of phosphate metabolites, intracellular pH, and state of ATP in intact muscle by P-NMR, J. Biol. Chem. 251:2584–2591.

    PubMed  CAS  Google Scholar 

  • Cain, D. F. , and Davies, R. E. , 1962, Breakdown of ATP during a single contraction of working muscle, Biochem. Biophys. Res. Commun. 8:361–366.

    PubMed  CAS  Google Scholar 

  • Cande, Z. W. , 1983, Creatine kinase role in anaphase chromosome movement, Nature 304:557 – 558.

    PubMed  CAS  Google Scholar 

  • Caplan, A. I. , Fiszman, M. Y. , and Eppenberger, H. M. , 1983, Molecular and cell isoforms during development, Science 221:921–927.

    PubMed  CAS  Google Scholar 

  • Caravatti, M., and Perriard, J. C. , 1981, Turnover of the creatine kinase subunits in chicken myogenic cell cultures and fibroblasts, Biochem. J. 196:377–382.

    PubMed  CAS  Google Scholar 

  • Caravatti, M. , Perriard, J. C. , and Eppenberger, H. M. , 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken, J. Biol. Chem. 254:1388 – 1394.

    PubMed  CAS  Google Scholar 

  • Carlson, F. D. , and Siger, A. J. , 1960, The mechanochemistry of muscle contraction, J. Gen. Physiol. 44:33–59.

    PubMed  CAS  Google Scholar 

  • Carlson, F. D. , and Wilkie, D. R. , 1974, in: Muscle Physiology (W. D. McElroy, and C. P. Swanson, eds. ), pp. 87–105, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Carlsson, E. , Kjörell, U. , Thornell, L. E. , Lambertsson, A. , and Strehler, E. , 1982, Differentiation of the myofibrils and the intermediate filament system during postnatal development of the rat heart, Eur. J. Cell Biol. 27:62–73.

    PubMed  CAS  Google Scholar 

  • Carpenter, C. , Mohan, C. , and Bessman, S. P. , 1983, Inhibition of protein and lipid synthesis in muscle by 2,4-dinitrofluorobenzene, an inhibitor of creatine kinase, Biochem. Biophys Acta 111:884–889.

    CAS  Google Scholar 

  • Cohen, S. M. , and Burt, C. , T. , 1977, P nuclear magnetic relaxations of phospho-creatine in intact muscle: Determination of intracellular free magnesium, Proc. Natl. Acad. Sci. USA 74:4271–4275.

    PubMed  CAS  Google Scholar 

  • Cohen, A. , Buckingham, M. , and Gros, F. , 1978, A modified assay procedure for revealing the M- form of creatine kinase in cultured muscle cells, Exp. Cell Res. 115:204–207.

    Google Scholar 

  • Dawson, M. J. , Gadian, D. G. , and Wilkie, D. R. , 1977, Contraction and recovery of living muscles studied by P-NMR, J. Physiol. (Land. ) 267:703–735.

    CAS  Google Scholar 

  • Dhalla, N. S. , Yates, J. C. , Walz, D. A. , McDonald, V. A. , and Olson, R. E. , 1972, Correlation between changes in the endogenous energy stores and myocardial function due to hypoxia in the isolated perfused rat heart, Can. J. Physiol. Pharmacol. 50:333–345.

    PubMed  CAS  Google Scholar 

  • Dhanarajan, Z. C. , and Atkinson, B. G. , 1980, M-line protein preparation from frog skeletal muscle: Isolation and localization of an M-line protein and a 105,000 dalton polypeptide contaminant, Can. J. Biochem. 58:516–526.

    PubMed  CAS  Google Scholar 

  • Doetschman, T. C. , and Eppenberger, H. M. , 1984, Comparison of M-line and other myofibrillar components during reversible phorbol ester treatment, Eur. J. Cell Biol. 33:265–274.

    PubMed  CAS  Google Scholar 

  • Eaton, B. , and Pepe, F. A. , 1972, M-band protein. Two components isolated from chicken breast muscle, J. Cell Biol. 55:681–695.

    PubMed  CAS  Google Scholar 

  • Eckert, B. S. , Koons, S. T. , Schantz, A. W. , and Zobel, C. R. , 1980, Association of creatine Phosphokinase with the cytoskeleton of cultured mammalian cells, J. Cell Biol. 86:1–5.

    PubMed  CAS  Google Scholar 

  • Eisenberg, E. , and Moos, C. , 1970, Actin activation of HMM ATPase. Dependence on ATP and actin concentration, J. Biol. Chem. 244:2451–2456.

    Google Scholar 

  • Eisenberg, B. R. , Mathias, R. T. , and Gilai, A. , 1979, Intracellular localization of markers within injected or cut frog muscle fibers, Am. J. Physiol. 237(1):C50–C55.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H. M. , Eppenberger, M. E. , Richterich, R. , and Aebi, H. , 1964, The ontogeny of CK-isoenzymes, Dev. Biol. 10:1 – 16.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H. M. , Dawson, D. M. , and Kaplan, N. O. , 1967, The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues, J. Biol. Chem. 242:204–209.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H. M. , Perriard, J. C. , Rosenberg, U. , and Strehler, E. E. , 1981, The Mr 165,000 M-protein myomesin: Specific protein of cross-striated muscle cells, J. Cell Biol. 89:185–193.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H. M. , Perriard, J. C. , and Wallimann, T. , 1983, Analysis of creatine kinase isoenzymes during muscle differentiation, in: Isoenzymes: Current Topics in Biological and Medical Research (M. Rattazzi, J. C. Scandalios, and G. S. Whitt, eds. ), Vol. 7, pp. 19–38, Alan R. Liss, New York.

    Google Scholar 

  • Erickson-Viitanen, S. , Viitanen, P. , Geiger, P. J. , Yang, W. C. T. , and Bessman, S. P. , 1982a, Compartmentation of mitochondrial creatine Phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors, J. Biol. Chem. 257:14395–14404.

    PubMed  CAS  Google Scholar 

  • Erickson-Viitanen, S. , Geiger, P. J. , Viitanen, P. , and Bessman, S. P. , 1982b, Compartmentation of mitochondrial creatine Phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation, J. Biol. Chem. 257:14405–14411.

    PubMed  CAS  Google Scholar 

  • Etlinger, J. D. , Zak, R. , and Fischman, D. A. , 1976, Compositional studies of myofibrils from rabbit striated muscle, J. Cell Biol. 68:123–141.

    PubMed  CAS  Google Scholar 

  • Ferenczi, M. A. , Goldman, Y. E. , and Simmons, R. M. , 1984, The dependence of force and shortening velocity on substrate concentration in skinned fibers from frog muscle, J. Physiol. (Lond. ) 350:519–543.

    CAS  Google Scholar 

  • Fitch, C. D. , 1977, Significance of abnormalities of creatine metabolism, in: Pathogenesis of Human Muscle Dystrophy (P. Rowland, ed. ), pp. 328–336, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Fitch, C. D. , and Shields, R. P., 1966, Creatine metabolism in skeletal muscle. Creatine movement across muscle membranes, J. Biol. Chem. 241:3611–3614.

    PubMed  CAS  Google Scholar 

  • Fitch, C. D. , Shields, R. P. , Payne, W. F. , and Dacus, J. M. , 1968, Creatine metabolism in skeletal muscle; specificity of the creatine entry process, J. Biol. Chem. 243:2024–2027.

    PubMed  CAS  Google Scholar 

  • Fitch, C. D. , Jellinek, M. , and Mueller, E. J. , 1974, Experimental depletion of creatine and phosphocreatine from skeletal muscle, J. Biol. Chem. 249:1060–1063.

    PubMed  CAS  Google Scholar 

  • Fitch, C. D. , Chevli, R. , and Jellinek, M. , 1979, Phosphocreatine does not inhibit rabbit muscle phosphofructokinase or pyruvate kinase, J. Biol. Chem. 254:11357–11359.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong, C. , and Porter, K. R. , 1964, Sarcolemmal invaginations constituting the T system in fish muscle fibers, J. Cell Biol. 22:675–696.

    PubMed  CAS  Google Scholar 

  • Fuseler, J. W. , Shay, J. W. , and Feit, H. , 1981, The role of intermediate (10 nm) filaments in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart, in: Cell and Muscle Motility (R. M. Dowben, and J. W. Shay, eds. ), Vol. 1, pp. 205–260, Plenum Press, New York.

    Google Scholar 

  • Gadian, D. G. , Radda, G. K. , Brown, T. R. , Chance, E. M. , Dawson, M. J. , and Wilkie, D. R. , 1981, The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer NMR, Biochem. J. 194:215–228.

    PubMed  CAS  Google Scholar 

  • Gellerich, F. , and Saks, V. , 1982, Control of heart mitochondrial oxygen consumption by creatine kinase: The importance of enzyme localization, Biochem. Biophys. Res. Commun. 105:1473–1481.

    PubMed  CAS  Google Scholar 

  • Goldman, Y. E. , Hibberd, M. G. , McCray, J. A. , and Trentham, D. R. , 1982, Relaxation of muscle fibers by photolysis of caged ATP, Nature 300:701–705.

    PubMed  CAS  Google Scholar 

  • Grosse, R. , Spitzer, E. , Kupriyanov, V. V. , Saks, V. A. , and Repke, K. R. H. , 1980, Coordinate interplay between (Na/K)-ATPase and CK optimizes (Na/K)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell, Biochim. Biophys. Acta 603:142–156.

    PubMed  CAS  Google Scholar 

  • Grove, B. K. , Kurer, V. , Lehner, C. , Doetschman, T. C. , Perriard, J. C. , and Eppenberger, H. M. , 1984, Monoclonal antibodies detect new 185,000 dalton muscle M-line protein, J. Cell Biol. 98:518–524.

    PubMed  CAS  Google Scholar 

  • Gudbjarnason, S. , Mathes, P. , and Ravens, K. G. , 1970, Functional compartmentation of ATP and creatine phosphate in heart muscle, J. Mol. Cell Cardiol. 1:325–339.

    PubMed  CAS  Google Scholar 

  • Hall, N. , and DeLuca, M. , 1975, Developmental changes in CK isoenzymes in neonatal mouse hearts, Biochem. Biophys. Res. Commun. 66:988–993.

    PubMed  CAS  Google Scholar 

  • Hochachka, P. W. , and Mommsen, T. P. , 1983, Protons and anaerobiosis, Science 219:1391–1397.

    PubMed  CAS  Google Scholar 

  • Hopkins, S. F. , McCutcheon, E. P. , and Wekstein, D. R. , 1973, Postnatal changes in rat ventricular function, Circ. Res. 32:685–691.

    PubMed  Google Scholar 

  • Houk, T. , and Putnam, S. V. , 1973, Location of the creatine kinase binding site of myosin, Biochem. Biophys. Res. Commun. 55:1271–1277.

    PubMed  CAS  Google Scholar 

  • Howald, H. , von Glutz, G. , and Billeter, R. , 1978, Energy stores and substrate utilization in muscle during exercise, in: Proceedings of the Third International Symposium on the Biochemistry of Exercise (F. Landry and W. A. R. Orban, eds. ), pp. 75–89, Symposia Specialists Inc. , Quebec, Canada.

    Google Scholar 

  • Huxley, H. E. , 1972, Molecular basis of contraction in cross-striated muscles, in: The Structure and Function of Muscle (G. H. Bourne, ed. ), Vol. 1, pp. 301–387, Academic Press, New York.

    Google Scholar 

  • Huxley, H. E. , 1973, Muscular contraction and cell motility, Nature 243:445–449.

    PubMed  CAS  Google Scholar 

  • Infante, A. A. , and Davies, R. E. , 1965, The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle, J. Biol. Chem. 240:3996–4001.

    PubMed  CAS  Google Scholar 

  • Iyengar, M. R. , and Iyengar, C. L. , 1980, Interaction of creatine kinase isoenzymes with beef heart mitochondrial membrane: A model for association of mitochondrial and cytoplasmic isoenzymes with inner membrane, Biochemistry 19:2176–2182.

    PubMed  CAS  Google Scholar 

  • Iyengar, M. R. , Iyengar, C. W. , Chen, H. Y. , Brinster, R. L. , Bornslaeger, E. , and Schultz, R. M. , 1983, Expression of creatine kinase isoenzymes during oogenesis and embryogenesis in the mouse, Dev. Biol. 96:263–268.

    PubMed  CAS  Google Scholar 

  • Jacobs, M. , Heldt, H. W. , and Klingenberg, M. , 1964, High activity of CK in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of CK, Biochem. Biophys. Res. Commun. 16:516–521.

    PubMed  CAS  Google Scholar 

  • Jacobus, W. E. , and Lehninger, A. L. , 1973, Creatine kinase of rat heart mitochondria, J. Biol. Chem. 248:4803–4810.

    PubMed  CAS  Google Scholar 

  • Karlsson, J. , and Saltin, B. , 1970, Lactate, ATP and CP in working muscles during exhaustive exercise in man, J. Appl. Physiol. 29:598–602.

    Google Scholar 

  • Kemp, R. G. , 1973, Inhibition of muscle pyruvate kinase by CP, J. Biol. Chem. 248:3963–3967.

    PubMed  CAS  Google Scholar 

  • Khan, M. A. , Holt, P. G. , Papadimitron, J. M. , Knight, J. O. , and Kakulas, B. A. , 1971, Histo- chemical localization of CK in skeletal muscle by tetrazolium and the incubation-film lead precipitation techniques, in: Basic Research in Myology, International Congress Series No. 294, pp. 96–101, Exerpta Medica, Amsterdam.

    Google Scholar 

  • Klingenberg, M. , 1979, the ADP/ATP shuttle of the mitochondrion, Trends Biochem. Sci. 4:249–252.

    CAS  Google Scholar 

  • Knappeis, G. G. , and Carlsen, F. , 1968, The ultrastructure of the M-line in skeletal muscle, J. Cell Biol. 38:202–211.

    PubMed  CAS  Google Scholar 

  • Koons, S. J. , Eckert, B. S. , and Zobel, C. R. , 1982, Immunofluorescence and inhibitor studies on creatine kinase and mitosis, Exp. Cell Res. 140:401–409.

    PubMed  CAS  Google Scholar 

  • Kundrat, E. , and Pepe, F. A. , 1971, The M-band. Studies with fluorescent antibody staining, J. Cell Biol. 48:340–347.

    PubMed  CAS  Google Scholar 

  • Kushmerick, M. J. , and Davies, R. E. , 1969, The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working satorious muscles, Proc. R. Soc. Lond. [Biol] 174:315–353.

    CAS  Google Scholar 

  • Kushmerick, M. J. , Brown, T. R. , and Crow, M. , 1980, Rates of ATP creatine phos- phoryltransferase reaction in skeletal muscle by P-NMR spectoscopy, Fed. Proc. 39:1934 (abst. ).

    Google Scholar 

  • Landon, M. F. , and Oriol, C. , 1975, Native conformation of m-protein, Biochem. Biophys. Res. Commun. 62:241–245.

    PubMed  CAS  Google Scholar 

  • Lee, Y. C. P. , and Visscher, M. B. , 1961, On the state of creatine in heart muscle, Proc. Natl. Acad. Sci. USA 47:1510–1514.

    PubMed  CAS  Google Scholar 

  • Levitsky, D. O. , Levchenko, T. S. , Saks, V. A. , Sharov, V. G. , and Smirnov, V. N. , 1977, The functional coupling between Ca2 +-ATPase and creatine Phosphokinase in heart muscle sarcoplasmic reticulum, Biochimia 42:1766–1773.

    Google Scholar 

  • Luther, P. , and Squire, J. M. , 1978, Three dimensional structure of the vertebrate muscle M- region, J. Mol. Biol. 125:313–324.

    PubMed  CAS  Google Scholar 

  • Luther, P. K. , Munroe, P. M. G. , and Squire, J. , 1981, Three-dimensional structure of the vertebrate muscle α-band. III. M-region structure and myosin filament symmetry, J. Mol. Biol. 151:703–730.

    PubMed  CAS  Google Scholar 

  • Mani, R. S. , and Kay, C. M. , 1976, Physicochemical studies of the M-line protein and its interaction with myosin fragments, Biochem. Biophys. Acta 453:391–399.

    PubMed  CAS  Google Scholar 

  • Mani, R. S. , and Kay, C. M. , 1978a, Isolation and characterization of the 165,000 dalton protein component of the M-line of rabbit skeletal muscle and its interaction with creatine kinase, Biochem. Biophys. Acta 533:248–256.

    PubMed  CAS  Google Scholar 

  • Mani, R. S. , and Kay, C. M. , 1978b, Interaction studies of the 165,000 dalton protein component of the M-line with S-2 subfragment of myosin, Biochem. Biophys. Acta 536:134–141.

    PubMed  CAS  Google Scholar 

  • Mani, R. S. , and Kay, C. M. , 1980, Ultrastructure studies on the binding of creatine kinase and the 165,000 Mr component to the M-band of muscle, J. Mol. Biol. 136:193–198.

    PubMed  Google Scholar 

  • Mani, R. S. , and Kay, C. M. , 1981, Fluorescence studies on the interaction of muscle M-line proteins, creatine kinase and the 165,000 dalton component, with each other and with myosin and myosin subfragments, Int. J. Biochem. 13:1197–1200.

    PubMed  CAS  Google Scholar 

  • Mani, R. S. , Herasymowych, O. S. , and Kay, C. M. , 1980, Physical, chemical and ultrastructural studies on muscle M-line proteins, Int. J. Biochem. 12:333–338.

    PubMed  CAS  Google Scholar 

  • Maruyama, K. , Matsubara, S. , Natori, R. , Nonomura, Y. , Kimura, S. , Ohaski, K. , Murakami, F. , Handa, S. , and Eguchi, G. , 1977, Connectin, an elastic protein of muscle, J. Biochem. (Tokyo) 82:317–337.

    Google Scholar 

  • Masaki, T. , and Takaiti, O. , 1972, Purification of M-protein, J. Biochem. 71:355–357.

    PubMed  CAS  Google Scholar 

  • Masaki, T. , and Takaiti, O. , 1974, M-protein, J. Biochem. (Tokyo) 75:367–380.

    CAS  Google Scholar 

  • Masaki, T. , Takaiti, O. , and Ebashi, S. , 1968, “M-substance,” a new protein constituting the M- line of myofibrils, J. Biochem. (Tokyo) 64:909–910.

    CAS  Google Scholar 

  • Maughan, D. W. , Low, E. S. , and Alpert, N. R. , 1978, Isometric force development, isotonic shortening and elasticity measurements from Ca2 + -activated ventricular muscle of the guinea pig, J. Gen. Physiol. 71:431–451.

    PubMed  CAS  Google Scholar 

  • McGilvery, R. W. , 1975, Metabolic adaptation to prolonged physical exercise, in: Proceedings of the Second International Symposium on the Biochemistry of Exercise, Magglingen, Switzerland, 1973 (H. Howald and J. R. Poortmans, eds. ), pp. 12–26, Birkhäuser Verlag, Basel.

    Google Scholar 

  • McGilvery, R. W. , and Murray, T. , 1974, Calculated equilibria of phosphorylcreatine and adenosine phosphates during utilization of high energy phosphates by muscle, J. Biol. Chem. 249:5845–5850.

    PubMed  CAS  Google Scholar 

  • Moos, C. , 1964, Can creatine kinase phosphorylate the myofibrillar-bound nucleotide of muscle?, Biochem. Biophys. Acta 93:85–97.

    PubMed  CAS  Google Scholar 

  • Moreadith, R. W. , and Jacobus, W. E. , 1982, Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to adenine nucleotide translocase, J. Biol. Chem. 257:899–905.

    PubMed  CAS  Google Scholar 

  • Morimoto, K. , and Harrington, W. F. , 1972, Isolation and physical properties of an M-line protein from skeletal muscle, J. Biol. Chem. 247:3052–3061.

    PubMed  CAS  Google Scholar 

  • Naegle, S. , 1968, Die Abhängigkei der CP- und ATP-Diffusion vom CK Gleichgewicht und deren Bedeutung für den Energietransport in der Muskelzelle, Dissertation, University of Wurzburg, Wurzburg, Germany.

    Google Scholar 

  • Naegle, S. , 1970, Die Bedeutung von CP und ATP im Hinblick auf Energiebereitstellung, -transport und -Verwertung im normalen und insuffizienten Herzmuskel, Klin. Wochenschr. 48:332–341.

    CAS  Google Scholar 

  • Neurohr, K. J. , Gollin, G. , Barrett, E. J. , and Shulman, R. G. , 1983, In vivo P-NMR studies of myocardial high energy phosphate metabolism during anoxia and recovery, FEBS Lett. 159:207–210.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A. , Beis, I. , Leech, A. R. , and Zammit, V. A. , 1978, The role of creatine kinase and arginine kinase in muscle, Biochem. J. 172:533–537.

    PubMed  CAS  Google Scholar 

  • Niederman, R. , and Peters, L. K. , 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol. 161:505–517.

    PubMed  CAS  Google Scholar 

  • Norwood, W. I. , Ingwall, J. S. , Norwood, C. R. , and Fossel, E. T. , 1983, Developmental changes of creatine kinase metabolism in rat brain, Am. J. Physiol. 244:C205–C210.

    PubMed  CAS  Google Scholar 

  • Nunally, R. L. , and Hollis, D. P. , 1979, Adenosine triphosphate compartmentation in living hearts: A 31P-NMR saturation transfer study, Biochemistry 18:3642–3646.

    Google Scholar 

  • Offer, G. , 1972, C-protein and the periodicity in the thick filaments of vertebrate skeletal muscle, Cold Spring Harbor Symp. Quant. Biol. 37:87–93.

    Google Scholar 

  • Oguchi, M. , Gerth, E. , Fitzgerald, B. , and Park, J. H. , 1973, Regulation of glyceraldehyde-3- phosphate dehydrogenase by phosphocreatine and adenosine triphosphate, J. Biol. Chem. 248:5571–5576.

    PubMed  CAS  Google Scholar 

  • Ottaway, J. H. , 1967, Evidence for binding of cytoplasmic CK to structural elements in heart muscle, Nature 215:521–522.

    PubMed  CAS  Google Scholar 

  • Palmer, E. G. , 1975, Antibody localization studies of the M-line in striated muscle, Can. J. Zool. 53:788–799.

    PubMed  CAS  Google Scholar 

  • Pardo, J. V. , D’Angelo, S. J. , and Craig, S. W. , 1983, A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma, Proc. Natl. Acad. Sci. USA 80:1008–1012.

    PubMed  CAS  Google Scholar 

  • Paul, R. J. , 1983, Functional compartmentation of oxidative and glycolytic metabolism in vascular smooth muscle, Am. J. Physiol. 244. C399–409.

    PubMed  CAS  Google Scholar 

  • Pepe, F. A. , 1971, The structure of the myosin filament of striated muscle, in: Progr. Biophys. Molec. Biol. , Vol. 22 (J. A. V. Butler and D. Noble, eds. ), pp. 77–96.

    Google Scholar 

  • Perriard, J. C. , 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken, J. Biol. Chem. 254:7036–7041.

    PubMed  CAS  Google Scholar 

  • Perriard, J. C. , Caravatti, M. , Perriard, E. , and Eppenberger, H. M. , 1978a, Quantitation of creatine kinase isoenzyme transitions in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption, Arch. Biochem. Biophys. 191:90–100.

    PubMed  CAS  Google Scholar 

  • Perriard, J. C. , Perriard, E. R. , and Eppenberger, H. M. , 1978b, Detection and relative quantitation of mRNA for creatine kinase isoenzymes in RNA from myogenic cell cultures and embryonic chicken tissue, J. Biol. Chem. 253:6529–6535.

    PubMed  CAS  Google Scholar 

  • Perry, S. V. , 1952, The bound nucleotide of the isolated myofibril, Biochem. J. 51:495–499.

    PubMed  CAS  Google Scholar 

  • Perry, S. V. , 1954, Creatine Phosphokinase and the enzymic and contractile properties of the isolated myofibril, Biochem. J. 57:427–433.

    PubMed  CAS  Google Scholar 

  • Pierobon-Bormioli, S. , 1981, Transverse sarcomere filamentous systems: “Z- and M-cables,” J. Muscle Res. Cell Motil. 2:401–413.

    Google Scholar 

  • Porzio, M. A. , Pearson, A. M. , and Cornforth, D. P. , 1979, M-line protein: Presence of two non-equivalent high molecular weight components, Meat Sci. 3:31–41.

    PubMed  CAS  Google Scholar 

  • Roberts, R. , 1980, Purification and characterization of mitochondrial creatine kinase, in: Heart Creatine Kinase: The Integration of Isozymes for Energy Distribution (W. E. Jacobus, and J. C. Ingwall, eds. ), pp. 31–47, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Roberts, R. , and Grace, A. M., 1980, Purification of mitochondrial creatine kinase. Biochemical and immunological characterization, J. Biol. Chem. 255:2870–2877.

    PubMed  CAS  Google Scholar 

  • Roos, A. , and Boron, W. F. , 1981, Intracellular pH, Physiol. Rev. 61:296–334.

    PubMed  CAS  Google Scholar 

  • Rosenberg, U. B. , Kunz, G. , Frischauf, A. , Lehrach, H. , Mähr, R., Eppenberger, H. M. , and Perriard, J. C., 1982, Molecular cloning and expression during myogenesis of sequences coding for M-creatine kinase, Proc. Natl. Acad. Sci. USA 79:6589–6592.

    PubMed  CAS  Google Scholar 

  • Saks, V. A. , Chernousova, G. B. , Gukovsky, D. E. , Smirnov, V. N. , and Chazov, E. I. , 1975, Studies of energy transport in heart cells. Mitochondrial CK: Kinetic properties and regulatory action of Mg2+ ions, Eur. J. Biochem. 57:273–290.

    PubMed  CAS  Google Scholar 

  • Saks, V. A. , Chernousova, G. B. , Vetter, R. , Smirnov, V. N. , and Chazov, E. I. , 1976a, Kinetic properties and the functional role of particulate MM-isoenzyme of creatine kinase bound to heart muscle myofibrils, FEBS Lett. 262:293–296.

    Google Scholar 

  • Saks, V. A. , Lipina, N. V. , Smirnov, V. N. , and Chazov, E. I. , 1976b, Studies of energy transport in heart cells: The functional coupling between mitochondrial CK and ATP-ADP trans- locase: Kinetic evidence, Arch. Biochem. Biophys. 173:34–41.

    PubMed  CAS  Google Scholar 

  • Saks, V. A. , Lipina, N. V. , Sharov, V. G. , Smirnov, V. N. , Chazov, E. I. , and Grosse, R. , 1977, The localization of the MM-isoenzyme of creatine kinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na/K) ATPase, Biochim. Biophys. Acta 465:550–558.

    PubMed  CAS  Google Scholar 

  • Saks, V. A. , Rosenstraukh, L. V. , Smirnov, V. N. , and Chazov, E. I. , 1978, Role of creatine Phosphokinase in cellular function and metabolism, Can. J. Physiol. Pharmacol. 56:691–706.

    PubMed  CAS  Google Scholar 

  • Saks, V. A. , Kupriyanov, V. V. , Elizarova, E. V. , and Jacobus, W. E. , 1980, Studies of energy transport in heart cells. The importance of CK localization for the coupling of mitochondrial CP production to oxidative phosphorylation, J. Biol. Chem. 255:755–763.

    PubMed  CAS  Google Scholar 

  • Savabi, F. , Geiger, P. J. , and Bessman, S. P. , 1983, Kinetic properties and functional role of creatine Phosphokinase in glycerinated muscle fibers. Further evidence for compartmenta- tion, Biochem. Biophys. Res. Commun. 114:785–790.

    PubMed  CAS  Google Scholar 

  • Schlösser, T. , Wallimann, T. , and Eppenberger, H. M., 1982, Physiological significance of M-line- bound creatine kinase (CK), Experientia 38:731.

    Google Scholar 

  • Scholte, H. R. , 1973, On the triple localization of creatine kinase in heart and skeletal muscle cells, Biochim. Biophys. Acta 305:413–427.

    PubMed  CAS  Google Scholar 

  • Scholte, H. R. , Weijers, P. J. , and Wit-Peeters, E. M. , 1973, Localization of mitochondrial creatine kinase and its use for the determination of sidedness of submitochondrial particles, Biochim. Biophys. Acta 291:764–773.

    PubMed  CAS  Google Scholar 

  • Seraydarian, W. , and Abbott, B. C. , 1976, The role of the creatine-phosphorylcreatine system in muscle. /. Mol. Cell. Cardiol. 8:741–746.

    CAS  Google Scholar 

  • Seraydarian, K. , Mommaerts, W. F. M. M. , and Wallner, A. , 1962, The amount and compartmen- talisation of ADP in muscle, Biochim. Biophys. Acta. 65:443–460.

    PubMed  CAS  Google Scholar 

  • Seraydarian, M. W. , Harary, I. , and Sato, E. D. , 1968, In vitro studies of beating heart cells in culture. The ATP level and contraction of heart cells, Biochem. Biophys. Acta 162:114–423.

    Google Scholar 

  • Seraydarian, M. W. , Sato, E. D. , Savagean, M. , and Harary, I. , 1969, In vitro studies of beating heart cells in culture. The utilization of ATP and CP in oligomycin and 2-deoxyglucose inhibited cells, Biochim. Biophys. Acta 180:264–270.

    PubMed  CAS  Google Scholar 

  • Sharov, V. G. , Saks, V. A. , Smirnov, V. N. , and Chazov, E. I. , 1977, An electron microscopic histochemical investigation of the localization of creatine kinase in heart cells, Biochim. Biophys. Acta 468:495–501.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P. , and Spudich, J. A. , 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature 303:31–35.

    PubMed  CAS  Google Scholar 

  • Sjöström, M. , and Squire, J. M., 1977a, Fine structure of the α-band in cryo-sections, J. Mol. Biol. 109:49–68.

    PubMed  Google Scholar 

  • Sjöström, M. , and Squire, J. M., 1977b, Cryo-ultramicrotomy and myofibrillar fine structure: A review, J. Microsc. 111:239–278.

    PubMed  Google Scholar 

  • Sjöström, M. , Anquist, K. A. , Bylund, A. C. , Fiden, J. , Gustavson, L. , and Schersten, T., 1982, Morphometric analysis of human muscle fiber types, Muscle Nerve 5:538–553.

    PubMed  Google Scholar 

  • Sleep, J. A. , 1981, Single turnovers of ATP by myofibrils and actomyosin-S-1, Biochemistry 20:5043–5051.

    Google Scholar 

  • Sommer, J. R. , and Johnson, A. , 1969, The ultrastructure of frog and chicken cardiac muscle, Z. Zellforsch. 98:437–468.

    PubMed  CAS  Google Scholar 

  • Starr, R. , and Offer, G. , 1971, Polypeptide chains of intermediate molecular weight in myosin preparations, FEBS Lett. 15:40–44.

    PubMed  CAS  Google Scholar 

  • Starr, R. , and Offer, G. , 1983, H-protein and X-protein. Two new components of the thick filaments of vertebrate skeletal muscle, J. Mol. Biol. 170:675–698.

    PubMed  CAS  Google Scholar 

  • Street, S. F. , 1983, Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters, J. Cell. Physiol. 114:346–364.

    PubMed  CAS  Google Scholar 

  • Strehler, E. E. , Pelloni, G. , Heizmann, C. W. , and Eppenberger, H. M. , 1980, Biochemical and ultrastructural aspects of Mr 165 000 M-protein in cross-striated chicken muscle, J. Cell Biol. 86:775–783.

    PubMed  CAS  Google Scholar 

  • Strehler, E. E. , Carlsson, E. , Eppenberger, H. M. , and Thornell, L. E. , 1983, Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immu-nocytochemistry and ultramicrotomy, J. Mol. Biol. 166:141–158.

    PubMed  CAS  Google Scholar 

  • Stromer, M. H. , Hartshorne, D. J. , Mueller, H. , and Rice, R. V. , 1969, The effect of various protein fractions on Z- and M-line reconstitution, J. Cell Biol. 40:167–178.

    PubMed  CAS  Google Scholar 

  • Taylor, E. W. , 1972, Chemistry of muscle contraction, Annu. Rev. Biochem. 41:577–616.

    PubMed  CAS  Google Scholar 

  • Thornell, L. -E. , 1980, Direct correlative physiological, histochemical and ultrastructural studies on muscle fiber types, Muscle Nerve 3:267a.

    Google Scholar 

  • Thornell, L. -E. , and Carlsson, E. , 1984, Differentiation of myofibrils and the M-band structure in developing cardiac tissues and skeletal muscle, in: Developmental Processes in Normal and Diseased Muscle, Vol. 9, Experimental Biology and Medicine (H. M. Eppenberger and J. C. Perriard, eds. ), pp. 141–147, Karber Basel, New York.

    Google Scholar 

  • Trinick, J. , and Lowey, S. , 1977, M-protein from chicken pectoralis muscle: Isolation and characterization, J. Mol. Biol. 113:343–368.

    PubMed  CAS  Google Scholar 

  • Turner, D. C. , and Eppenberger, H. M. ,1974, Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements, Enzyme 15:224–238.

    Google Scholar 

  • Turner, D. C. , Wallimann, T. , and Eppenberger, H. M. , 1973, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase, Proc. Natl. Acad. Sci. USA 70:702–705.

    PubMed  CAS  Google Scholar 

  • Turner, D. C. , Maier, V. , and Eppenberger, H. M. , 1974, Creatine Kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells, Dev. Biol. 37:63–89.

    PubMed  CAS  Google Scholar 

  • Turner, D. C. , Gmür, R. , Siegrist, M. , Burckhardt, E. , and Eppenberger, H. M., 1976a, Differentiation in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures, Dev. Biol. 48:258–283.

    PubMed  CAS  Google Scholar 

  • Turner, D. C. , Gmür, R. , Lebherz, H. G. , Siegrist, M. , Wallimann, T. , and Eppenberger, H. M. , 1976b, Differentiation in cultures derived from embryonic chicken muscle. II. Phosphorylase histochemistry and fluorescent antibody staining for creatine kinase and aldolase, Dev. Biol. 48:284–307.

    PubMed  CAS  Google Scholar 

  • Uyeda, K. , and Racker, E. , 1965, Regulatory mechanisms in carbohydrate metabolism, J. Biol. Chem. 240:4682–4693.

    PubMed  CAS  Google Scholar 

  • Veech, R. , Lawson, J. W. R. , Cornell, N. W. , and Krebs, H. , 1979, Cytosolic phosphorylation potential, J. Biol. Chem. 254:6538–6547.

    PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R. , and Vassort, G. , 1980, Electrical and mechanical activities of frog heart during energetic deficiency, J. Muscle Res. Cell Motil. 1:429–444.

    CAS  Google Scholar 

  • Vial, C. , Godinot, G. , and Gautheron, D. , 1972, Creatine kinase in pig heart mitochondria. Properties and role in phosphate potential regulation, Biochemie 54:843–852.

    CAS  Google Scholar 

  • Wallimann, T. , 1975, Creatinekinase-Isoenzyme and Myofibrillen-Struktur, Ph. D. thesis no 5437, Abstract in English, Eidgenössische Technische Hochschule, Zürich, Switzerland.

    Google Scholar 

  • Wallimann, T. , Turner, D. C. , and Eppenberger, H. M. , 1975, Creatine kinase and M-line structure, in: Proteins of Contractile Systems (E. N. A. Biro, ed. ), Vol. 31, pp. 119–124, Akademia Kiado, Budapest.

    Google Scholar 

  • Wallimann, T. , Turner, D. C. , and Eppenberger, H. M. , 1977a, Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle, J. Cell Biol. 75:297–317.

    PubMed  CAS  Google Scholar 

  • Wallimann, T. , Kuhn, H. J. , Pelloni, G. , Turner, D. C. , and Eppenberger, H. M. , 1977b, Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle, J. Cell Biol. 75:318–325.

    PubMed  CAS  Google Scholar 

  • Wallimann, T. , Pelloni, G. W. , Turner, D. C. , and Eppenberger, H. M. , 1978, Monovalent antibodies against MM-creatine kinase remove the M-line from myofibrils, Proc. Natl. Acad. Sci. USA 75:4296–4300.

    PubMed  CAS  Google Scholar 

  • Wallimann, T. , and Szent-Györgyi, A. G., 1981, An immunological approach to myosin light chain function in thick filament-linked regulation. II. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain, Biochemistry 20:1188–1197.

    CAS  Google Scholar 

  • Wallimann, T. , Schlösser, T. , and Eppenberger, H. M., 1982, ATP-regeneration potential of M-line-bound creatine kinase. Physiological significance, J. Muscle Res. Cell Motil. 3:503.

    Google Scholar 

  • Wallimann, T. , Doetschman, T. C. , and Eppenberger, H. M. , 1983a, A novel staining of skeletal muscle M-lines upon incubation with low concentrations of antibodies against MM-creatine kinase, J. Cell Biol. 96:1772–1779.

    PubMed  CAS  Google Scholar 

  • Wallimann, T. , Moser, H. , and Eppenberger, H. M. , 1983b, Isoenzyme specific localization of M-line-bound creatine kinase in myogenic cells, J. Muscle Res. Cell Motil. 4:429–441.

    PubMed  CAS  Google Scholar 

  • Wallimann, T. , Schlösser, T. , and Eppenberger, H. M., 1984, Function of M-line-bound creatine kinase as intramyofibrillar ATP-regenerator at the receiving end of the phosphoryl-creatine shuttle in muscle, J. Biol. Chem. 259:5238–5246.

    PubMed  CAS  Google Scholar 

  • Wang, K. , 1982, Myofilamentous and myofibrillar connections: Role of titin, nebulin and intermediate filaments, in: Muscle Development and Cellular Control (M. L. Pearson and H. F. Epstein, eds. ), pp. 439–452, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Wang, K. , 1983, Membrane skeleton of skeletal muscle, Nature 304:485–486.

    PubMed  CAS  Google Scholar 

  • Wang, K. , and Ramirez-Mitchell, R. , 1983, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J. Cell Biol. 96:562–570.

    PubMed  CAS  Google Scholar 

  • Wang, K. , and Williamson, C. L. , 1980, Identification of an N2-line protein of striated muscle, Proc. Natl. Acad. Sci. USA 77:3254–3258.

    PubMed  CAS  Google Scholar 

  • Wang, K. , McClure, J. , and Tu, A. , 1979, Titin: Major myofibrillar component of striated muscle, Proc. Natl. Acad. Sci. USA 76:3698–3702.

    PubMed  CAS  Google Scholar 

  • West, J. J. , Nagy, B. , and Gergely, J. , 1967, Free ADP as an intermediary in the phosphorylation by CP of ADP bound to actin, J. Biol. Chem. 242:1140–1145.

    PubMed  CAS  Google Scholar 

  • Wilson, J. E. , 1978, Ambiquitous enzymes: Variation in intracellular distribution as a regulatory mechanism, TIBS3:124–125.

    Google Scholar 

  • Woodhead, J. L. , and Lowey, S. , 1983, An in vitro study of the interactions of skeletal muscle M-protein and creatine kinase with myosin and its subfragments, J. Mol. Biol. 168:831–846.

    PubMed  CAS  Google Scholar 

  • Yagi, K. , and Mase, R. , 1962, Coupled reaction of creatine kinase and myosin ATPase, J. Biol. Chem. 237:397–403.

    PubMed  CAS  Google Scholar 

  • Yang, W. C. T. , Geiger, P. J. , Bessman, S. P. , and Borrebaek, B. , 1977, Formation of creatine phosphate from creatine and 32P-labeled ATP by isolated rabbit heart mitochondria, Bio-chem. Biophys. Res. Commun. 76:882–887.

    CAS  Google Scholar 

  • Zammit, V. A. , and Newsholme, E. A. , 1976, The maximum activities of hexokinase, Phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, octopine dehydrogenase, nucleoside diphosphate kinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates, Biochem. J. 160:447–462.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wallimann, T., Eppenberger, H.M. (1985). Localization and Function of M-Line-Bound Creatine Kinase. In: Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4723-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4723-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4725-6

  • Online ISBN: 978-1-4757-4723-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics