Localization and Function of M-Line-Bound Creatine Kinase

M-Band Model and Creatine Phosphate Shuttle
  • Theo Wallimann
  • Hans M. Eppenberger


The electron-opaque M line or M band that transverses the center of the A band is one of the striking features of cross-striated muscle myofibrils seen with the electron microscope (Figs. 1–5). It appears to be the only myofibrillar structure that connects thick filaments directly to each other. After in situ fixation of skeletal muscle, dehydration, and standard embedding for electron microscopic examination, the M-band structure appears as a complex structure made up of several transverse elements connecting the thick filaments through the bare zone region and giving rise to the typical hexagonal thick-filament lattice (Franzini-Armstrong and Porter, 1964; Knappeis and Carlsen, 1968; Pepe, 1971) (see Fig. 1). High-resolution electron microscopy in combination with image analysis of ultrathin transverse sections of muscle fiber bundles shows a hexagonal lattice of thick filaments interconnected by primary m-bridge structures (nomenclature according to Sjöström and Squire, 1977a,b) (Fig. 1, M4) often seen to have a circular thickening in the middle (Luther and Squire, 1978; Luther et al, 1981). At a different level in transverse sections, Y-shaped secondary m bridges (M3) connecting the nodular enlargements (MF) are observed as well (Luther and Squire, 1978; Luther et al., 1981) (Fig.1).


Creatine Kinase Thin Filament Myosin Head Thick Filament Myofibrillar ATPase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuld, R. A. , and Brierley, G. P. , 1977, Interaction between the creatine kinase of heart mitochondria and oxidative phosphorylation, J. Mol. Cell Cardiol. 9:875–896.PubMedGoogle Scholar
  2. Anversa, P. , Olivetti, G. , Bracchi, P. G. , and Loud, A. V. , 1981, Postnatal development of the M- band in rat cardiac myofibrils, Circ. Res. 48:561–568.PubMedGoogle Scholar
  3. Arnold, H. , and Pette, D. , 1970, Binding of aldolase and TDH to F-actin and modification of catalytic properties of aldolase, Eur. J. Biochem. 15:360–366.PubMedGoogle Scholar
  4. Arps, P. J. , and Harrington, W. F. , 1982, Purification and properties of rabbit muscle M-line, Biophys. J. 37:45a.Google Scholar
  5. Ashby, B. , and Frieden, D. , 1977, Interaction of AMP aminohydrolase with myosin and its subfragments, J. Biol. Chem. 252:1869–1872.PubMedGoogle Scholar
  6. Ashby, B. , Frieden, C. , and Bischoff, R. , 1979, Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle, J. Cell Biol. 81:361–373.PubMedGoogle Scholar
  7. Baldwin, K. M. , Cooke, D. A. , and Cheadle, W. G. , 1977, Enzyme alterations in neonatal heart muscle during development, J. Mol. Cell Cardiol. 9:651–660.PubMedGoogle Scholar
  8. Barany, M. , and Barany, K. , 1972, A proposal for the mechanism of contraction in intact frog muscle, Cold Spring Harbor Symp. Quant. Biol. 37:157–168.Google Scholar
  9. Barrantes, F. J. , Mieskes, G. , and Wallimann, T. , 1983a, A membrane-associated CK identified as an acidic species of the non-receptor, peripheral v-proteins in Torpedo acetylcholine receptor membranes, FEBS Lett. 152:270–276.PubMedGoogle Scholar
  10. Barrantes, F. J. , Mieskes, G. , and Wallimann, T. , 1983b, CK-activity in the Torpedo electrolyte and in the non-receptor, peripheral v-proteins from acetylcholine receptor-rich membranes, Proc. Natl. Acad. Sci. USA 80:5440–5444.Google Scholar
  11. Baskin, R. J. , and Deamer, D. W. , 1970, A membrane-bound creatine Phosphokinase in fragmented sarcoplasmic reticulum, J. Biol. Chem. 245:1345–1347.PubMedGoogle Scholar
  12. Bessmann, S. P. , and Fonyo, A. , 1966, The possible role of the mitochondrial-bound creatine kinase in regulation of mitochondrial respiration, Biochem. Biophys. Res. Commun. 22:597–602.Google Scholar
  13. Bessman, S. P. , and Geiger, P. J. , 1981, Transport of energy in muscle. The phosphorylcreatine shuttle, Science 211:448–452.PubMedGoogle Scholar
  14. Bessman, S. P. , Yang, W. C. T. , Geiger, P. , and Erickson-Viitanen, S. , 1980, Intimate coupling of CK and myofibrillar ATPase, Biochem. Biophys. Res. Commun. 96:1414–1420.PubMedGoogle Scholar
  15. Booth, R. F. G. , and Clark, J. B. , 1978, Studies on the mitochondrial-bound form of rat brain creatine kinase, Biochem. J. 170:145–151.PubMedGoogle Scholar
  16. Borrebaek, B. , 1980, The lack of direct coupling between ATP/ADP-translocase and CK in isolated rabbit heart mitochondria, Arch. Biochem. Biophys. 203:827–829.PubMedGoogle Scholar
  17. Botts, J. , and Stone, M. , 1968, Kinetics of coupled enzymes: CK and myosin A, Biochemistry 7:2688–2696.PubMedGoogle Scholar
  18. Botts, J. , Stone, D. B. , Wang, A. T. L. , and Mendelson, R. A. , 1975, EPR and nanosecond fluorescence depolarisation studies on creatine kinase interaction with myosin and its fragments, J. Supramol. Struct. 3:141–145.PubMedGoogle Scholar
  19. Breckler, J. , and Lazarides, E. , 1982, Isolation of a new high Mr protein associated with desmin and vimentin filaments from avian embryonic skeletal muscle, J. Cell Biol. 92:795–806.PubMedGoogle Scholar
  20. Bronstein, W. W. , and Knull, H. R. , 1981, Interaction of muscle glycolytic enzymes with thin filament proteins, Can. J. Biochem. 59:494–499.PubMedGoogle Scholar
  21. Brown, T. R. , 1982, Is creatine Phosphokinase in equilibrium in skeletal muscle? Fed. Proc. 41:174–175.PubMedGoogle Scholar
  22. Brown, T. R. , Gadian, D. G. , Garlick, P. B. , Radda, G. K. , Seeley, P. J. , and Styles, P. , 1978, Creatine kinase activities in skeletal and cardiac muscle measured by saturation transfer NMR, in: Frontiers of Biological Energetics (P. L. Dutton, J. S. Leigh, and A. Scarpa, eds. ), Vol. 2, pp. 1341–1349, Academic Press, New York.Google Scholar
  23. Brumback, R. A. , Gerst, G. W. , and Knull, H. R. , 1983, High energy phosphate depletion in a model of defective muscle glycolysis, Muscle Nerve 6:52–55.PubMedGoogle Scholar
  24. Burt, C. T. , Glonek, T. , and Barany, M. , 1976, Analysis of phosphate metabolites, intracellular pH, and state of ATP in intact muscle by P-NMR, J. Biol. Chem. 251:2584–2591.PubMedGoogle Scholar
  25. Cain, D. F. , and Davies, R. E. , 1962, Breakdown of ATP during a single contraction of working muscle, Biochem. Biophys. Res. Commun. 8:361–366.PubMedGoogle Scholar
  26. Cande, Z. W. , 1983, Creatine kinase role in anaphase chromosome movement, Nature 304:557 – 558.PubMedGoogle Scholar
  27. Caplan, A. I. , Fiszman, M. Y. , and Eppenberger, H. M. , 1983, Molecular and cell isoforms during development, Science 221:921–927.PubMedGoogle Scholar
  28. Caravatti, M., and Perriard, J. C. , 1981, Turnover of the creatine kinase subunits in chicken myogenic cell cultures and fibroblasts, Biochem. J. 196:377–382.PubMedGoogle Scholar
  29. Caravatti, M. , Perriard, J. C. , and Eppenberger, H. M. , 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken, J. Biol. Chem. 254:1388 – 1394.PubMedGoogle Scholar
  30. Carlson, F. D. , and Siger, A. J. , 1960, The mechanochemistry of muscle contraction, J. Gen. Physiol. 44:33–59.PubMedGoogle Scholar
  31. Carlson, F. D. , and Wilkie, D. R. , 1974, in: Muscle Physiology (W. D. McElroy, and C. P. Swanson, eds. ), pp. 87–105, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  32. Carlsson, E. , Kjörell, U. , Thornell, L. E. , Lambertsson, A. , and Strehler, E. , 1982, Differentiation of the myofibrils and the intermediate filament system during postnatal development of the rat heart, Eur. J. Cell Biol. 27:62–73.PubMedGoogle Scholar
  33. Carpenter, C. , Mohan, C. , and Bessman, S. P. , 1983, Inhibition of protein and lipid synthesis in muscle by 2,4-dinitrofluorobenzene, an inhibitor of creatine kinase, Biochem. Biophys Acta 111:884–889.Google Scholar
  34. Cohen, S. M. , and Burt, C. , T. , 1977, P nuclear magnetic relaxations of phospho-creatine in intact muscle: Determination of intracellular free magnesium, Proc. Natl. Acad. Sci. USA 74:4271–4275.PubMedGoogle Scholar
  35. Cohen, A. , Buckingham, M. , and Gros, F. , 1978, A modified assay procedure for revealing the M- form of creatine kinase in cultured muscle cells, Exp. Cell Res. 115:204–207.Google Scholar
  36. Dawson, M. J. , Gadian, D. G. , and Wilkie, D. R. , 1977, Contraction and recovery of living muscles studied by P-NMR, J. Physiol. (Land. ) 267:703–735.Google Scholar
  37. Dhalla, N. S. , Yates, J. C. , Walz, D. A. , McDonald, V. A. , and Olson, R. E. , 1972, Correlation between changes in the endogenous energy stores and myocardial function due to hypoxia in the isolated perfused rat heart, Can. J. Physiol. Pharmacol. 50:333–345.PubMedGoogle Scholar
  38. Dhanarajan, Z. C. , and Atkinson, B. G. , 1980, M-line protein preparation from frog skeletal muscle: Isolation and localization of an M-line protein and a 105,000 dalton polypeptide contaminant, Can. J. Biochem. 58:516–526.PubMedGoogle Scholar
  39. Doetschman, T. C. , and Eppenberger, H. M. , 1984, Comparison of M-line and other myofibrillar components during reversible phorbol ester treatment, Eur. J. Cell Biol. 33:265–274.PubMedGoogle Scholar
  40. Eaton, B. , and Pepe, F. A. , 1972, M-band protein. Two components isolated from chicken breast muscle, J. Cell Biol. 55:681–695.PubMedGoogle Scholar
  41. Eckert, B. S. , Koons, S. T. , Schantz, A. W. , and Zobel, C. R. , 1980, Association of creatine Phosphokinase with the cytoskeleton of cultured mammalian cells, J. Cell Biol. 86:1–5.PubMedGoogle Scholar
  42. Eisenberg, E. , and Moos, C. , 1970, Actin activation of HMM ATPase. Dependence on ATP and actin concentration, J. Biol. Chem. 244:2451–2456.Google Scholar
  43. Eisenberg, B. R. , Mathias, R. T. , and Gilai, A. , 1979, Intracellular localization of markers within injected or cut frog muscle fibers, Am. J. Physiol. 237(1):C50–C55.PubMedGoogle Scholar
  44. Eppenberger, H. M. , Eppenberger, M. E. , Richterich, R. , and Aebi, H. , 1964, The ontogeny of CK-isoenzymes, Dev. Biol. 10:1 – 16.PubMedGoogle Scholar
  45. Eppenberger, H. M. , Dawson, D. M. , and Kaplan, N. O. , 1967, The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues, J. Biol. Chem. 242:204–209.PubMedGoogle Scholar
  46. Eppenberger, H. M. , Perriard, J. C. , Rosenberg, U. , and Strehler, E. E. , 1981, The Mr 165,000 M-protein myomesin: Specific protein of cross-striated muscle cells, J. Cell Biol. 89:185–193.PubMedGoogle Scholar
  47. Eppenberger, H. M. , Perriard, J. C. , and Wallimann, T. , 1983, Analysis of creatine kinase isoenzymes during muscle differentiation, in: Isoenzymes: Current Topics in Biological and Medical Research (M. Rattazzi, J. C. Scandalios, and G. S. Whitt, eds. ), Vol. 7, pp. 19–38, Alan R. Liss, New York.Google Scholar
  48. Erickson-Viitanen, S. , Viitanen, P. , Geiger, P. J. , Yang, W. C. T. , and Bessman, S. P. , 1982a, Compartmentation of mitochondrial creatine Phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors, J. Biol. Chem. 257:14395–14404.PubMedGoogle Scholar
  49. Erickson-Viitanen, S. , Geiger, P. J. , Viitanen, P. , and Bessman, S. P. , 1982b, Compartmentation of mitochondrial creatine Phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation, J. Biol. Chem. 257:14405–14411.PubMedGoogle Scholar
  50. Etlinger, J. D. , Zak, R. , and Fischman, D. A. , 1976, Compositional studies of myofibrils from rabbit striated muscle, J. Cell Biol. 68:123–141.PubMedGoogle Scholar
  51. Ferenczi, M. A. , Goldman, Y. E. , and Simmons, R. M. , 1984, The dependence of force and shortening velocity on substrate concentration in skinned fibers from frog muscle, J. Physiol. (Lond. ) 350:519–543.Google Scholar
  52. Fitch, C. D. , 1977, Significance of abnormalities of creatine metabolism, in: Pathogenesis of Human Muscle Dystrophy (P. Rowland, ed. ), pp. 328–336, Excerpta Medica, Amsterdam.Google Scholar
  53. Fitch, C. D. , and Shields, R. P., 1966, Creatine metabolism in skeletal muscle. Creatine movement across muscle membranes, J. Biol. Chem. 241:3611–3614.PubMedGoogle Scholar
  54. Fitch, C. D. , Shields, R. P. , Payne, W. F. , and Dacus, J. M. , 1968, Creatine metabolism in skeletal muscle; specificity of the creatine entry process, J. Biol. Chem. 243:2024–2027.PubMedGoogle Scholar
  55. Fitch, C. D. , Jellinek, M. , and Mueller, E. J. , 1974, Experimental depletion of creatine and phosphocreatine from skeletal muscle, J. Biol. Chem. 249:1060–1063.PubMedGoogle Scholar
  56. Fitch, C. D. , Chevli, R. , and Jellinek, M. , 1979, Phosphocreatine does not inhibit rabbit muscle phosphofructokinase or pyruvate kinase, J. Biol. Chem. 254:11357–11359.PubMedGoogle Scholar
  57. Franzini-Armstrong, C. , and Porter, K. R. , 1964, Sarcolemmal invaginations constituting the T system in fish muscle fibers, J. Cell Biol. 22:675–696.PubMedGoogle Scholar
  58. Fuseler, J. W. , Shay, J. W. , and Feit, H. , 1981, The role of intermediate (10 nm) filaments in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart, in: Cell and Muscle Motility (R. M. Dowben, and J. W. Shay, eds. ), Vol. 1, pp. 205–260, Plenum Press, New York.Google Scholar
  59. Gadian, D. G. , Radda, G. K. , Brown, T. R. , Chance, E. M. , Dawson, M. J. , and Wilkie, D. R. , 1981, The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer NMR, Biochem. J. 194:215–228.PubMedGoogle Scholar
  60. Gellerich, F. , and Saks, V. , 1982, Control of heart mitochondrial oxygen consumption by creatine kinase: The importance of enzyme localization, Biochem. Biophys. Res. Commun. 105:1473–1481.PubMedGoogle Scholar
  61. Goldman, Y. E. , Hibberd, M. G. , McCray, J. A. , and Trentham, D. R. , 1982, Relaxation of muscle fibers by photolysis of caged ATP, Nature 300:701–705.PubMedGoogle Scholar
  62. Grosse, R. , Spitzer, E. , Kupriyanov, V. V. , Saks, V. A. , and Repke, K. R. H. , 1980, Coordinate interplay between (Na/K)-ATPase and CK optimizes (Na/K)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell, Biochim. Biophys. Acta 603:142–156.PubMedGoogle Scholar
  63. Grove, B. K. , Kurer, V. , Lehner, C. , Doetschman, T. C. , Perriard, J. C. , and Eppenberger, H. M. , 1984, Monoclonal antibodies detect new 185,000 dalton muscle M-line protein, J. Cell Biol. 98:518–524.PubMedGoogle Scholar
  64. Gudbjarnason, S. , Mathes, P. , and Ravens, K. G. , 1970, Functional compartmentation of ATP and creatine phosphate in heart muscle, J. Mol. Cell Cardiol. 1:325–339.PubMedGoogle Scholar
  65. Hall, N. , and DeLuca, M. , 1975, Developmental changes in CK isoenzymes in neonatal mouse hearts, Biochem. Biophys. Res. Commun. 66:988–993.PubMedGoogle Scholar
  66. Hochachka, P. W. , and Mommsen, T. P. , 1983, Protons and anaerobiosis, Science 219:1391–1397.PubMedGoogle Scholar
  67. Hopkins, S. F. , McCutcheon, E. P. , and Wekstein, D. R. , 1973, Postnatal changes in rat ventricular function, Circ. Res. 32:685–691.PubMedGoogle Scholar
  68. Houk, T. , and Putnam, S. V. , 1973, Location of the creatine kinase binding site of myosin, Biochem. Biophys. Res. Commun. 55:1271–1277.PubMedGoogle Scholar
  69. Howald, H. , von Glutz, G. , and Billeter, R. , 1978, Energy stores and substrate utilization in muscle during exercise, in: Proceedings of the Third International Symposium on the Biochemistry of Exercise (F. Landry and W. A. R. Orban, eds. ), pp. 75–89, Symposia Specialists Inc. , Quebec, Canada.Google Scholar
  70. Huxley, H. E. , 1972, Molecular basis of contraction in cross-striated muscles, in: The Structure and Function of Muscle (G. H. Bourne, ed. ), Vol. 1, pp. 301–387, Academic Press, New York.Google Scholar
  71. Huxley, H. E. , 1973, Muscular contraction and cell motility, Nature 243:445–449.PubMedGoogle Scholar
  72. Infante, A. A. , and Davies, R. E. , 1965, The effect of 2,4-dinitrofluorobenzene on the activity of striated muscle, J. Biol. Chem. 240:3996–4001.PubMedGoogle Scholar
  73. Iyengar, M. R. , and Iyengar, C. L. , 1980, Interaction of creatine kinase isoenzymes with beef heart mitochondrial membrane: A model for association of mitochondrial and cytoplasmic isoenzymes with inner membrane, Biochemistry 19:2176–2182.PubMedGoogle Scholar
  74. Iyengar, M. R. , Iyengar, C. W. , Chen, H. Y. , Brinster, R. L. , Bornslaeger, E. , and Schultz, R. M. , 1983, Expression of creatine kinase isoenzymes during oogenesis and embryogenesis in the mouse, Dev. Biol. 96:263–268.PubMedGoogle Scholar
  75. Jacobs, M. , Heldt, H. W. , and Klingenberg, M. , 1964, High activity of CK in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of CK, Biochem. Biophys. Res. Commun. 16:516–521.PubMedGoogle Scholar
  76. Jacobus, W. E. , and Lehninger, A. L. , 1973, Creatine kinase of rat heart mitochondria, J. Biol. Chem. 248:4803–4810.PubMedGoogle Scholar
  77. Karlsson, J. , and Saltin, B. , 1970, Lactate, ATP and CP in working muscles during exhaustive exercise in man, J. Appl. Physiol. 29:598–602.Google Scholar
  78. Kemp, R. G. , 1973, Inhibition of muscle pyruvate kinase by CP, J. Biol. Chem. 248:3963–3967.PubMedGoogle Scholar
  79. Khan, M. A. , Holt, P. G. , Papadimitron, J. M. , Knight, J. O. , and Kakulas, B. A. , 1971, Histo- chemical localization of CK in skeletal muscle by tetrazolium and the incubation-film lead precipitation techniques, in: Basic Research in Myology, International Congress Series No. 294, pp. 96–101, Exerpta Medica, Amsterdam.Google Scholar
  80. Klingenberg, M. , 1979, the ADP/ATP shuttle of the mitochondrion, Trends Biochem. Sci. 4:249–252.Google Scholar
  81. Knappeis, G. G. , and Carlsen, F. , 1968, The ultrastructure of the M-line in skeletal muscle, J. Cell Biol. 38:202–211.PubMedGoogle Scholar
  82. Koons, S. J. , Eckert, B. S. , and Zobel, C. R. , 1982, Immunofluorescence and inhibitor studies on creatine kinase and mitosis, Exp. Cell Res. 140:401–409.PubMedGoogle Scholar
  83. Kundrat, E. , and Pepe, F. A. , 1971, The M-band. Studies with fluorescent antibody staining, J. Cell Biol. 48:340–347.PubMedGoogle Scholar
  84. Kushmerick, M. J. , and Davies, R. E. , 1969, The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working satorious muscles, Proc. R. Soc. Lond. [Biol] 174:315–353.Google Scholar
  85. Kushmerick, M. J. , Brown, T. R. , and Crow, M. , 1980, Rates of ATP creatine phos- phoryltransferase reaction in skeletal muscle by P-NMR spectoscopy, Fed. Proc. 39:1934 (abst. ).Google Scholar
  86. Landon, M. F. , and Oriol, C. , 1975, Native conformation of m-protein, Biochem. Biophys. Res. Commun. 62:241–245.PubMedGoogle Scholar
  87. Lee, Y. C. P. , and Visscher, M. B. , 1961, On the state of creatine in heart muscle, Proc. Natl. Acad. Sci. USA 47:1510–1514.PubMedGoogle Scholar
  88. Levitsky, D. O. , Levchenko, T. S. , Saks, V. A. , Sharov, V. G. , and Smirnov, V. N. , 1977, The functional coupling between Ca2 +-ATPase and creatine Phosphokinase in heart muscle sarcoplasmic reticulum, Biochimia 42:1766–1773.Google Scholar
  89. Luther, P. , and Squire, J. M. , 1978, Three dimensional structure of the vertebrate muscle M- region, J. Mol. Biol. 125:313–324.PubMedGoogle Scholar
  90. Luther, P. K. , Munroe, P. M. G. , and Squire, J. , 1981, Three-dimensional structure of the vertebrate muscle α-band. III. M-region structure and myosin filament symmetry, J. Mol. Biol. 151:703–730.PubMedGoogle Scholar
  91. Mani, R. S. , and Kay, C. M. , 1976, Physicochemical studies of the M-line protein and its interaction with myosin fragments, Biochem. Biophys. Acta 453:391–399.PubMedGoogle Scholar
  92. Mani, R. S. , and Kay, C. M. , 1978a, Isolation and characterization of the 165,000 dalton protein component of the M-line of rabbit skeletal muscle and its interaction with creatine kinase, Biochem. Biophys. Acta 533:248–256.PubMedGoogle Scholar
  93. Mani, R. S. , and Kay, C. M. , 1978b, Interaction studies of the 165,000 dalton protein component of the M-line with S-2 subfragment of myosin, Biochem. Biophys. Acta 536:134–141.PubMedGoogle Scholar
  94. Mani, R. S. , and Kay, C. M. , 1980, Ultrastructure studies on the binding of creatine kinase and the 165,000 Mr component to the M-band of muscle, J. Mol. Biol. 136:193–198.PubMedGoogle Scholar
  95. Mani, R. S. , and Kay, C. M. , 1981, Fluorescence studies on the interaction of muscle M-line proteins, creatine kinase and the 165,000 dalton component, with each other and with myosin and myosin subfragments, Int. J. Biochem. 13:1197–1200.PubMedGoogle Scholar
  96. Mani, R. S. , Herasymowych, O. S. , and Kay, C. M. , 1980, Physical, chemical and ultrastructural studies on muscle M-line proteins, Int. J. Biochem. 12:333–338.PubMedGoogle Scholar
  97. Maruyama, K. , Matsubara, S. , Natori, R. , Nonomura, Y. , Kimura, S. , Ohaski, K. , Murakami, F. , Handa, S. , and Eguchi, G. , 1977, Connectin, an elastic protein of muscle, J. Biochem. (Tokyo) 82:317–337.Google Scholar
  98. Masaki, T. , and Takaiti, O. , 1972, Purification of M-protein, J. Biochem. 71:355–357.PubMedGoogle Scholar
  99. Masaki, T. , and Takaiti, O. , 1974, M-protein, J. Biochem. (Tokyo) 75:367–380.Google Scholar
  100. Masaki, T. , Takaiti, O. , and Ebashi, S. , 1968, “M-substance,” a new protein constituting the M- line of myofibrils, J. Biochem. (Tokyo) 64:909–910.Google Scholar
  101. Maughan, D. W. , Low, E. S. , and Alpert, N. R. , 1978, Isometric force development, isotonic shortening and elasticity measurements from Ca2 + -activated ventricular muscle of the guinea pig, J. Gen. Physiol. 71:431–451.PubMedGoogle Scholar
  102. McGilvery, R. W. , 1975, Metabolic adaptation to prolonged physical exercise, in: Proceedings of the Second International Symposium on the Biochemistry of Exercise, Magglingen, Switzerland, 1973 (H. Howald and J. R. Poortmans, eds. ), pp. 12–26, Birkhäuser Verlag, Basel.Google Scholar
  103. McGilvery, R. W. , and Murray, T. , 1974, Calculated equilibria of phosphorylcreatine and adenosine phosphates during utilization of high energy phosphates by muscle, J. Biol. Chem. 249:5845–5850.PubMedGoogle Scholar
  104. Moos, C. , 1964, Can creatine kinase phosphorylate the myofibrillar-bound nucleotide of muscle?, Biochem. Biophys. Acta 93:85–97.PubMedGoogle Scholar
  105. Moreadith, R. W. , and Jacobus, W. E. , 1982, Creatine kinase of heart mitochondria. Functional coupling of ADP transfer to adenine nucleotide translocase, J. Biol. Chem. 257:899–905.PubMedGoogle Scholar
  106. Morimoto, K. , and Harrington, W. F. , 1972, Isolation and physical properties of an M-line protein from skeletal muscle, J. Biol. Chem. 247:3052–3061.PubMedGoogle Scholar
  107. Naegle, S. , 1968, Die Abhängigkei der CP- und ATP-Diffusion vom CK Gleichgewicht und deren Bedeutung für den Energietransport in der Muskelzelle, Dissertation, University of Wurzburg, Wurzburg, Germany.Google Scholar
  108. Naegle, S. , 1970, Die Bedeutung von CP und ATP im Hinblick auf Energiebereitstellung, -transport und -Verwertung im normalen und insuffizienten Herzmuskel, Klin. Wochenschr. 48:332–341.Google Scholar
  109. Neurohr, K. J. , Gollin, G. , Barrett, E. J. , and Shulman, R. G. , 1983, In vivo P-NMR studies of myocardial high energy phosphate metabolism during anoxia and recovery, FEBS Lett. 159:207–210.PubMedGoogle Scholar
  110. Newsholme, E. A. , Beis, I. , Leech, A. R. , and Zammit, V. A. , 1978, The role of creatine kinase and arginine kinase in muscle, Biochem. J. 172:533–537.PubMedGoogle Scholar
  111. Niederman, R. , and Peters, L. K. , 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol. 161:505–517.PubMedGoogle Scholar
  112. Norwood, W. I. , Ingwall, J. S. , Norwood, C. R. , and Fossel, E. T. , 1983, Developmental changes of creatine kinase metabolism in rat brain, Am. J. Physiol. 244:C205–C210.PubMedGoogle Scholar
  113. Nunally, R. L. , and Hollis, D. P. , 1979, Adenosine triphosphate compartmentation in living hearts: A 31P-NMR saturation transfer study, Biochemistry 18:3642–3646.Google Scholar
  114. Offer, G. , 1972, C-protein and the periodicity in the thick filaments of vertebrate skeletal muscle, Cold Spring Harbor Symp. Quant. Biol. 37:87–93.Google Scholar
  115. Oguchi, M. , Gerth, E. , Fitzgerald, B. , and Park, J. H. , 1973, Regulation of glyceraldehyde-3- phosphate dehydrogenase by phosphocreatine and adenosine triphosphate, J. Biol. Chem. 248:5571–5576.PubMedGoogle Scholar
  116. Ottaway, J. H. , 1967, Evidence for binding of cytoplasmic CK to structural elements in heart muscle, Nature 215:521–522.PubMedGoogle Scholar
  117. Palmer, E. G. , 1975, Antibody localization studies of the M-line in striated muscle, Can. J. Zool. 53:788–799.PubMedGoogle Scholar
  118. Pardo, J. V. , D’Angelo, S. J. , and Craig, S. W. , 1983, A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma, Proc. Natl. Acad. Sci. USA 80:1008–1012.PubMedGoogle Scholar
  119. Paul, R. J. , 1983, Functional compartmentation of oxidative and glycolytic metabolism in vascular smooth muscle, Am. J. Physiol. 244. C399–409.PubMedGoogle Scholar
  120. Pepe, F. A. , 1971, The structure of the myosin filament of striated muscle, in: Progr. Biophys. Molec. Biol. , Vol. 22 (J. A. V. Butler and D. Noble, eds. ), pp. 77–96.Google Scholar
  121. Perriard, J. C. , 1979, Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken, J. Biol. Chem. 254:7036–7041.PubMedGoogle Scholar
  122. Perriard, J. C. , Caravatti, M. , Perriard, E. , and Eppenberger, H. M. , 1978a, Quantitation of creatine kinase isoenzyme transitions in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption, Arch. Biochem. Biophys. 191:90–100.PubMedGoogle Scholar
  123. Perriard, J. C. , Perriard, E. R. , and Eppenberger, H. M. , 1978b, Detection and relative quantitation of mRNA for creatine kinase isoenzymes in RNA from myogenic cell cultures and embryonic chicken tissue, J. Biol. Chem. 253:6529–6535.PubMedGoogle Scholar
  124. Perry, S. V. , 1952, The bound nucleotide of the isolated myofibril, Biochem. J. 51:495–499.PubMedGoogle Scholar
  125. Perry, S. V. , 1954, Creatine Phosphokinase and the enzymic and contractile properties of the isolated myofibril, Biochem. J. 57:427–433.PubMedGoogle Scholar
  126. Pierobon-Bormioli, S. , 1981, Transverse sarcomere filamentous systems: “Z- and M-cables,” J. Muscle Res. Cell Motil. 2:401–413.Google Scholar
  127. Porzio, M. A. , Pearson, A. M. , and Cornforth, D. P. , 1979, M-line protein: Presence of two non-equivalent high molecular weight components, Meat Sci. 3:31–41.PubMedGoogle Scholar
  128. Roberts, R. , 1980, Purification and characterization of mitochondrial creatine kinase, in: Heart Creatine Kinase: The Integration of Isozymes for Energy Distribution (W. E. Jacobus, and J. C. Ingwall, eds. ), pp. 31–47, Williams & Wilkins, Baltimore.Google Scholar
  129. Roberts, R. , and Grace, A. M., 1980, Purification of mitochondrial creatine kinase. Biochemical and immunological characterization, J. Biol. Chem. 255:2870–2877.PubMedGoogle Scholar
  130. Roos, A. , and Boron, W. F. , 1981, Intracellular pH, Physiol. Rev. 61:296–334.PubMedGoogle Scholar
  131. Rosenberg, U. B. , Kunz, G. , Frischauf, A. , Lehrach, H. , Mähr, R., Eppenberger, H. M. , and Perriard, J. C., 1982, Molecular cloning and expression during myogenesis of sequences coding for M-creatine kinase, Proc. Natl. Acad. Sci. USA 79:6589–6592.PubMedGoogle Scholar
  132. Saks, V. A. , Chernousova, G. B. , Gukovsky, D. E. , Smirnov, V. N. , and Chazov, E. I. , 1975, Studies of energy transport in heart cells. Mitochondrial CK: Kinetic properties and regulatory action of Mg2+ ions, Eur. J. Biochem. 57:273–290.PubMedGoogle Scholar
  133. Saks, V. A. , Chernousova, G. B. , Vetter, R. , Smirnov, V. N. , and Chazov, E. I. , 1976a, Kinetic properties and the functional role of particulate MM-isoenzyme of creatine kinase bound to heart muscle myofibrils, FEBS Lett. 262:293–296.Google Scholar
  134. Saks, V. A. , Lipina, N. V. , Smirnov, V. N. , and Chazov, E. I. , 1976b, Studies of energy transport in heart cells: The functional coupling between mitochondrial CK and ATP-ADP trans- locase: Kinetic evidence, Arch. Biochem. Biophys. 173:34–41.PubMedGoogle Scholar
  135. Saks, V. A. , Lipina, N. V. , Sharov, V. G. , Smirnov, V. N. , Chazov, E. I. , and Grosse, R. , 1977, The localization of the MM-isoenzyme of creatine kinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na/K) ATPase, Biochim. Biophys. Acta 465:550–558.PubMedGoogle Scholar
  136. Saks, V. A. , Rosenstraukh, L. V. , Smirnov, V. N. , and Chazov, E. I. , 1978, Role of creatine Phosphokinase in cellular function and metabolism, Can. J. Physiol. Pharmacol. 56:691–706.PubMedGoogle Scholar
  137. Saks, V. A. , Kupriyanov, V. V. , Elizarova, E. V. , and Jacobus, W. E. , 1980, Studies of energy transport in heart cells. The importance of CK localization for the coupling of mitochondrial CP production to oxidative phosphorylation, J. Biol. Chem. 255:755–763.PubMedGoogle Scholar
  138. Savabi, F. , Geiger, P. J. , and Bessman, S. P. , 1983, Kinetic properties and functional role of creatine Phosphokinase in glycerinated muscle fibers. Further evidence for compartmenta- tion, Biochem. Biophys. Res. Commun. 114:785–790.PubMedGoogle Scholar
  139. Schlösser, T. , Wallimann, T. , and Eppenberger, H. M., 1982, Physiological significance of M-line- bound creatine kinase (CK), Experientia 38:731.Google Scholar
  140. Scholte, H. R. , 1973, On the triple localization of creatine kinase in heart and skeletal muscle cells, Biochim. Biophys. Acta 305:413–427.PubMedGoogle Scholar
  141. Scholte, H. R. , Weijers, P. J. , and Wit-Peeters, E. M. , 1973, Localization of mitochondrial creatine kinase and its use for the determination of sidedness of submitochondrial particles, Biochim. Biophys. Acta 291:764–773.PubMedGoogle Scholar
  142. Seraydarian, W. , and Abbott, B. C. , 1976, The role of the creatine-phosphorylcreatine system in muscle. /. Mol. Cell. Cardiol. 8:741–746.Google Scholar
  143. Seraydarian, K. , Mommaerts, W. F. M. M. , and Wallner, A. , 1962, The amount and compartmen- talisation of ADP in muscle, Biochim. Biophys. Acta. 65:443–460.PubMedGoogle Scholar
  144. Seraydarian, M. W. , Harary, I. , and Sato, E. D. , 1968, In vitro studies of beating heart cells in culture. The ATP level and contraction of heart cells, Biochem. Biophys. Acta 162:114–423.Google Scholar
  145. Seraydarian, M. W. , Sato, E. D. , Savagean, M. , and Harary, I. , 1969, In vitro studies of beating heart cells in culture. The utilization of ATP and CP in oligomycin and 2-deoxyglucose inhibited cells, Biochim. Biophys. Acta 180:264–270.PubMedGoogle Scholar
  146. Sharov, V. G. , Saks, V. A. , Smirnov, V. N. , and Chazov, E. I. , 1977, An electron microscopic histochemical investigation of the localization of creatine kinase in heart cells, Biochim. Biophys. Acta 468:495–501.PubMedGoogle Scholar
  147. Sheetz, M. P. , and Spudich, J. A. , 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature 303:31–35.PubMedGoogle Scholar
  148. Sjöström, M. , and Squire, J. M., 1977a, Fine structure of the α-band in cryo-sections, J. Mol. Biol. 109:49–68.PubMedGoogle Scholar
  149. Sjöström, M. , and Squire, J. M., 1977b, Cryo-ultramicrotomy and myofibrillar fine structure: A review, J. Microsc. 111:239–278.PubMedGoogle Scholar
  150. Sjöström, M. , Anquist, K. A. , Bylund, A. C. , Fiden, J. , Gustavson, L. , and Schersten, T., 1982, Morphometric analysis of human muscle fiber types, Muscle Nerve 5:538–553.PubMedGoogle Scholar
  151. Sleep, J. A. , 1981, Single turnovers of ATP by myofibrils and actomyosin-S-1, Biochemistry 20:5043–5051.Google Scholar
  152. Sommer, J. R. , and Johnson, A. , 1969, The ultrastructure of frog and chicken cardiac muscle, Z. Zellforsch. 98:437–468.PubMedGoogle Scholar
  153. Starr, R. , and Offer, G. , 1971, Polypeptide chains of intermediate molecular weight in myosin preparations, FEBS Lett. 15:40–44.PubMedGoogle Scholar
  154. Starr, R. , and Offer, G. , 1983, H-protein and X-protein. Two new components of the thick filaments of vertebrate skeletal muscle, J. Mol. Biol. 170:675–698.PubMedGoogle Scholar
  155. Street, S. F. , 1983, Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters, J. Cell. Physiol. 114:346–364.PubMedGoogle Scholar
  156. Strehler, E. E. , Pelloni, G. , Heizmann, C. W. , and Eppenberger, H. M. , 1980, Biochemical and ultrastructural aspects of Mr 165 000 M-protein in cross-striated chicken muscle, J. Cell Biol. 86:775–783.PubMedGoogle Scholar
  157. Strehler, E. E. , Carlsson, E. , Eppenberger, H. M. , and Thornell, L. E. , 1983, Ultrastructural localization of M-band proteins in chicken breast muscle as revealed by combined immu-nocytochemistry and ultramicrotomy, J. Mol. Biol. 166:141–158.PubMedGoogle Scholar
  158. Stromer, M. H. , Hartshorne, D. J. , Mueller, H. , and Rice, R. V. , 1969, The effect of various protein fractions on Z- and M-line reconstitution, J. Cell Biol. 40:167–178.PubMedGoogle Scholar
  159. Taylor, E. W. , 1972, Chemistry of muscle contraction, Annu. Rev. Biochem. 41:577–616.PubMedGoogle Scholar
  160. Thornell, L. -E. , 1980, Direct correlative physiological, histochemical and ultrastructural studies on muscle fiber types, Muscle Nerve 3:267a.Google Scholar
  161. Thornell, L. -E. , and Carlsson, E. , 1984, Differentiation of myofibrils and the M-band structure in developing cardiac tissues and skeletal muscle, in: Developmental Processes in Normal and Diseased Muscle, Vol. 9, Experimental Biology and Medicine (H. M. Eppenberger and J. C. Perriard, eds. ), pp. 141–147, Karber Basel, New York.Google Scholar
  162. Trinick, J. , and Lowey, S. , 1977, M-protein from chicken pectoralis muscle: Isolation and characterization, J. Mol. Biol. 113:343–368.PubMedGoogle Scholar
  163. Turner, D. C. , and Eppenberger, H. M. ,1974, Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements, Enzyme 15:224–238.Google Scholar
  164. Turner, D. C. , Wallimann, T. , and Eppenberger, H. M. , 1973, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase, Proc. Natl. Acad. Sci. USA 70:702–705.PubMedGoogle Scholar
  165. Turner, D. C. , Maier, V. , and Eppenberger, H. M. , 1974, Creatine Kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells, Dev. Biol. 37:63–89.PubMedGoogle Scholar
  166. Turner, D. C. , Gmür, R. , Siegrist, M. , Burckhardt, E. , and Eppenberger, H. M., 1976a, Differentiation in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures, Dev. Biol. 48:258–283.PubMedGoogle Scholar
  167. Turner, D. C. , Gmür, R. , Lebherz, H. G. , Siegrist, M. , Wallimann, T. , and Eppenberger, H. M. , 1976b, Differentiation in cultures derived from embryonic chicken muscle. II. Phosphorylase histochemistry and fluorescent antibody staining for creatine kinase and aldolase, Dev. Biol. 48:284–307.PubMedGoogle Scholar
  168. Uyeda, K. , and Racker, E. , 1965, Regulatory mechanisms in carbohydrate metabolism, J. Biol. Chem. 240:4682–4693.PubMedGoogle Scholar
  169. Veech, R. , Lawson, J. W. R. , Cornell, N. W. , and Krebs, H. , 1979, Cytosolic phosphorylation potential, J. Biol. Chem. 254:6538–6547.PubMedGoogle Scholar
  170. Ventura-Clapier, R. , and Vassort, G. , 1980, Electrical and mechanical activities of frog heart during energetic deficiency, J. Muscle Res. Cell Motil. 1:429–444.Google Scholar
  171. Vial, C. , Godinot, G. , and Gautheron, D. , 1972, Creatine kinase in pig heart mitochondria. Properties and role in phosphate potential regulation, Biochemie 54:843–852.Google Scholar
  172. Wallimann, T. , 1975, Creatinekinase-Isoenzyme and Myofibrillen-Struktur, Ph. D. thesis no 5437, Abstract in English, Eidgenössische Technische Hochschule, Zürich, Switzerland.Google Scholar
  173. Wallimann, T. , Turner, D. C. , and Eppenberger, H. M. , 1975, Creatine kinase and M-line structure, in: Proteins of Contractile Systems (E. N. A. Biro, ed. ), Vol. 31, pp. 119–124, Akademia Kiado, Budapest.Google Scholar
  174. Wallimann, T. , Turner, D. C. , and Eppenberger, H. M. , 1977a, Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle, J. Cell Biol. 75:297–317.PubMedGoogle Scholar
  175. Wallimann, T. , Kuhn, H. J. , Pelloni, G. , Turner, D. C. , and Eppenberger, H. M. , 1977b, Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle, J. Cell Biol. 75:318–325.PubMedGoogle Scholar
  176. Wallimann, T. , Pelloni, G. W. , Turner, D. C. , and Eppenberger, H. M. , 1978, Monovalent antibodies against MM-creatine kinase remove the M-line from myofibrils, Proc. Natl. Acad. Sci. USA 75:4296–4300.PubMedGoogle Scholar
  177. Wallimann, T. , and Szent-Györgyi, A. G., 1981, An immunological approach to myosin light chain function in thick filament-linked regulation. II. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain, Biochemistry 20:1188–1197.Google Scholar
  178. Wallimann, T. , Schlösser, T. , and Eppenberger, H. M., 1982, ATP-regeneration potential of M-line-bound creatine kinase. Physiological significance, J. Muscle Res. Cell Motil. 3:503.Google Scholar
  179. Wallimann, T. , Doetschman, T. C. , and Eppenberger, H. M. , 1983a, A novel staining of skeletal muscle M-lines upon incubation with low concentrations of antibodies against MM-creatine kinase, J. Cell Biol. 96:1772–1779.PubMedGoogle Scholar
  180. Wallimann, T. , Moser, H. , and Eppenberger, H. M. , 1983b, Isoenzyme specific localization of M-line-bound creatine kinase in myogenic cells, J. Muscle Res. Cell Motil. 4:429–441.PubMedGoogle Scholar
  181. Wallimann, T. , Schlösser, T. , and Eppenberger, H. M., 1984, Function of M-line-bound creatine kinase as intramyofibrillar ATP-regenerator at the receiving end of the phosphoryl-creatine shuttle in muscle, J. Biol. Chem. 259:5238–5246.PubMedGoogle Scholar
  182. Wang, K. , 1982, Myofilamentous and myofibrillar connections: Role of titin, nebulin and intermediate filaments, in: Muscle Development and Cellular Control (M. L. Pearson and H. F. Epstein, eds. ), pp. 439–452, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  183. Wang, K. , 1983, Membrane skeleton of skeletal muscle, Nature 304:485–486.PubMedGoogle Scholar
  184. Wang, K. , and Ramirez-Mitchell, R. , 1983, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J. Cell Biol. 96:562–570.PubMedGoogle Scholar
  185. Wang, K. , and Williamson, C. L. , 1980, Identification of an N2-line protein of striated muscle, Proc. Natl. Acad. Sci. USA 77:3254–3258.PubMedGoogle Scholar
  186. Wang, K. , McClure, J. , and Tu, A. , 1979, Titin: Major myofibrillar component of striated muscle, Proc. Natl. Acad. Sci. USA 76:3698–3702.PubMedGoogle Scholar
  187. West, J. J. , Nagy, B. , and Gergely, J. , 1967, Free ADP as an intermediary in the phosphorylation by CP of ADP bound to actin, J. Biol. Chem. 242:1140–1145.PubMedGoogle Scholar
  188. Wilson, J. E. , 1978, Ambiquitous enzymes: Variation in intracellular distribution as a regulatory mechanism, TIBS3:124–125.Google Scholar
  189. Woodhead, J. L. , and Lowey, S. , 1983, An in vitro study of the interactions of skeletal muscle M-protein and creatine kinase with myosin and its subfragments, J. Mol. Biol. 168:831–846.PubMedGoogle Scholar
  190. Yagi, K. , and Mase, R. , 1962, Coupled reaction of creatine kinase and myosin ATPase, J. Biol. Chem. 237:397–403.PubMedGoogle Scholar
  191. Yang, W. C. T. , Geiger, P. J. , Bessman, S. P. , and Borrebaek, B. , 1977, Formation of creatine phosphate from creatine and 32P-labeled ATP by isolated rabbit heart mitochondria, Bio-chem. Biophys. Res. Commun. 76:882–887.Google Scholar
  192. Zammit, V. A. , and Newsholme, E. A. , 1976, The maximum activities of hexokinase, Phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, octopine dehydrogenase, nucleoside diphosphate kinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates, Biochem. J. 160:447–462.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Theo Wallimann
    • 1
  • Hans M. Eppenberger
    • 1
  1. 1.Institute for Cell Biology, Federal Institute of TechnologyETH-HönggerbergZürichSwitzerland

Personalised recommendations