Therapy in Experimental Breast Cancer Models

  • Arthur E. Bogden


The growing acceptance that cancer encompasses a disparate group of diseases in which malignant cells tend to retain certain unique characteristics of the tissue or organ of their origin has been paralleled by an increasing interest in experimental animal model systems that not only are representative of human malignancies histologically, but also originate in the organ or tissues, and have the growth and metastasizing characteristics of the particular neoplastic disease for which they serve as a model.


Mammary Tumor Tumor System Nude Athymic Mouse Human Tumor Xenograft Mammary Adenocarcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Carter, Immunotherapy in the strategy of cancer treatment (editorial), Cancer Immunol Immunother. I, 115–118 (1976).Google Scholar
  2. 2.
    G. L. Bartlett, J. W. Kreider, and D. M. Purnell, Immunotherapy of cancer in animals: Models or muddles? (guest editorial), J. Natl. Cancer Inst. 56, 207–210 (1976).PubMedGoogle Scholar
  3. 3.
    Webster’s New Collegiate Dictionary, G&C Merriam, Springfield, Massachusetts (1974).Google Scholar
  4. 4.
    J. Huxley, Biological Aspects of Cancer, Harcourt, Brace, New York (1958).Google Scholar
  5. 5.
    M. E. Lippman, C. K. Osborne, R. Krazek, and N. Young, In vitro model systems for the study of hormone-dependent human breast cancer, N. Engl. J. Med. 296(3), 154–159 (1977).PubMedGoogle Scholar
  6. 6.
    L. Norton, R. Simon, H. D. Brereton, and A. E. Bogden, Predicting the course of Gompertzian growth, Nature (London) 264, 542–545 (1976).Google Scholar
  7. 7.
    L. Norton and R. Simon, Tumor size, sensitivity to therapy, and the design of treatment schedules, Cancer Treatment Rep. 61, 1307–1317 (1977).Google Scholar
  8. 8.
    F. M. Schabel, Jr., Concepts for systemic treatment of micrometastases, Cancer 35, 15–24 (1975).PubMedGoogle Scholar
  9. 9.
    E. Frei, III, Selected considerations regarding chemotherapy as adjuvant in cancer treatment, Cancer Chemother. Rep. 50, 1–5 (1966).PubMedGoogle Scholar
  10. 10.
    A. K. Laird, Dynamics of growth in tumors and normal organisms, Natl. Cancer Inst. Monogr. 30, 15–28 (1969).PubMedGoogle Scholar
  11. 11.
    B. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc. London 115, 513–585 (1825).Google Scholar
  12. 12.
    G. P. Bodey, E. J. Freireich, E. Gehan, K. B. McCredie, Z. Rodriques, J. Gutterman, and A. Burgess, Late intensification therapy for acute leukemia in remission, J. Am. Med. Assoc. 235, 1021–1025 (1976).Google Scholar
  13. 13.
    K. B. DeOme, H. A. Bern, S. Nandi, D. R. Pitelka, and L. J. Faulkin Jr., Genetics and Cancer, pp. 327–348, University of Texas Press, Houston (1959).Google Scholar
  14. 14.
    P. B. Blair and K. B. DeOme, Mammary tumor development in transplanted hyperplastic alveolar nodules of the mouse, Proc. Soc. Exp. Biol. Med. 108, 289–291. (1961).PubMedGoogle Scholar
  15. 15.
    K. B. DeOme, L. J. Faulkin, H. A. Bern, and P. B. Blair, Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice, Cancer Res. 19, 515–520 (1959).PubMedGoogle Scholar
  16. 16.
    L. J. Beuving, Mammary tumor formation within outgrowth of transplanted hyperplastic alveolar nodules from carcinogen treated rats, J. Natl. Cancer Inst. 40, 1287–1289 (1968).PubMedGoogle Scholar
  17. 17.
    D. Sinha and T. L. Dao, A direct mechanism of mammary carcinogenesis induced by 7,12-dimethylbenz(a)anthracene, J. Natl. Cancer Inst. 53, 841–846 (1974).PubMedGoogle Scholar
  18. 18.
    T. L. Dao, D. Sinha, S. Christakos, and R. Varela, Biochemical characterization of carcinogen-induced mammary hyperplastic alveolar nodule and tumor in the rat, Cancer Res. 35, 1128–1134 (1976).Google Scholar
  19. 19.
    H. M. Jensen, J. R. Rice, and S. R. Wellings, Preneoplastic lesions in the human breast, Science 191, 295–297 (1976).PubMedGoogle Scholar
  20. 20.
    D. E. Bostock, The prognosis following the surgical excision of canine mammary neoplasms, Eur. J. Cancer 11, 389–396 (1975).PubMedGoogle Scholar
  21. 21.
    R. M. Mulligan, Comparative pathology of human and canine cancer, Ann. N. Y. Acad. Sci. 108, 642–690 (1963).Google Scholar
  22. 22.
    M. M. Mason, Canine mammary tumors: A review, prepared for the Endocrinology Evaluation Branch, NCI, under Contract No. PH43–65–6 (May 1967).Google Scholar
  23. 23.
    W. Misdorp, E. Cotchin, J. F. Hampe, A. G. Jabara, and J. Sandersleben, Canine malignant mammary tumors, Vet. Pathol. 10, 241–256 (1973).PubMedGoogle Scholar
  24. 24.
    J. D. Strandberg and D. G. Goodman, Animal model of human disease: Breast cancer, Am. J. Pathol. 75, 225–228 (1974).PubMedPubMedCentralGoogle Scholar
  25. 25.
    A. C. Anderson, Parameters of mammary gland tumors in aging beagles, J. Am. Vet. Assoc. 147, 1653–1654 (1965).Google Scholar
  26. 26.
    G. N. Taylor, L. Shabestari, J. Williams, C. W. Mays, W. Angus, and S. McFarland, Mammary neoplasia in a closed beagle colony, Cancer Res. 36, 2740–2743 (1976).PubMedGoogle Scholar
  27. 27.
    C. Huggins, G. Briziarelli, and H. Sutton, Jr., Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumors, J. Exp. Med. 109, 25–43 (1959).PubMedPubMedCentralGoogle Scholar
  28. 28.
    J. Maisin and M. L. Coolen, Au sujet du pouvoir cancerigène du methyl-cholanthrene, C. R. Soc. Biol. 123, 159–160 (1936).Google Scholar
  29. 29.
    J. V. Proshaska, A. Brunschweig, and H. Wilson, Oral administration of methyl-cholanthrene to mice, Arch. Surg. 38, 328–333 (1939).Google Scholar
  30. 30.
    J. W. Orr, Mammary carcinoma in mice following the intranasal administration of methylcholanthrene, J. Pathol. Bacteriol. 55, 483–488 (1943).Google Scholar
  31. 31.
    C. Huggins, L. G. Grand, and F. P. Brillantes, Mammary cancer induced by a single feeding of polynuclear hydrocarbons and its suppression, Nature (London) 189, 204–207 (1961).Google Scholar
  32. 32.
    P. M. Daniel and M. M. Pritchard, The response of experimentally induced mammary tumors in rats to hypophysectomy and to pituitary stalk section, Br. J. Cancer 17, 446–453 (1963).PubMedPubMedCentralGoogle Scholar
  33. 33.
    M. N. Teller, C. C. Stock, G. Stohr, P. C. Merker, R. J. Kaufman, G. C. Escher, and M. Bowie, Biological characteristics and chemotherapy of 7,12-dimethylbenz(a)an-thracene-induced tumors in rats, Cancer Res. 26, 245–252 (1966).PubMedGoogle Scholar
  34. 34.
    D. P. Griswold, H. E. Skipper, W. R. Laster Jr., W. S. Wilcox, and F. M. Schabel, Jr., Induced mammary carcinoma in the female rat as a drug evaluation system, Cancer Res. 26, 2169–2180 (1966).PubMedGoogle Scholar
  35. 35.
    K. D. Schulz, B. Haselmeier, and F. Holzel, The influence of clomid and its isomers upon dimethylbenzanthracene-induced rat mammary tumors, Acta Endocrinol. (Copenhagen). Suppl. 138, 236 (1969).Google Scholar
  36. 36.
    L. Terenius, Anti-oestrogens and breast cancer, Eur. J. Cancer 7, 57–64 (1971).PubMedGoogle Scholar
  37. 37.
    W. L. McGuire, Current status of estrogen receptors in human breast cancer, Cancer 36, 638–644 (1975).PubMedGoogle Scholar
  38. 38.
    K. B. Horwitz and W. L. McGuire, Specific progesterone receptors in human breast cancer, Steroids 25, 497–505 (1975).PubMedGoogle Scholar
  39. 39.
    M. F. Pichon and E. Milgrom, Characterization and assay of progesterone receptor in human mammary carcinoma, Cancer Res. 37, 464–471 (1977).PubMedGoogle Scholar
  40. 40.
    R. I. Nicholson and M. P. Golder, The effect of synthetic anti-oestrogens on the growth and biochemistry of rat mammary tumors, Eur. J. Cancer 11, 571–579 (1975).PubMedGoogle Scholar
  41. 41.
    E. V. Jensen, H. I. Jacobsen, S. Smith, P. W. Jungblut, and E. R. DeSombre, The use of estrogen antagonists in hormone receptor studies, Gynecol. Invest. 3, 108–123 (1972).PubMedGoogle Scholar
  42. 42.
    C. W. Welsch and H. Nagasawa, Prolactin and murine mammary tumorigenesis: A review, Cancer Res. 37, 951–963 (1977).PubMedGoogle Scholar
  43. 43.
    H. Nasr and O. H. Pearson, Inhibition of prolactin secretion by ergot alkaloids, Acta Endocrinol. 80, 429–443 (1975).PubMedGoogle Scholar
  44. 44.
    A. Manni, J. E. Trujillo, and O. H. Pearson, Predominant role of prolactin in stimulating the growth of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumor, Cancer Res. 37, 1216–1219 (1977).PubMedGoogle Scholar
  45. 45.
    S. K. Quadri, G. S. Kledzik, and J. Meites, Counteraction by prolactin of androgen-induced inhibition of mammary tumor growth in rats, J. Natl. Cancer Inst. 52, 875–878 (1974).PubMedGoogle Scholar
  46. 46.
    M. E. Costlow, R. A. Buschow, and W. L. McGuire, Prolactin receptors and androgen-induced regression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma, Cancer Res. 36, 3324–3329 (1976).PubMedGoogle Scholar
  47. 47.
    C. Huggins, R. C. Moon, and S. Morii, Extinction of experimental mammary cancer. I. Estradiol-17ß and progesterone, Proc. Natl. Acad. Sci. U.S.A. 48, 379–386 (1962).PubMedPubMedCentralGoogle Scholar
  48. 48.
    C.J. Shellabarger and V. A. Soo, Effects of neonatally administered sex steroids on 7,12-dimethylbenz(a)anthracene induced mammary neoplasia in rats, Cancer Res. 33, 1567–1569 (1973).PubMedGoogle Scholar
  49. 49.
    E. Heise and M. Gorlich, Growth and therapy of mammary tumors induced by 7,12-dimethylbenzanthracene in rats, Br. J. Cancer 20, 539–545 (1966).PubMedPubMedCentralGoogle Scholar
  50. 50.
    J. Kim, J. Fürth, and K. Yannopoulos, Observations on hormonal control of mammary cancer. I. Estrogen and mammatropes, J. Natl. Cancer Inst. 31, 233–259 (1963).PubMedGoogle Scholar
  51. 51.
    M. N. Teller, R. J. Kaufmann, M. Bowie, and C. C. Stock, Influence of estrogens and endocrine ablation on duration of remission produced by ovariectomy or androgen treatment of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors, Cancer Res. 29, 349–352 (1969).PubMedGoogle Scholar
  52. 52.
    M. N. Teller, C. C. Stock, G. Stohr, P. C. Merker, R. J. Kaufmann, G. C. Escher, and M. Bowie, Biologic characteristics and chemotherapy of 7,12-dimethylbenz(a)anthra-cene-induced tumors in rats, Cancer Res. 26, 245–252 (1966).PubMedGoogle Scholar
  53. 53.
    S. Young, D. Cowan, and L. Sutherland, The histology of induced mammary tumors in rats, J. Pathol. Bacteriol. 85, 331–340 (1963).PubMedGoogle Scholar
  54. 54.
    P. M. Daniel and M. M. L. Prichard, The response of experimentally induced mammary tumors in rats to ovariectomy, Br. J. Cancer 17, 687–690 (1964).Google Scholar
  55. 55.
    P. M. Daniel and M. M. L. Prichard, Further studies on mammary tumors induced in rats by 7,12-dimethylbenz(a)anthracene (DMBA), Int. J. Cancer 2, 163–177 (1967).PubMedGoogle Scholar
  56. 56.
    D. P. Griswold Jr., and C. H. Green, Observations on the hormone sensitivity of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the Sprague-Dawley rat, Cancer Res. 30, 819–826 (1970).PubMedGoogle Scholar
  57. 57.
    R. L. Noble, B. Hochachka, and D. King, Spontaneous and estrogen-produced tumors in Nb rats and their behavior after transplantation, Cancer Res. 35, 766–780 (1975).PubMedGoogle Scholar
  58. 58.
    R. L. Noble and L. Hoover, A classification of transplantable tumors in Nb rats controlled by estrogen from dormancy to autonomy, Cancer Res. 35, 2935–2941 (1975).PubMedGoogle Scholar
  59. 59.
    M. Sluyser and R. VanNie, Estrogen receptor content and hormone responsive growth of mouse mammary tumors, Cancer Res. 34, 3253–3257 (1974).PubMedGoogle Scholar
  60. 60.
    H. A. Bern and S. Nandi, Recent studies of the hormonal influence in mouse mammary tumorigenesis, Prog. Exp. Tumor Res. 2, 90–134 (1961).PubMedGoogle Scholar
  61. 61.
    O. Mühlbock and L. M. Boot, Induction of mammary cancer in mice without the mammary tumor agent by isografts of hypophysis, Cancer Res. 19, 402–412 (1959).PubMedGoogle Scholar
  62. 62.
    N. Haran-Ghera, The role of mammotrophin in mammary tumor induction in mice, Cancer Res. 21, 790–795 (1961).PubMedGoogle Scholar
  63. 63.
    C. W. Welsch and C. Gribler, Prophylaxis of spontaneously developing mammary carcinoma in C3H/HeJ female mice by suppression of prolactin, Cancer Res. 33, 2939–2946 (1973).PubMedGoogle Scholar
  64. 64.
    H. Nagasawa, K. Kuretani, and F. Kanzawa, Effect of prolactin on the growth of spontaneous mammary tumor in mice, Gann 57, 637–640 (1966).PubMedGoogle Scholar
  65. 65.
    H. Nagasawa, R. Yanai, H. Iwahashi, M. Fujimoto, and K. Kuretani, Effect of pituitary isografts on the growth of spontaneous mammary tumor in mice, Gann 58, 337–342 (1967).PubMedGoogle Scholar
  66. 66.
    A. E. Bogden, D. J. Taylor, E. Y. H. Kuo, M. M. Mason, and A. Speropoulos, The effect of perphenazine-induced serum prolactin response on estrogen-primed mammary tumor-host systems, 13762 and R-35 mammary adenocarcinomas, Cancer Res. 34, 3018–3025 (1974).PubMedGoogle Scholar
  67. 67.
    R. Hilf, C. Bell, H. Goldenberg, and I. Michel, Effect of fluphenazine HCl on R3230AC mammary carcinoma and mammary glands of the rat, Cancer Res. 31, 1111–1117 (1971).PubMedGoogle Scholar
  68. 68.
    A. Segaloff, Hormones in breast cancer, Recent Prog. Horm. Res. 22, 351–374 (1966).PubMedGoogle Scholar
  69. 69.
    U. Kim and J. Fürth, Relation of mammotropes to mammary tumors. IV. Development of highly hormone dependent mammary tumors, Proc. Soc. Exp. Biol. Med. 105, 490–492 (1960).PubMedGoogle Scholar
  70. 70.
    E. J. Diamond, S. Koprak, S. K. Shen, and V. P. Hollander, The conversion of an ovariectomy-nonresponsive to an ovariectomy-responsive mammary tumor strain, Cancer Res. 36, 77–80 (1976).PubMedGoogle Scholar
  71. 71.
    B. L. Powel, E. J. Diamond, S. Koprak, and V. P. Hollander, Prolactin binding in ovariectomy-responsive and ovariectomy-nonresponsive rat mammary carcinoma, Cancer Res. 37, 1328–1332 (1977).Google Scholar
  72. 72.
    U. Kim and M. J. Depowski, Progression from hormone dependence to autonomy in mammary tumors as an in vivo manifestation of sequential clonal selection, Cancer Res. 35, 2068–2077 (1975).PubMedGoogle Scholar
  73. 73.
    U. Kim, J. Furth, and K. H. Clifton, Relation of mammary tumors to mammotropes. III. Hormone responsiveness of transplanted mammary tumors, Proc. Soc. Exp. Biol. Med. 103, 646–650 (1960).PubMedGoogle Scholar
  74. 74.
    M. E. Costlow, R. A. Buschow, N. J. Richert, and W. L. McGuire, Prolactin and estrogen binding in transplantable hormone-dependent and autonomous rat mammary carcinoma, Cancer Res. 35, 970–974 (1975).PubMedGoogle Scholar
  75. 75.
    P. M. Gullino, F. H. Grantham, I. Losonczy, and B. Berghoffer, Mammary tumor regression. I. Physiopathologic characteristics of hormone-dependent tissue, J. Natl. Cancer Inst. 49, 1333–1348 (1972).PubMedGoogle Scholar
  76. 76.
    P. M. Gullino and R. H. Lanzerotti, Mammary tumor regression. II. Autophagy of neoplastic cells, J. Natl. Cancer Inst. 49, 1349–1356 (1972).PubMedGoogle Scholar
  77. 77.
    P. M. Gullino, F. H. Grantham, I. Losonczy, and B. Berghoffer, Mammary tumor regression. III. Uptake and loss of substrates by regressing tumors, J. Natl. Cancer Inst. 49, 1675–1684 (1972).PubMedGoogle Scholar
  78. 78.
    R. H. Lanzerotti and P. M. Gullino, Activities and quantities of lysosomal enzymes during mammary tumor regression, Cancer Res. 32, 2679–2685 (1972).PubMedGoogle Scholar
  79. 79.
    Borland’s Illustrated Medical Dictionary, 25th Ed. W. B. Saunders, Philadelphia (1974).Google Scholar
  80. 80.
    M. J. Brennan, Murine and rat mammary tumors as models for the immunological study of human breast cancer, Cancer Res. 36, 728–733 (1976).PubMedGoogle Scholar
  81. 81.
    G. H. Heppner and G. Pierce, In vitro demonstration of tumor specific antigens in spontaneous mammary tumors of mice, Int. J. Cancer 4, 212–218 (1969).PubMedGoogle Scholar
  82. 82.
    U. Kim, Metastasizing mammary carcinoma in rats: Induction and study of their immunogenicity, Science 167, 72–74 (1970).PubMedGoogle Scholar
  83. 83.
    S. Nandi and C. M. McGrath, Mammary neoplasia in mice, Adv. Cancer Res. 17, 353–414 (1973).Google Scholar
  84. 84.
    S. Nandi, Interaction among hormonal, viral and genetic factors in mouse mammary tumorigenesis, Can. Cancer Conf. 6, 69–81 (1966).PubMedGoogle Scholar
  85. 85.
    D. S. Martin, R. A. Fugmann, R. L. Stolfi, and P. E. Hayworth, Solid tumor animal model therapeutically predictive for human breast cancer, Cancer Chemother. Rep. 5(2), 89–109 (1975).Google Scholar
  86. 86.
    D. S. Martin, P. E. Hayworth, and R. A. Fugmann, Enhanced cure of spontaneous murine mammary tumor with surgery, combination chemotherapy, and immunotherapy, Cancer Res. 30, 709–716 (1970).PubMedGoogle Scholar
  87. 87.
    R. A. Fugmann, D. S. Martin, P. E. Hayworth, and R. L. Stolfi, Enhanced cures of spontaneous murine mammary carcinomas with surgery and five-compound combination chemotherapy, and their immunotherapeutic interrelationship, Cancer Res. 30, 1931–1936 (1970).PubMedGoogle Scholar
  88. 88.
    R. A. Fugmann, R. L. Stolfi, P. E. Hayworth, and D. S. Martin, Immunologic and chemotherapeutic parameters in a model breast tumor system, Cancer Chemother. Rep. 4(2), 25–32 (1974).Google Scholar
  89. 89.
    J. G. Anderson, R. A. Fugmann, R. L. Stolfi, and D. S. Martin, Metastatic incidence of a spontaneous murine mammary adenocarcinoma, Cancer Res. 34, 1916–1920 (1974).PubMedGoogle Scholar
  90. 90.
    M. Hosokawa, F. Orsini, and E. Mihich, Fast- and slow-growing transplantable tumors derived from spontaneous mammary tumors of the DBA/2 Ha-DD mouse, Cancer Res. 35, 2657–2662 (1975).PubMedGoogle Scholar
  91. 91.
    A. E. Bogden, P. M. Haskell, W. R. Cobb, and D. E. Kelton, Heterogeneity in chemotherapy responsiveness of the solid 13762 rat mammary adenocarcinoma and two derived ascites tumor lines, Proc. Am. Assoc. Cancer Res. 17, 40 (1976).Google Scholar
  92. 92.
    U. Kim, A. Baumler, C. Carruthers, and K. Bielat, Immunological escape mechanism in spontaneously metastasizing mammary tumors, Proc. Natl. Acad. Sci. U.S.A. 72, 1012–1016 (1975).PubMedPubMedCentralGoogle Scholar
  93. 93.
    A. E. Bogden, H. J. Esber, D. J. Taylor, and J. H. Gray, Comparative study on the effects of surgery, chemotherapy, and immunotherapy, alone and in combination, on metastases of the 13762 mammary adenocarcinoma, Cancer Res. 34, 1627–1631 (1974).PubMedGoogle Scholar
  94. 94.
    J. W. Kreider, G. L. Bartlett, and D. M. Purnell, Suitability of rat mammary adenocarcinoma 13762 as a model for BCG immunotherapy, J. Natl. Cancer Inst. 56, 797–802 (1976).PubMedGoogle Scholar
  95. 95.
    F. C. Sparks, T. X. O’Connell, and Y.-T. N. Lee, Adjuvant preoperative and postoperative immunochemotherapy for mammary adenocarcinoma in rats, Surg. Forum 24, 118–121 (1973).PubMedGoogle Scholar
  96. 96.
    F. C. Sparks, T. X. O’Connell, Y.-T. N. Lee, and J. H. Breeding, Brief communication: BCG therapy given as an adjuvant to surgery: Prevention of death from metastases from mammary adenocarcinoma in rats, J. Natl. Cancer Inst. 53, 1825–1826 (1974).PubMedGoogle Scholar
  97. 97.
    A. E. Bogden and D. J. Taylor, Predictive mammary tumor test systems for experimental chemotherapy, in: Breast Cancer: Trends In Research and Treatment (J. C. Heuson, W. H. Mattheiem, and M. Rozencweig, eds.), pp. 95–110, Raven Press, New York (1976).Google Scholar
  98. 98.
    E. M. Pantelouris, Absence of thymus in a mouse mutant, Nature (London) 217, 370–371 (1968).Google Scholar
  99. 99.
    J. Rygaard and C. O. Povlsen (eds.), Proceedings of the First International Workshop on Nude Mice, Gustav Fischer Verlag, Stuttgart, 301 pp. (1974).Google Scholar
  100. 100.
    H. H. Wortis, Immunological studies of nude mice, Contemp. Top. Immunobiol. 3, 243–263 (1974).PubMedGoogle Scholar
  101. 101.
    J. Rygaard and C.O. Povlsen, Heterotransplantation of a human malignant tumor to “nude” mice, Acta Pathol. Microbiol. Scand. 77, 758–760 (1969).PubMedGoogle Scholar
  102. 102.
    C.O. Povlsen and J. Rygaard, Heterotransplantation of human adenocarcinomas of the colon and rectum to the mouse mutant “nude”: A study of nine consecutive transplantations, Acta Pathol. Microbiol. Scand. 79, 159–169 (1971).Google Scholar
  103. 103.
    C. O. Povlsen and J. Rygaard, Heterotransplantation of human epidermoid carcinoma to the mouse mutant “nude,” Acta Pathol. Microbiol. Scand. 80, 713–717 (1972).Google Scholar
  104. 104.
    B. C. Giovanella, S. O. Yim, A. C. Morgan, J. S. Stehlin, and L. J. Williams, Brief communication: Metastasis of human melanomas transplanted in “nude” mice, J. Natl. Cancer Inst. 50, 1051–1053 (1973).PubMedGoogle Scholar
  105. 105.
    B. C. Giovanella, A. C. Morgan, J. S. Stehlin, L. J. Williams, and D. M. Mumford, Development of invasive tumors in “nude” thymusless mice injected with human cells cultured from Burkitt lymphomas, Proc. Am. Assoc. Cancer Res. 14, 20 (1973).Google Scholar
  106. 106.
    H. C. Outzen and R. P. Custer, Brief communication: Growth of human normal and neoplastic mammary tissue in the cleared mammary fat pad of the nude mouse, J. Natl. Cancer Inst. 55, 1461–1463 (1975).PubMedGoogle Scholar
  107. 107.
    B. C. Giovanella, J. S. Stehlin, and L. J. Williams, Heterotransplantation of human malignant tumor in “nude” thymusless mice. II. Malignant tumors induced by injection of cell cultures derived from human solid tumors, J. Natl. Cancer Inst. 52, 921–930 (1974).PubMedGoogle Scholar
  108. 108.
    C. O. Povlsen, J. Visfeldt, J. Rygaard, and G. Jensen, Growth patterns and chromosome constitutions of human malignant tumors after long-term transplantation in nude mice, Acta Pathol. Microbiol. Scand. Sect. A, 83, 709–716 (1975).Google Scholar
  109. 109.
    A. E. Bogden, D. E. Kelton, W. R. Cobb, T. A. Gulkin, and R. K. Johnson, The effect of serial passage in nude athymic mice on the growth characteristics and chemotherapy responsiveness of rat mammary tumor xenografts, Cancer Res. 38, 59–64 (1978).PubMedGoogle Scholar
  110. 110.
    J. Rygaard, Thymus and Self Immunology of the Mouse Mutant Nude, F.A.D.L. Publishers, Copenhagen (1973).Google Scholar
  111. 111.
    A. D. Irving, C. G. D. Brown, G. K. Kanhar, and D. A. Stagg, Comparative growth of bovine lymphosarcoma cells and lymphoid cells injected with Theileria parva in athymic (nude) mice, Nature (London) 255, 713–714 (1975).Google Scholar
  112. 112.
    R. T. Prehn, Clinical implications of the data base concerning the tumor-host relationship, in: Immunobiology of the Tumor-Host Relationship, (R. T. Smith and M. Landy, eds.), p. 292, Academic Press, New York (1975).Google Scholar
  113. 113.
    W. J. Martin and S. E. Martin, Naturally occurring cytotoxic anti-tumor antibodies in sera of congenitally athymic (nude) mice, Nature (London) 249, 564–565 (1974).Google Scholar
  114. 114.
    H. Ramseier, Specific activation of T lymphocytes from nude mice, Immunogenetics 1, 507–510 (1975).Google Scholar
  115. 115.
    F. Loor, L. B. Hagg, N. S. Mayor, and G. E. Roelants, θ-Positive cells in nude mice born from homozygous nulnu mother, Nature (London) 255, 657–658 (1975).Google Scholar
  116. 116.
    Guide for the care and use of the nude (thymus-deficient) mouse in biomedical research: A report of the committee on care and use of the nude mouse, ILAR News, Vol. XIX (2), pp. M3–M20 (1976).Google Scholar
  117. 117.
    D. Houchens and A. Ovejera, Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research (June, 1977) Gustav Fischer Inc., New York. In press.Google Scholar
  118. 118.
    A. E. Bogden, D.E. Kelton, W. R. Cobb, and H. J. Esber, A rapid screening method for testing chemotherapeutic agents against human tumor xenografts, in: Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research (June, 1977), (D. Houchens and A. Ovejera, eds.), Gustav Fischer, Inc., New York. In press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Arthur E. Bogden
    • 1
  1. 1.Mason Research InstituteWorcesterUSA

Personalised recommendations