Skip to main content

Abstract

The growing acceptance that cancer encompasses a disparate group of diseases in which malignant cells tend to retain certain unique characteristics of the tissue or organ of their origin has been paralleled by an increasing interest in experimental animal model systems that not only are representative of human malignancies histologically, but also originate in the organ or tissues, and have the growth and metastasizing characteristics of the particular neoplastic disease for which they serve as a model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. K. Carter, Immunotherapy in the strategy of cancer treatment (editorial), Cancer Immunol Immunother. I, 115–118 (1976).

    Google Scholar 

  2. G. L. Bartlett, J. W. Kreider, and D. M. Purnell, Immunotherapy of cancer in animals: Models or muddles? (guest editorial), J. Natl. Cancer Inst. 56, 207–210 (1976).

    PubMed  CAS  Google Scholar 

  3. Webster’s New Collegiate Dictionary, G&C Merriam, Springfield, Massachusetts (1974).

    Google Scholar 

  4. J. Huxley, Biological Aspects of Cancer, Harcourt, Brace, New York (1958).

    Google Scholar 

  5. M. E. Lippman, C. K. Osborne, R. Krazek, and N. Young, In vitro model systems for the study of hormone-dependent human breast cancer, N. Engl. J. Med. 296(3), 154–159 (1977).

    PubMed  CAS  Google Scholar 

  6. L. Norton, R. Simon, H. D. Brereton, and A. E. Bogden, Predicting the course of Gompertzian growth, Nature (London) 264, 542–545 (1976).

    CAS  Google Scholar 

  7. L. Norton and R. Simon, Tumor size, sensitivity to therapy, and the design of treatment schedules, Cancer Treatment Rep. 61, 1307–1317 (1977).

    CAS  Google Scholar 

  8. F. M. Schabel, Jr., Concepts for systemic treatment of micrometastases, Cancer 35, 15–24 (1975).

    PubMed  CAS  Google Scholar 

  9. E. Frei, III, Selected considerations regarding chemotherapy as adjuvant in cancer treatment, Cancer Chemother. Rep. 50, 1–5 (1966).

    PubMed  Google Scholar 

  10. A. K. Laird, Dynamics of growth in tumors and normal organisms, Natl. Cancer Inst. Monogr. 30, 15–28 (1969).

    PubMed  CAS  Google Scholar 

  11. B. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc. London 115, 513–585 (1825).

    Google Scholar 

  12. G. P. Bodey, E. J. Freireich, E. Gehan, K. B. McCredie, Z. Rodriques, J. Gutterman, and A. Burgess, Late intensification therapy for acute leukemia in remission, J. Am. Med. Assoc. 235, 1021–1025 (1976).

    CAS  Google Scholar 

  13. K. B. DeOme, H. A. Bern, S. Nandi, D. R. Pitelka, and L. J. Faulkin Jr., Genetics and Cancer, pp. 327–348, University of Texas Press, Houston (1959).

    Google Scholar 

  14. P. B. Blair and K. B. DeOme, Mammary tumor development in transplanted hyperplastic alveolar nodules of the mouse, Proc. Soc. Exp. Biol. Med. 108, 289–291. (1961).

    PubMed  CAS  Google Scholar 

  15. K. B. DeOme, L. J. Faulkin, H. A. Bern, and P. B. Blair, Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice, Cancer Res. 19, 515–520 (1959).

    PubMed  CAS  Google Scholar 

  16. L. J. Beuving, Mammary tumor formation within outgrowth of transplanted hyperplastic alveolar nodules from carcinogen treated rats, J. Natl. Cancer Inst. 40, 1287–1289 (1968).

    PubMed  CAS  Google Scholar 

  17. D. Sinha and T. L. Dao, A direct mechanism of mammary carcinogenesis induced by 7,12-dimethylbenz(a)anthracene, J. Natl. Cancer Inst. 53, 841–846 (1974).

    PubMed  CAS  Google Scholar 

  18. T. L. Dao, D. Sinha, S. Christakos, and R. Varela, Biochemical characterization of carcinogen-induced mammary hyperplastic alveolar nodule and tumor in the rat, Cancer Res. 35, 1128–1134 (1976).

    Google Scholar 

  19. H. M. Jensen, J. R. Rice, and S. R. Wellings, Preneoplastic lesions in the human breast, Science 191, 295–297 (1976).

    PubMed  CAS  Google Scholar 

  20. D. E. Bostock, The prognosis following the surgical excision of canine mammary neoplasms, Eur. J. Cancer 11, 389–396 (1975).

    PubMed  CAS  Google Scholar 

  21. R. M. Mulligan, Comparative pathology of human and canine cancer, Ann. N. Y. Acad. Sci. 108, 642–690 (1963).

    Google Scholar 

  22. M. M. Mason, Canine mammary tumors: A review, prepared for the Endocrinology Evaluation Branch, NCI, under Contract No. PH43–65–6 (May 1967).

    Google Scholar 

  23. W. Misdorp, E. Cotchin, J. F. Hampe, A. G. Jabara, and J. Sandersleben, Canine malignant mammary tumors, Vet. Pathol. 10, 241–256 (1973).

    PubMed  CAS  Google Scholar 

  24. J. D. Strandberg and D. G. Goodman, Animal model of human disease: Breast cancer, Am. J. Pathol. 75, 225–228 (1974).

    PubMed  CAS  PubMed Central  Google Scholar 

  25. A. C. Anderson, Parameters of mammary gland tumors in aging beagles, J. Am. Vet. Assoc. 147, 1653–1654 (1965).

    Google Scholar 

  26. G. N. Taylor, L. Shabestari, J. Williams, C. W. Mays, W. Angus, and S. McFarland, Mammary neoplasia in a closed beagle colony, Cancer Res. 36, 2740–2743 (1976).

    PubMed  CAS  Google Scholar 

  27. C. Huggins, G. Briziarelli, and H. Sutton, Jr., Rapid induction of mammary carcinoma in the rat and the influence of hormones on the tumors, J. Exp. Med. 109, 25–43 (1959).

    PubMed  CAS  PubMed Central  Google Scholar 

  28. J. Maisin and M. L. Coolen, Au sujet du pouvoir cancerigène du methyl-cholanthrene, C. R. Soc. Biol. 123, 159–160 (1936).

    CAS  Google Scholar 

  29. J. V. Proshaska, A. Brunschweig, and H. Wilson, Oral administration of methyl-cholanthrene to mice, Arch. Surg. 38, 328–333 (1939).

    Google Scholar 

  30. J. W. Orr, Mammary carcinoma in mice following the intranasal administration of methylcholanthrene, J. Pathol. Bacteriol. 55, 483–488 (1943).

    CAS  Google Scholar 

  31. C. Huggins, L. G. Grand, and F. P. Brillantes, Mammary cancer induced by a single feeding of polynuclear hydrocarbons and its suppression, Nature (London) 189, 204–207 (1961).

    CAS  Google Scholar 

  32. P. M. Daniel and M. M. Pritchard, The response of experimentally induced mammary tumors in rats to hypophysectomy and to pituitary stalk section, Br. J. Cancer 17, 446–453 (1963).

    PubMed  CAS  PubMed Central  Google Scholar 

  33. M. N. Teller, C. C. Stock, G. Stohr, P. C. Merker, R. J. Kaufman, G. C. Escher, and M. Bowie, Biological characteristics and chemotherapy of 7,12-dimethylbenz(a)an-thracene-induced tumors in rats, Cancer Res. 26, 245–252 (1966).

    PubMed  CAS  Google Scholar 

  34. D. P. Griswold, H. E. Skipper, W. R. Laster Jr., W. S. Wilcox, and F. M. Schabel, Jr., Induced mammary carcinoma in the female rat as a drug evaluation system, Cancer Res. 26, 2169–2180 (1966).

    PubMed  CAS  Google Scholar 

  35. K. D. Schulz, B. Haselmeier, and F. Holzel, The influence of clomid and its isomers upon dimethylbenzanthracene-induced rat mammary tumors, Acta Endocrinol. (Copenhagen). Suppl. 138, 236 (1969).

    Google Scholar 

  36. L. Terenius, Anti-oestrogens and breast cancer, Eur. J. Cancer 7, 57–64 (1971).

    PubMed  CAS  Google Scholar 

  37. W. L. McGuire, Current status of estrogen receptors in human breast cancer, Cancer 36, 638–644 (1975).

    PubMed  CAS  Google Scholar 

  38. K. B. Horwitz and W. L. McGuire, Specific progesterone receptors in human breast cancer, Steroids 25, 497–505 (1975).

    PubMed  CAS  Google Scholar 

  39. M. F. Pichon and E. Milgrom, Characterization and assay of progesterone receptor in human mammary carcinoma, Cancer Res. 37, 464–471 (1977).

    PubMed  CAS  Google Scholar 

  40. R. I. Nicholson and M. P. Golder, The effect of synthetic anti-oestrogens on the growth and biochemistry of rat mammary tumors, Eur. J. Cancer 11, 571–579 (1975).

    PubMed  CAS  Google Scholar 

  41. E. V. Jensen, H. I. Jacobsen, S. Smith, P. W. Jungblut, and E. R. DeSombre, The use of estrogen antagonists in hormone receptor studies, Gynecol. Invest. 3, 108–123 (1972).

    PubMed  CAS  Google Scholar 

  42. C. W. Welsch and H. Nagasawa, Prolactin and murine mammary tumorigenesis: A review, Cancer Res. 37, 951–963 (1977).

    PubMed  CAS  Google Scholar 

  43. H. Nasr and O. H. Pearson, Inhibition of prolactin secretion by ergot alkaloids, Acta Endocrinol. 80, 429–443 (1975).

    PubMed  CAS  Google Scholar 

  44. A. Manni, J. E. Trujillo, and O. H. Pearson, Predominant role of prolactin in stimulating the growth of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumor, Cancer Res. 37, 1216–1219 (1977).

    PubMed  CAS  Google Scholar 

  45. S. K. Quadri, G. S. Kledzik, and J. Meites, Counteraction by prolactin of androgen-induced inhibition of mammary tumor growth in rats, J. Natl. Cancer Inst. 52, 875–878 (1974).

    PubMed  CAS  Google Scholar 

  46. M. E. Costlow, R. A. Buschow, and W. L. McGuire, Prolactin receptors and androgen-induced regression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma, Cancer Res. 36, 3324–3329 (1976).

    PubMed  CAS  Google Scholar 

  47. C. Huggins, R. C. Moon, and S. Morii, Extinction of experimental mammary cancer. I. Estradiol-17ß and progesterone, Proc. Natl. Acad. Sci. U.S.A. 48, 379–386 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

  48. C.J. Shellabarger and V. A. Soo, Effects of neonatally administered sex steroids on 7,12-dimethylbenz(a)anthracene induced mammary neoplasia in rats, Cancer Res. 33, 1567–1569 (1973).

    PubMed  CAS  Google Scholar 

  49. E. Heise and M. Gorlich, Growth and therapy of mammary tumors induced by 7,12-dimethylbenzanthracene in rats, Br. J. Cancer 20, 539–545 (1966).

    PubMed  CAS  PubMed Central  Google Scholar 

  50. J. Kim, J. Fürth, and K. Yannopoulos, Observations on hormonal control of mammary cancer. I. Estrogen and mammatropes, J. Natl. Cancer Inst. 31, 233–259 (1963).

    PubMed  CAS  Google Scholar 

  51. M. N. Teller, R. J. Kaufmann, M. Bowie, and C. C. Stock, Influence of estrogens and endocrine ablation on duration of remission produced by ovariectomy or androgen treatment of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors, Cancer Res. 29, 349–352 (1969).

    PubMed  CAS  Google Scholar 

  52. M. N. Teller, C. C. Stock, G. Stohr, P. C. Merker, R. J. Kaufmann, G. C. Escher, and M. Bowie, Biologic characteristics and chemotherapy of 7,12-dimethylbenz(a)anthra-cene-induced tumors in rats, Cancer Res. 26, 245–252 (1966).

    PubMed  CAS  Google Scholar 

  53. S. Young, D. Cowan, and L. Sutherland, The histology of induced mammary tumors in rats, J. Pathol. Bacteriol. 85, 331–340 (1963).

    PubMed  CAS  Google Scholar 

  54. P. M. Daniel and M. M. L. Prichard, The response of experimentally induced mammary tumors in rats to ovariectomy, Br. J. Cancer 17, 687–690 (1964).

    Google Scholar 

  55. P. M. Daniel and M. M. L. Prichard, Further studies on mammary tumors induced in rats by 7,12-dimethylbenz(a)anthracene (DMBA), Int. J. Cancer 2, 163–177 (1967).

    PubMed  CAS  Google Scholar 

  56. D. P. Griswold Jr., and C. H. Green, Observations on the hormone sensitivity of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the Sprague-Dawley rat, Cancer Res. 30, 819–826 (1970).

    PubMed  CAS  Google Scholar 

  57. R. L. Noble, B. Hochachka, and D. King, Spontaneous and estrogen-produced tumors in Nb rats and their behavior after transplantation, Cancer Res. 35, 766–780 (1975).

    PubMed  CAS  Google Scholar 

  58. R. L. Noble and L. Hoover, A classification of transplantable tumors in Nb rats controlled by estrogen from dormancy to autonomy, Cancer Res. 35, 2935–2941 (1975).

    PubMed  CAS  Google Scholar 

  59. M. Sluyser and R. VanNie, Estrogen receptor content and hormone responsive growth of mouse mammary tumors, Cancer Res. 34, 3253–3257 (1974).

    PubMed  CAS  Google Scholar 

  60. H. A. Bern and S. Nandi, Recent studies of the hormonal influence in mouse mammary tumorigenesis, Prog. Exp. Tumor Res. 2, 90–134 (1961).

    PubMed  CAS  Google Scholar 

  61. O. Mühlbock and L. M. Boot, Induction of mammary cancer in mice without the mammary tumor agent by isografts of hypophysis, Cancer Res. 19, 402–412 (1959).

    PubMed  Google Scholar 

  62. N. Haran-Ghera, The role of mammotrophin in mammary tumor induction in mice, Cancer Res. 21, 790–795 (1961).

    PubMed  CAS  Google Scholar 

  63. C. W. Welsch and C. Gribler, Prophylaxis of spontaneously developing mammary carcinoma in C3H/HeJ female mice by suppression of prolactin, Cancer Res. 33, 2939–2946 (1973).

    PubMed  CAS  Google Scholar 

  64. H. Nagasawa, K. Kuretani, and F. Kanzawa, Effect of prolactin on the growth of spontaneous mammary tumor in mice, Gann 57, 637–640 (1966).

    PubMed  CAS  Google Scholar 

  65. H. Nagasawa, R. Yanai, H. Iwahashi, M. Fujimoto, and K. Kuretani, Effect of pituitary isografts on the growth of spontaneous mammary tumor in mice, Gann 58, 337–342 (1967).

    PubMed  CAS  Google Scholar 

  66. A. E. Bogden, D. J. Taylor, E. Y. H. Kuo, M. M. Mason, and A. Speropoulos, The effect of perphenazine-induced serum prolactin response on estrogen-primed mammary tumor-host systems, 13762 and R-35 mammary adenocarcinomas, Cancer Res. 34, 3018–3025 (1974).

    PubMed  CAS  Google Scholar 

  67. R. Hilf, C. Bell, H. Goldenberg, and I. Michel, Effect of fluphenazine HCl on R3230AC mammary carcinoma and mammary glands of the rat, Cancer Res. 31, 1111–1117 (1971).

    PubMed  CAS  Google Scholar 

  68. A. Segaloff, Hormones in breast cancer, Recent Prog. Horm. Res. 22, 351–374 (1966).

    PubMed  CAS  Google Scholar 

  69. U. Kim and J. Fürth, Relation of mammotropes to mammary tumors. IV. Development of highly hormone dependent mammary tumors, Proc. Soc. Exp. Biol. Med. 105, 490–492 (1960).

    PubMed  CAS  Google Scholar 

  70. E. J. Diamond, S. Koprak, S. K. Shen, and V. P. Hollander, The conversion of an ovariectomy-nonresponsive to an ovariectomy-responsive mammary tumor strain, Cancer Res. 36, 77–80 (1976).

    PubMed  CAS  Google Scholar 

  71. B. L. Powel, E. J. Diamond, S. Koprak, and V. P. Hollander, Prolactin binding in ovariectomy-responsive and ovariectomy-nonresponsive rat mammary carcinoma, Cancer Res. 37, 1328–1332 (1977).

    Google Scholar 

  72. U. Kim and M. J. Depowski, Progression from hormone dependence to autonomy in mammary tumors as an in vivo manifestation of sequential clonal selection, Cancer Res. 35, 2068–2077 (1975).

    PubMed  CAS  Google Scholar 

  73. U. Kim, J. Furth, and K. H. Clifton, Relation of mammary tumors to mammotropes. III. Hormone responsiveness of transplanted mammary tumors, Proc. Soc. Exp. Biol. Med. 103, 646–650 (1960).

    PubMed  CAS  Google Scholar 

  74. M. E. Costlow, R. A. Buschow, N. J. Richert, and W. L. McGuire, Prolactin and estrogen binding in transplantable hormone-dependent and autonomous rat mammary carcinoma, Cancer Res. 35, 970–974 (1975).

    PubMed  CAS  Google Scholar 

  75. P. M. Gullino, F. H. Grantham, I. Losonczy, and B. Berghoffer, Mammary tumor regression. I. Physiopathologic characteristics of hormone-dependent tissue, J. Natl. Cancer Inst. 49, 1333–1348 (1972).

    PubMed  CAS  Google Scholar 

  76. P. M. Gullino and R. H. Lanzerotti, Mammary tumor regression. II. Autophagy of neoplastic cells, J. Natl. Cancer Inst. 49, 1349–1356 (1972).

    PubMed  CAS  Google Scholar 

  77. P. M. Gullino, F. H. Grantham, I. Losonczy, and B. Berghoffer, Mammary tumor regression. III. Uptake and loss of substrates by regressing tumors, J. Natl. Cancer Inst. 49, 1675–1684 (1972).

    PubMed  CAS  Google Scholar 

  78. R. H. Lanzerotti and P. M. Gullino, Activities and quantities of lysosomal enzymes during mammary tumor regression, Cancer Res. 32, 2679–2685 (1972).

    PubMed  CAS  Google Scholar 

  79. Borland’s Illustrated Medical Dictionary, 25th Ed. W. B. Saunders, Philadelphia (1974).

    Google Scholar 

  80. M. J. Brennan, Murine and rat mammary tumors as models for the immunological study of human breast cancer, Cancer Res. 36, 728–733 (1976).

    PubMed  CAS  Google Scholar 

  81. G. H. Heppner and G. Pierce, In vitro demonstration of tumor specific antigens in spontaneous mammary tumors of mice, Int. J. Cancer 4, 212–218 (1969).

    PubMed  CAS  Google Scholar 

  82. U. Kim, Metastasizing mammary carcinoma in rats: Induction and study of their immunogenicity, Science 167, 72–74 (1970).

    PubMed  CAS  Google Scholar 

  83. S. Nandi and C. M. McGrath, Mammary neoplasia in mice, Adv. Cancer Res. 17, 353–414 (1973).

    Google Scholar 

  84. S. Nandi, Interaction among hormonal, viral and genetic factors in mouse mammary tumorigenesis, Can. Cancer Conf. 6, 69–81 (1966).

    PubMed  CAS  Google Scholar 

  85. D. S. Martin, R. A. Fugmann, R. L. Stolfi, and P. E. Hayworth, Solid tumor animal model therapeutically predictive for human breast cancer, Cancer Chemother. Rep. 5(2), 89–109 (1975).

    Google Scholar 

  86. D. S. Martin, P. E. Hayworth, and R. A. Fugmann, Enhanced cure of spontaneous murine mammary tumor with surgery, combination chemotherapy, and immunotherapy, Cancer Res. 30, 709–716 (1970).

    PubMed  CAS  Google Scholar 

  87. R. A. Fugmann, D. S. Martin, P. E. Hayworth, and R. L. Stolfi, Enhanced cures of spontaneous murine mammary carcinomas with surgery and five-compound combination chemotherapy, and their immunotherapeutic interrelationship, Cancer Res. 30, 1931–1936 (1970).

    PubMed  CAS  Google Scholar 

  88. R. A. Fugmann, R. L. Stolfi, P. E. Hayworth, and D. S. Martin, Immunologic and chemotherapeutic parameters in a model breast tumor system, Cancer Chemother. Rep. 4(2), 25–32 (1974).

    Google Scholar 

  89. J. G. Anderson, R. A. Fugmann, R. L. Stolfi, and D. S. Martin, Metastatic incidence of a spontaneous murine mammary adenocarcinoma, Cancer Res. 34, 1916–1920 (1974).

    PubMed  CAS  Google Scholar 

  90. M. Hosokawa, F. Orsini, and E. Mihich, Fast- and slow-growing transplantable tumors derived from spontaneous mammary tumors of the DBA/2 Ha-DD mouse, Cancer Res. 35, 2657–2662 (1975).

    PubMed  CAS  Google Scholar 

  91. A. E. Bogden, P. M. Haskell, W. R. Cobb, and D. E. Kelton, Heterogeneity in chemotherapy responsiveness of the solid 13762 rat mammary adenocarcinoma and two derived ascites tumor lines, Proc. Am. Assoc. Cancer Res. 17, 40 (1976).

    Google Scholar 

  92. U. Kim, A. Baumler, C. Carruthers, and K. Bielat, Immunological escape mechanism in spontaneously metastasizing mammary tumors, Proc. Natl. Acad. Sci. U.S.A. 72, 1012–1016 (1975).

    PubMed  CAS  PubMed Central  Google Scholar 

  93. A. E. Bogden, H. J. Esber, D. J. Taylor, and J. H. Gray, Comparative study on the effects of surgery, chemotherapy, and immunotherapy, alone and in combination, on metastases of the 13762 mammary adenocarcinoma, Cancer Res. 34, 1627–1631 (1974).

    PubMed  CAS  Google Scholar 

  94. J. W. Kreider, G. L. Bartlett, and D. M. Purnell, Suitability of rat mammary adenocarcinoma 13762 as a model for BCG immunotherapy, J. Natl. Cancer Inst. 56, 797–802 (1976).

    PubMed  CAS  Google Scholar 

  95. F. C. Sparks, T. X. O’Connell, and Y.-T. N. Lee, Adjuvant preoperative and postoperative immunochemotherapy for mammary adenocarcinoma in rats, Surg. Forum 24, 118–121 (1973).

    PubMed  CAS  Google Scholar 

  96. F. C. Sparks, T. X. O’Connell, Y.-T. N. Lee, and J. H. Breeding, Brief communication: BCG therapy given as an adjuvant to surgery: Prevention of death from metastases from mammary adenocarcinoma in rats, J. Natl. Cancer Inst. 53, 1825–1826 (1974).

    PubMed  CAS  Google Scholar 

  97. A. E. Bogden and D. J. Taylor, Predictive mammary tumor test systems for experimental chemotherapy, in: Breast Cancer: Trends In Research and Treatment (J. C. Heuson, W. H. Mattheiem, and M. Rozencweig, eds.), pp. 95–110, Raven Press, New York (1976).

    Google Scholar 

  98. E. M. Pantelouris, Absence of thymus in a mouse mutant, Nature (London) 217, 370–371 (1968).

    CAS  Google Scholar 

  99. J. Rygaard and C. O. Povlsen (eds.), Proceedings of the First International Workshop on Nude Mice, Gustav Fischer Verlag, Stuttgart, 301 pp. (1974).

    Google Scholar 

  100. H. H. Wortis, Immunological studies of nude mice, Contemp. Top. Immunobiol. 3, 243–263 (1974).

    PubMed  CAS  Google Scholar 

  101. J. Rygaard and C.O. Povlsen, Heterotransplantation of a human malignant tumor to “nude” mice, Acta Pathol. Microbiol. Scand. 77, 758–760 (1969).

    PubMed  CAS  Google Scholar 

  102. C.O. Povlsen and J. Rygaard, Heterotransplantation of human adenocarcinomas of the colon and rectum to the mouse mutant “nude”: A study of nine consecutive transplantations, Acta Pathol. Microbiol. Scand. 79, 159–169 (1971).

    CAS  Google Scholar 

  103. C. O. Povlsen and J. Rygaard, Heterotransplantation of human epidermoid carcinoma to the mouse mutant “nude,” Acta Pathol. Microbiol. Scand. 80, 713–717 (1972).

    CAS  Google Scholar 

  104. B. C. Giovanella, S. O. Yim, A. C. Morgan, J. S. Stehlin, and L. J. Williams, Brief communication: Metastasis of human melanomas transplanted in “nude” mice, J. Natl. Cancer Inst. 50, 1051–1053 (1973).

    PubMed  CAS  Google Scholar 

  105. B. C. Giovanella, A. C. Morgan, J. S. Stehlin, L. J. Williams, and D. M. Mumford, Development of invasive tumors in “nude” thymusless mice injected with human cells cultured from Burkitt lymphomas, Proc. Am. Assoc. Cancer Res. 14, 20 (1973).

    Google Scholar 

  106. H. C. Outzen and R. P. Custer, Brief communication: Growth of human normal and neoplastic mammary tissue in the cleared mammary fat pad of the nude mouse, J. Natl. Cancer Inst. 55, 1461–1463 (1975).

    PubMed  CAS  Google Scholar 

  107. B. C. Giovanella, J. S. Stehlin, and L. J. Williams, Heterotransplantation of human malignant tumor in “nude” thymusless mice. II. Malignant tumors induced by injection of cell cultures derived from human solid tumors, J. Natl. Cancer Inst. 52, 921–930 (1974).

    PubMed  CAS  Google Scholar 

  108. C. O. Povlsen, J. Visfeldt, J. Rygaard, and G. Jensen, Growth patterns and chromosome constitutions of human malignant tumors after long-term transplantation in nude mice, Acta Pathol. Microbiol. Scand. Sect. A, 83, 709–716 (1975).

    CAS  Google Scholar 

  109. A. E. Bogden, D. E. Kelton, W. R. Cobb, T. A. Gulkin, and R. K. Johnson, The effect of serial passage in nude athymic mice on the growth characteristics and chemotherapy responsiveness of rat mammary tumor xenografts, Cancer Res. 38, 59–64 (1978).

    PubMed  CAS  Google Scholar 

  110. J. Rygaard, Thymus and Self Immunology of the Mouse Mutant Nude, F.A.D.L. Publishers, Copenhagen (1973).

    Google Scholar 

  111. A. D. Irving, C. G. D. Brown, G. K. Kanhar, and D. A. Stagg, Comparative growth of bovine lymphosarcoma cells and lymphoid cells injected with Theileria parva in athymic (nude) mice, Nature (London) 255, 713–714 (1975).

    Google Scholar 

  112. R. T. Prehn, Clinical implications of the data base concerning the tumor-host relationship, in: Immunobiology of the Tumor-Host Relationship, (R. T. Smith and M. Landy, eds.), p. 292, Academic Press, New York (1975).

    Google Scholar 

  113. W. J. Martin and S. E. Martin, Naturally occurring cytotoxic anti-tumor antibodies in sera of congenitally athymic (nude) mice, Nature (London) 249, 564–565 (1974).

    CAS  Google Scholar 

  114. H. Ramseier, Specific activation of T lymphocytes from nude mice, Immunogenetics 1, 507–510 (1975).

    Google Scholar 

  115. F. Loor, L. B. Hagg, N. S. Mayor, and G. E. Roelants, θ-Positive cells in nude mice born from homozygous nulnu mother, Nature (London) 255, 657–658 (1975).

    CAS  Google Scholar 

  116. Guide for the care and use of the nude (thymus-deficient) mouse in biomedical research: A report of the committee on care and use of the nude mouse, ILAR News, Vol. XIX (2), pp. M3–M20 (1976).

    Google Scholar 

  117. D. Houchens and A. Ovejera, Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research (June, 1977) Gustav Fischer Inc., New York. In press.

    Google Scholar 

  118. A. E. Bogden, D.E. Kelton, W. R. Cobb, and H. J. Esber, A rapid screening method for testing chemotherapeutic agents against human tumor xenografts, in: Proceedings of the Symposium on the Use of Athymic (Nude) Mice in Cancer Research (June, 1977), (D. Houchens and A. Ovejera, eds.), Gustav Fischer, Inc., New York. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bogden, A.E. (1978). Therapy in Experimental Breast Cancer Models. In: McGuire, W.L. (eds) Breast Cancer:Advances in Research and Treatment, Vol. 2: Experimental Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4673-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4673-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4675-4

  • Online ISBN: 978-1-4757-4673-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics