Advertisement

Modeling of Reaction Kinetics

  • Jens Nielsen
  • John Villadsen

Abstract

In Chapter 3, measurements of rates of biomass and metabolite production and of substrate consumption were used to put life into the mathematical formalism of the first part of Chapter 2. It was shown that volumetric rate measurements can be used to obtain key parameters for the design of fermentation processes. Likewise it was demonstrated how carefully planned fermentation experiments, after digestion of the results by means of a powerful mathematical procedure, can provide important information relevant to fundamental biochemical research. Not only are rates of missing overall reactions calculable, but the rates r of cellular pathway reactions can also be calculated and interactions between different parts of the cell machinery studied.

Keywords

Specific Growth Rate Dilution Rate Biomass Concentration Batch Fermentation Maximum Specific Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Alexander, M. A. and Jeffries, T. W. (1990). “Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeast,” Enzyme Microb. Technol. 12, 2–19.CrossRefGoogle Scholar
  2. Bailey, J. E. and 011is, D. F. (1986). Biochemical Engineering Fundamentals, 2d. ed., McGraw-Hill, New York.Google Scholar
  3. Bajpai, R. K. and Ghose, T. K. (1978). “An induction-repression model for growth of yeasts on glucosecellobiose mixtures,” Biotechnol. Bioeng. 20, 927–935.CrossRefGoogle Scholar
  4. Baltzis, B. C. and Fredrickson, A. G. (1988). “Limitation of growth by two complementary nutrients: Some elementary, but neglected considerations,” Biotechnol. Bioeng. 31, 75–86.PubMedCrossRefGoogle Scholar
  5. Barford, J. P. and Hall, R. J. (1979). “An examination of the Crabtree effect in Saccharomyces cerevisiae: The role of respiratory adaption,” J. Gen. Microbiol. 114, 267–275.Google Scholar
  6. Barford, J. P., Jeffrey, P. M., and Hall, R. J. (1981). “The Crabtree effect in Saccharomyces cerevisiaeprimary control mechanism or transient,” in Advances in Biotechnology 1, M. Moo-Young, ed., Pergamon Press, Englewood Cliffs, New Jersey 255–260.Google Scholar
  7. Benthin, S (1992). Growth and Product Formation of Lactococcus Cremoris, Ph.D. thesis, Technical University of Denmark, Lyngby.Google Scholar
  8. Benthin, S., Nielsen, J., and Villadsen, J. (1991). “A simple and reliable method for the determination of cellular RNA content,” Biotechnol. Techniques. 5, 39–42.CrossRefGoogle Scholar
  9. Bibal, B., Goma, G., Vayssier, Y.. and Pareilleux, A. (1988). “Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study,” Appl. Microbiol. Biotechnol. 28, 340–344.CrossRefGoogle Scholar
  10. Bibal, B., Kapp, C., Goma, G., and Pareilleux, A. (1989). “Continuous culture of Streptococcus cremoris on lactose using various medium conditions,” Appl. Microbiol. Biotechnol. 32, 155–159.CrossRefGoogle Scholar
  11. Dedem, G. van and Moo-Young, M. (1975). “A model for diauxic growth,” Biotechnol. Bioeng. 17, 1301–1312.PubMedCrossRefGoogle Scholar
  12. Dhurjati, P., Ramkrishna, D., Flickinger, M. C., Tsao, G. T. (1985). “A cybernetic view of microbial growth: Modeling of cells as optimal strategists,” Biotechnol. Bioeng. 27, 1–9.PubMedCrossRefGoogle Scholar
  13. Domach, M. M., Leung, S. K., Cahn, R. E., Cocks, G. G., and Shuler, M. L. (1984). “Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A,” Biotechnol. Bioeng. 26, 203216.Google Scholar
  14. Egli, T. (1991). “On multiple nutrient limited growth of microorganisms with special reference to dual limitation by carbon and nitrogen substrates,” Antonie van Leeuwenhoek 60, 225–234.PubMedCrossRefGoogle Scholar
  15. Esener, A. A., Roels, J. A., and Kossen, N. W. F. (1981a). “The influence of temperature on the maximum specific growth rate of Klebsiella pneumoniae,” Biotechnol. Bioeng. 23, 1401–1405.CrossRefGoogle Scholar
  16. Esener, A. A., Roels, J. A., and Kossen, N. W. F. (1981b). “Fed-batch culture: Modeling and applications in the study of microbial energies,” Biotechnol. Bioeng. 27, 1851–1871.CrossRefGoogle Scholar
  17. Esener, A. A., Roels, J. A., Kossen, N. W. F., and Roozenburg, J. W. H. (1981c). “Description of microbial growth behaviour during the wash-out phase; determination of the maximum specific growth rate,” Eur. J. Appl. Microbiol. Biotechnol. 13, 141–144.CrossRefGoogle Scholar
  18. Esener, A. A., Veerman, T., Roels, J. A., and Kossen, N. W. F. (1982). “Modeling of bacterial growth; Formulation and evaluation of a structured model, Biotechnol. Bioeng. 29, 1749–1764.Google Scholar
  19. Fredrickson, A. G. (1976). “Formulation of structured growth models,” Biotechnol. Bioeng. 18, 1481–1486.CrossRefGoogle Scholar
  20. Goodenough, U. (1984). Genetics, Saunders College Publishing, New York.Google Scholar
  21. Han, K. and Levenspiel, O. (1988). “Extended Monod kinetics for substrate, product, and cell inhibition,” Biotechnol. Bioeng. 32, 430–437.PubMedCrossRefGoogle Scholar
  22. Harder, A. and Roels, J. A. (1982). “Application of simple structured models in bioengineering,” Adv. Biochem. Eng. 21, 55–107.Google Scholar
  23. Heijnen, J. J. and Roels, J. A. (1981). “A macroscopic model describing yield and maintenance in aerobic fermentation processes,” Biotechnol. Bioeng. 23, 739–763.CrossRefGoogle Scholar
  24. Heijnen, J. J., Rods, J. A., and Stouthamer, A. H. (1979). “Application of balancing methods in modeling the penicillin fermentation,” Biotechnol. Bioeng. 21, 2175–2201.PubMedCrossRefGoogle Scholar
  25. Heinmets, F. (1969). “Analysis of cellular growth process,” Biomathematics 1, 157–184.Google Scholar
  26. Herbert, D. (1959). “Some principles of continuous culture,” Recent Prog. Microbiol. 7, 381–396.Google Scholar
  27. Herendeen, S. L., van Bogelen, R. A., and Neidhardt, F. C. (1979). “Levels of major proteins of Escherichia coli during growth at different temperatures,” J. Bacteriol. 139, 185–194.Google Scholar
  28. Ingraham, J. L., Maaloe, 0., and Neidhardt, F. C. (1983). Growth of the Bacterial Cell, Sinauer Associates, Inc., Sunderland.Google Scholar
  29. Jeong, J. W., Snay, J., and Ataai, M. M. (1990). “A mathematical model for examining growth and sporulation processes of Bacillus subtilis,” Biotechnol. Bioneg. 34, 160–184.CrossRefGoogle Scholar
  30. Jöbses, I. M. L., Egberts, G. T. C., van Baalen, A., and Roels, J. A. (1985). “Mathematical modeling of growth and substrate conversion of Zymomonas mobilis at 30 and 35 °C,” Biotechnol. Bioeng. 27, 984–995.PubMedCrossRefGoogle Scholar
  31. Joshi, A. and Palsson, B. O. (1988). “Escherichia coli growth dynamics: A three-pool biochemically based description,” Biotechnol. Bioeng. 31, 102–116.PubMedCrossRefGoogle Scholar
  32. Kompala, D. S., Ramkrishna, D., and Tsao, G. T. (1984). “Cybernetic modeling of microbial growth on multiple substrates,” Biotechnol. Bioeng. 26, 1272–1281.PubMedCrossRefGoogle Scholar
  33. Kompala, D. S., Ramkrishna, D., Jansen, N. B., and Tsao, G. T. (1986). “Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models,” Biotechnol. Bioeng. 28, 1044–1055.PubMedCrossRefGoogle Scholar
  34. Larsen, J. E. L., Gerdes, K., Light, J., and Molin, S. (1984). “Low-copy-number plasmid-cloning vectors amplifiable by depression of an inserted foreign promoter,” Gene 28, 45–54.PubMedCrossRefGoogle Scholar
  35. Lee, S. B. and Bailey, J. E. (1984a). “A mathematical model for Ado plasmid replication: Analysis of wild-type plasmid,” Plasmid 11, 151–165.Google Scholar
  36. Lee, S. B. and Bailey, J. E. (1984b). “A mathematical model for Ado plasmid replication: Analysis of copy number mutants,” Plasmid 11, 166–177.PubMedCrossRefGoogle Scholar
  37. Lee, S. B. and Bailey, J. E. (1984c). “Analysis of growth rate effects on productivity of recombinantEscherichia coli populations using molecular mechanism models,” Biotechnol. Bioeng. 26, 66–73.PubMedCrossRefGoogle Scholar
  38. Lee, S. B. and Bailey, J. E. (1984d). “Genetically structured models for lac promoter-operator function in the Escherichia coli chromosome and in multicopy plasmids: lac operator function,” Biotechnol. Bioeng. 26, 1372–1382.CrossRefGoogle Scholar
  39. Lee, S. B. and Bailey, J. E. (1984e). “Genetically structured models for lac promoter-operator function in the Escherichia coli chromosome and in multicopy plasmids: lac promoter function,” Biotechnol. Bioeng. 26. 1381–1389.Google Scholar
  40. Lehninger, A. L. (1965). Bioenergetics, 2nd. ed., W. A. Benjamin, Palo Alto, CA.Google Scholar
  41. Luedeking, R. and Piret, E. L. (1959a). “A kinetic study of the lactic acid fermentation batch process at controlled pH,” J. Biochem. Microbiol. Technol. Eng. 1, 393–412.CrossRefGoogle Scholar
  42. Luedeking. R. and Piret, E. L. (1959b). “Transient and steady states in continuous fermentation. Theory and experiment,” J. Biochem. Microbiol. Technol. Eng. 1, 431–459.CrossRefGoogle Scholar
  43. Meyenburg, K. von (1969). Katabolit-Repression and der Sprossungszyklus von Saccharomyces cerevisiae, Diss. ETH, Zürich.Google Scholar
  44. Monod, J. (1942). Recherches sur la croissance des cultures bacteriennes, Hermann et C1e, Paris. Nielsen, J. and Villadsen, J. (1992). “Modeling of microbial kinetics,” Chem. Eng. Sci. 47, 4225–4270.Google Scholar
  45. Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991a). “Structured modeling of a microbial system 1. A theoretical study of the lactic acid fermentation,” Biotechnol. Bioeng. 38, 1–10.PubMedCrossRefGoogle Scholar
  46. Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991b). “Structured modeling of a microbial system 2. Verification of a structured lactic acid fermentation model,” Biotechnol. Bioeng. 38, 11–23.PubMedCrossRefGoogle Scholar
  47. Nielsen, J., Pedersen, A. G., Strudsholm, K., and Villadsen, J. (1991c). “Modeling fermentations with recombinant microorganisms: Formulation of a structured model,” Biotechnol. Bioeng. 37, 802–808.PubMedCrossRefGoogle Scholar
  48. Palsson, B. O. and Joshi, A. (1987). “On the dynamic order of structured Escherichia coli growth models,” Biotechnol. Bioeng. 29, 789–792.PubMedCrossRefGoogle Scholar
  49. Peretti, S. W. and Bailey, J. E. (1986). “Mechanistically detailed model of cellular metabolism for glucose-limited growth of Escherichia coli B/r-A,” Biotechnol. Bioeng. 28, 1672–1689.PubMedCrossRefGoogle Scholar
  50. Peretti, S. W. and Bailey, J. E. (1987). “Simulations of host-plasmid interactions in Escherichia coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression,” Biotechnol. Bioeng. 29, 316–328.PubMedCrossRefGoogle Scholar
  51. Pirt, S. J. (1965). “The maintenance energy of bacteria in growing cultures,” Proc. Royal Soc. London Ser. B. 163, 224–231.CrossRefGoogle Scholar
  52. Powell, E. O. (1967). “The growth rate of microorganisms as a function of substrate concentration,” in 3 Int. Symposium on Microbial Physiology and Continuous Culture, E. O. Powell, ed., 23–33.Google Scholar
  53. Ramkrishna, D. (1979). “Statistical models of cell populations,” Adv. Biochem. Eng. 11, 1–47.Google Scholar
  54. Ramkrishna, D. (1982). “A cybernetic perspective of microbial growth,” in Foundations of Biochemical Engineering: Kinetics and Thermodynamics in Biological Systems, American Chemical Society, 161178.Google Scholar
  55. Ramkrishna, D., Fredrickson, A. G., and Tsuchiya, H. M. (1967). “Dynamics of microbial propagation: Models considering inhibitors and variable cell composition, Biotechnol. Bioeng. 9, 129–170.Google Scholar
  56. Ramkrishna, D., Kompala, D. S., and Tsao, G. T. (1984). “Cybernetic modeling of microbial populations. Growth on mixed substrates,” in Frontiers in Chemical Reaction Engineering, Vol. 1, Wiley Eastern Ltd., New Delhi, 241–261.Google Scholar
  57. Ramkrishna, D., Kompala, D. S., and Tsao, G. T. (1987). “Are microbes optimal strategists?” Biotechnol. Prog. 3, 121–126.CrossRefGoogle Scholar
  58. Rieger, M., Käppeli, O., and Fiechter, A. (1983). “The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae.”./. Gen. Microbiol. 129, 653–661.Google Scholar
  59. Roels, J. A. (1983). Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press, Amsterdam. Roels, J. A. and Kossen, N. W. F. (1978). “On the modeling of microbial metabolism,” Prog. Ind. Microbiol. 14, 95–204.Google Scholar
  60. Seo, J.-H. and Bailey, J. E. (1985). Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Bane, huol. Bioeng. 27, 1668–1674.CrossRefGoogle Scholar
  61. Shuler, M. L. and Domach, M. M. (1982). “Mathematical models of the growth of individual cells,” in Foundations of Biochemical Engineering: /inch(s and lhcrnuuhnamics in Biological Systems, American Chemical Society Publications. 93 133.Google Scholar
  62. Shuler, M. L., Leung, S. K., and Dick, C. C. 1979). ’\mathematical model for the growth of a single bacterial cell,“ Ann. N.Y. Acad. Sei. 326. 35 55.Google Scholar
  63. Sonnleitner, B. and Käppeli, O. (1986). “Grouch of S,,cchmonnces cerevisiae is controlled by its limited respiratory capacity: Formulation and veri)ic,iuon oi,, livp„thrsis. Biotechnol. Bioeng. 28, 927–937.Google Scholar
  64. Strudsholm, K., Nielsen, J., and Emborg, C. 1199’ Pnatu.t formation during batch fermentation with recombinant E. coli containing a runa a plasmid.“ 1t5.1., Inc. 8. 173–181.Google Scholar
  65. Sweere, A. P. J., Giesselbach, J., Barendse. R.. de Knrgei. R. I;outlet-d, G.. and Luyben, K. Ch. A. M. (1988). “Modeling the dynamic behaviour of Saccliai o m.c. eere%isiae and its application in control experiments,” Appl. Microbial. Biotechnol. 28. I It, i t Google Scholar
  66. Tsao, G. T. and Hanson, T. P. (1975). “Extended Monod equation for batch cultures with multiple exponential phases,” Biotechnol. Bioeng. 17, 1591–1598.CrossRefGoogle Scholar
  67. Turner, B. G. and Ramkrishna, D. (1988). “Revised enzyme synthesis rate expression in cybernetic models of bacterial growth,” Biotechnol. Bioeng. 31, 41–43.PubMedCrossRefGoogle Scholar
  68. Uhlin, B. E., Molin, S., Gustafsson, P., and Nordström, K. (1979). “Plasmids with temperature-dependent copy number for amplification of cloned genes and their products,” Gene 6, 91–106.PubMedCrossRefGoogle Scholar
  69. Urk, H. van, Mak, P. R., Scheffers, W. A., and van Dijken, J. P. (1988). “Metabolic responses of Saccharomyces cerevisiae CBS8066 and Candida utilis CBS621 upon transition from glucose limitation to glucose excess,” Yeast 4, 283–291.Google Scholar
  70. Williams, F. M. (1967). “A model of cell growth dynamics,” J. Theoret. Biol. 15, 190–207.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jens Nielsen
    • 1
  • John Villadsen
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations