Cellular Growth Reactions

  • Jens Nielsen
  • John Villadsen


Cellular growth is the result of a very large number of chemical reactions that occur inside individual cells. These reactions include formation of Gibbs free energy, which is used to fuel all the other reactions, biosynthesis of building blocks from substrates, polymerization of the building blocks into macromolecules, and assembly of macromolecules into organdies. In order to ensure orderly and energy-efficient growth, most of these reactions have to be tightly coupled, and the flux through the various pathways inside the cell is therefore carefully controlled. This is illustrated by a few simple observations concerning the bacterium Escherichia colt [Ingraham et al. (1983)]; see Table 2.1.


Gibbs Free Energy Specific Growth Rate Respiratory Quotient Stoichiometric Coefficient Aerobic Growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth, G. C. and Sussman, A. S. (1965). The Fungi, Vol. I-III, Academic Press, New York. Atkinson, D. E. (1977). Cellular Energy Metabolism and Its Regulation, Academic Press, London.Google Scholar
  2. Benthin, S. (1992). Growth and Product Formation of Lactococcus Cremoris, Ph.D. thesis, Department of Biotechnology, Technical University of Denmark, Lyngby.Google Scholar
  3. Benthin, S., Nielsen, J., and Villadsen, J. (1991). “Characterization and application of precise and robust flow-injection analysers for on-line measurements during fermentations,” Anal. Chim. Acta 247, 45 50.Google Scholar
  4. Benthin, S., Schultze, U., Nielsen, J., and Villadsen, J. (1994). “Growth energetics of Lactococcus cremoris FDI during energy, carbon, and nitrogen limitation in steady state and transient cultures, Chem. Eng. Sci. 49, 589–609.Google Scholar
  5. Cook, A. H. (1958). The Chemistry and Biology of Yeasts, Academic Press, New York.Google Scholar
  6. Dekkers, J. G. J., de Kok, H. E., and Roels, J. A. (1981). “Energetics of Saccharomyces cerevisiae CBS 426: Comparison of anaerobic and aerobic glucose limitation,” Biotechnol. Bioeng. 13, 1023 1035.Google Scholar
  7. Erickson, L. E., Minkevich, I. G., and Eroshin, V. K. (1978). “Application of mass and energy balance regularities in fermentation,” Biotechnol. Bioeng. 20, 1595–1621.CrossRefGoogle Scholar
  8. Goldberg, I. and Rokem, J. S. (1991). Biology of Methylotrophs, Butterworth-Heinemann, Boston. Guerts, Th. G. E., de Kok, H. E., and Roels, J. A. (1980). “A quantitative description of the growth of Saccharomyces cerevisiae CBS 342 on a mixed substrate of glucose and ethanol,” Biotechnol. Bioeng. 22, 20–31.Google Scholar
  9. Herbert, D. (1959). “Some principles of continuous cultures,” Tunewall, G. ed., Recent Prog. Microbiol. 7, 381–396.Google Scholar
  10. Herbert, D. (1976). “Stoichiometric Aspects of Microbial Growth,” in Continuous Culture, A. R. C. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds., Ellis Horwood Ltd., Chichester, 1–30.Google Scholar
  11. Ingraham, J. L., Maaloe, O., and Neidhardt, F. C. (1983). Growth of the Bacterial Cell, Sinnauer Associates Inc, Sunderland.Google Scholar
  12. Katchalsky, A. and Curran, F. P. (1965). Non-equilibrium Thermodynamics in Biophysics, Harvard U. Press, Cambridge, MA.Google Scholar
  13. Luedeking, R. and Piret, E. L. (1959). “A kinetic study of the lactic acid fermentation. Batch process at controlled pH,” J. Biochem. Microbiol. Technol. Eng. 1, 393–412.CrossRefGoogle Scholar
  14. Meyenburg, K. von (1969). Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae, Ph.D. thesis, ETH, Zürich.Google Scholar
  15. Mitchell, P. (1968). Chemiosmotic coupling and energy transduction, Clynn Research, Bodmin, Cornwall, UK.Google Scholar
  16. Müller, R. H. and Babel, W. (1984). “Glucose as an auxiliary substrate,” Appl. Microbiol. Biotechnol. 20, 195–200.CrossRefGoogle Scholar
  17. Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991a). “Structured modelling of a microbial system I.Theoretical study of the lactic acid fermentation, ”Biotechnol. Bioeng. 38 1–10.Google Scholar
  18. Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991b). “Structured modelling of a microbial system II. Experimental verification of a structured lactic acid fermentation model,” Biotechnol. Bioeng. 38, 11–23.PubMedCrossRefGoogle Scholar
  19. Oura, E. (1983). “Biomass from carbohydrates,” in Biotechnology, H. Dellweg, ed., Vol. 3, 3–42.Google Scholar
  20. Pirt, S. J. (1965). “The maintenance energy of bacteria in growing cultures,” Proc. Royal Soc. London Ser. B 163, 224–231.CrossRefGoogle Scholar
  21. Rods, J. A. (1983). Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam. Rose, A. H. and Harrison, J. S. (1989). The Yeasts, Vol. I-IV, Academic Press, London.Google Scholar
  22. Rottenberg, H. (1979). “Non-equilibrium thermodynamics of energy conversion in bioenergetics,” Biochem. Biophys. Acta 549, 225–253.PubMedCrossRefGoogle Scholar
  23. Senior, A. E. (1988). “ATP synthesis by oxidative phosphorylation,” Physiol. Rev. 68, 177–231.PubMedGoogle Scholar
  24. Sjöberg, A. and Hahn-Hägerdal, B. (1989). ß-glucose-l-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lattis, “ Appl. Environ. Microbiol. 55, 1549–1554.PubMedGoogle Scholar
  25. Stein, W. D. (1990). Channels, Carriers, and Pumps. An Introduction to Membrane Transport, Academic Press, San Diego.Google Scholar
  26. Stouthamer, A. H. (1979). “The search for correlation between theoretical and experimental growth yields,” in Microbial Biochemistry, J. R. Quayle, ed., Vol. 21, 1–48.Google Scholar
  27. Stryer, L. (1981). Biochemistry, W. H. Freeman and Company, San Fransisco.Google Scholar
  28. Stucki, J. W. (1980). “The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation,” Eur. J. Biochem. 109, 269–283.PubMedCrossRefGoogle Scholar
  29. Theobald, U., Mailinger, W., Reuss, M., and Rizzi, M. (1993). “In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique,” Anal. Biochem. 214 31–37.Google Scholar
  30. Walter, A. and Gutknecht, J. (1986). “Permeability of small nonelectrolytes through lipid bilayer membranes,” J. Membrane Biol. 90, 207–217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jens Nielsen
    • 1
  • John Villadsen
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations