Intravascular Re-Targeting of Viral Vectors

  • Paul N. Reynolds
  • Sergei M. Danilov


In recent years, the concept of gene delivery has arisen as an alternative to more traditional drug delivery approaches. Although this concept was initially envisaged as a strategy to correct inherited genetic disorders, the approach has been substantially broadened to encompass the use of gene-based therapies for a variety of acquired diseases. In essence, the approach involves the delivery of nucleic acids (i.e. genes) into cells whereupon the host cell’s machinery will be used for transcription and translation, leading to in situ production of a protein which in turn will have an impact on cell function.


Gene Delivery Penton Base Biomedical Aspect Transductional Target Knob Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodman DM, San H, Simari R, Stephan D, Tanner F, Yang Z, Nabel GJ, Nabel EG: In vivo gene delivery to the pulmonary circulation in rats: transgene distribution and vascular inflammatory response. Am JRespir Cell Mol Biol 1997; 16: 640–649.Google Scholar
  2. 2.
    Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323CrossRefGoogle Scholar
  3. 3.
    Tomko RP, Xu R, Philipson L: HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Nail Acad Sci USA 1997; 94: 3352–3356CrossRefGoogle Scholar
  4. 4.
    Kelly FJ, Miller CR, Buchsbaum DJ, Gomez-Navarro J, Barnes MN, Alvarez RD, Curiel DT: Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res 2000; 6: 4323–4333.Google Scholar
  5. 5.
    Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT: The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000; 60: 5031–5036.Google Scholar
  6. 6.
    Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM: The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Nall Acad Sci USA 2001; 98: 15191–15196.CrossRefGoogle Scholar
  7. 7.
    Carson SD, Hobbs JT, Tracy SM, Chapman NM: Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol 1999; 73: 7077–7079.Google Scholar
  8. 8.
    Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ: Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.CrossRefGoogle Scholar
  9. 9.
    Wickham TJ, Mathias P, Cheresh DA, Nemerow GR: Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.CrossRefGoogle Scholar
  10. 10.
    Reynolds PN, Miller CR, Goldman CK, Doukas J, Sosnowski BA, Rogers BE, Gomez-Navarro J, Pierce GF, Curiel DT, Douglas JT: Targeting adenoviral infection with basic fibroblast growth factor enhances gene delivery to vascular endothelial and smooth muscle cells. Tumor Targeting 1998; 3: 156–168.Google Scholar
  11. 11.
    Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ, Wang MH, Miletich DJ, Douglas JT, Danilov SM, Curiel DT: A targetable injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000; 2: 562–578.CrossRefGoogle Scholar
  12. 12.
    Danilov SM, Gavrilyuk VD, Franke FE, Pauls K, Harshaw DW, McDonald TD, Miletich DJ, Muzykantov VR: Pulmonary uptake and tissue selectivity of antibodies to surface endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 2001; 280: L1335 - L1347.Google Scholar
  13. 13.
    Balyasnikova IV, Yeomans DC, McDonald TB, Danilov SM: Antibody-mediated lung endothelium targeting: in vivo model on primates. Gene Ther 2002; 9: 282–290.CrossRefGoogle Scholar
  14. 14.
    Worgall S, Wolff G, Falckpedersen E, Crystal RG: Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.CrossRefGoogle Scholar
  15. 15.
    Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH: Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 2000; 102: 231–237.CrossRefGoogle Scholar
  16. 16.
    Kashentseva EA, Seki T, Curiel DT, Dmitriev IP: Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.Google Scholar
  17. 17.
    Dmitriev I, Krasnykh K, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT: An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.Google Scholar
  18. 18.
    Wickham Ti, Tzeng E, Shears LL, Roelvink PW, Li Y, Lee GM, Brough DE, Lizonova A, Kovesdi I: Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.Google Scholar
  19. 19.
    Reynolds PN, Dmitriev I, Curiel DT: Insertion of an RGD motif into the HI loop of adenovirus alters the transgene expression profile of the systemically administered vector. Gene Ther 1999; 6: 1336–1339.CrossRefGoogle Scholar
  20. 20.
    Nicklin SA, Von Seggern DJ, Work LM, Pek DC, Dominiczak AF, Nemerow GR, Baker AH: Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol Ther 2001; 4: 534–542.CrossRefGoogle Scholar
  21. 21.
    Alemany R, Curiel DT: CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 2001; 8: 1347–1353.CrossRefGoogle Scholar
  22. 22.
    Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, Wickham Ti: Reducing the Native Tropism of Adenovirus Vectors Requires Removal of both CAR and Integrin Interactions. J Virol 2001; 75: 11284–11291.CrossRefGoogle Scholar
  23. 23.
    Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT: Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 2001; 75: 4176–4183.CrossRefGoogle Scholar
  24. 24.
    Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF, Baker AH: Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 2001; 38: 65–70.CrossRefGoogle Scholar
  25. 25.
    Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV, Baker AH, Danilov SM, Curiel DT: Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19: 838–842CrossRefGoogle Scholar
  26. 26.
    Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, Barsoum J, Fawell SE: Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.CrossRefGoogle Scholar
  27. 27.
    Gordon EM, Chen ZH, Liu L, Whitley M, Wei D, Groshen S, Hinton DR, Anderson WF, Beart RW, Jr., Hall FL: Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther 2001; 12: 193204.Google Scholar
  28. 28.
    Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ: Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 1999; 17: 181–186.CrossRefGoogle Scholar
  29. 29.
    Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, Deleage G, Hallek M: Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 1999; 5: 1052–1056.CrossRefGoogle Scholar
  30. 30.
    Nicklin SA, Buening H, Dishart KL, de Alwis M, Girod A, Hacker U, Thrasher AJ, Ali RR, Hallek M, Baker AH: Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001; 4: 174–181.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paul N. Reynolds
    • 1
    • 2
  • Sergei M. Danilov
    • 1
    • 2
  1. 1.Department of Thoracic MedicineRoyal Adelaide HospitalAdelaideAustralia
  2. 2.Department of AnesthesiologyUniversity of Illinois in ChicagoChicagoUSA

Personalised recommendations