Immunotoxins and Antibody-Drug Conjugates for Cancer Treatment

  • Victor S. Goldmacher
  • Walter A. Blättler
  • John M. Lambert
  • Ravi V. J. Chari


A large number of cytotoxic compounds are currently used as chemotherapeutic drugs to treat various malignancies. In general, the therapeutic efficacy of these drugs is limited by their narrow therapeutic window’ primarily due to their lack of selectivity in killing cells that results in systemic toxicity at therapeutic doses.


Acute Myeloid Leukemia Maximum Tolerate Dose Diphtheria Toxin Gemtuzumab Ozogamicin Protein Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pietersz, G. A., Krauer, K., and McKenzie, I. F. The use of monoclonal antibody immunoconjugates in cancer therapy. Adv Exp Med Biol, 353: 169–179, 1994.CrossRefGoogle Scholar
  2. 2.
    Chari, R. V. Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Adv Drug Deliv Rev, 31: 89–104, 1998.CrossRefGoogle Scholar
  3. 3.
    Guillemard, V. and Saragovi, H. U. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity. Cancer Res, 61: 694699, 2001.Google Scholar
  4. 4.
    Chari, R. V., Martell, B. A., Gross, J. L., Cook, S. B., Shah, S. A., Blättler, W. A., McKenzie, S. J., and Goldmacher, V. S. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res, 52: 127–131, 1992.Google Scholar
  5. 5.
    Pietersz, G. A. The linkage of cytotoxic drugs to monoclonal antibodies for the treatment of cancer. Bioconjug Chem, 1: 89–95, 1990.CrossRefGoogle Scholar
  6. 6.
    Trail, P. A., Willner, D., Knipe, J., Henderson, A. J., Lasch, S. J., Zoeckler, M. E., TrailSmith, M. D., Doyle, T. W., King, H. D., Casazza, A. M., Braslawsky, G. R., Brown, J., Hofstead, S. J., Greenfield, R. S., Firestone, R. A., Mosure, K., Kadow, K. F., Yang, M. B., Hellstrom, K. E., and Hellstrom, I. Effect of linker variation on the stability, potency, and efficacy of carcinoma-reactive BR64-doxorubicin immunoconjugates. Cancer Res, 57: 100–105, 1997.Google Scholar
  7. 7.
    Zhu, Z., Kralovec, J., Ghose, T., and Mammen, M. Inhibition of Epstein-Barr-virus- transformed human chronic lymphocytic leukaemic B cells with monoclonalantibody-adriamycin (doxorubicin) conjugates. Cancer Immunol Immunother, 40: 257–267, 1995.Google Scholar
  8. 8.
    Sivam, G. P., Martin, P. J., Reisfeld, R. A., and Mueller, B. M. Therapeutic efficacy of a doxorubicin immunoconjugate in a preclinical model of spontaneous metastatic human melanoma. Cancer Res, 55: 2352–2356, 1995.Google Scholar
  9. 9.
    Trail, P. A., Willner, D., Lasch, S. J., Henderson, A. J., Hofstead, S., Casazza, A. M., Firestone, R. A., Hellstrom, I., and Hellstrom, K. E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science, 261: 212–215, 1993.CrossRefGoogle Scholar
  10. 10.
    Tolcher, A. W. BR96-doxorubicin: been there, done that! J Clin Oncol, 18: 4000, 2000.Google Scholar
  11. 11.
    Arnon, R. and Sela, M. In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies. Immunol Rev, 62: 5–27, 1982.Google Scholar
  12. 12.
    Sedlacek, H.-H., Seemann, G., Hoffmann, D., Czech, J., Lorenz, P., C., K., and Bosslet, K. Antibodies as carriers of cytotoxicity, pp. 74–76. Basel; New York: Karger, 1992.Google Scholar
  13. 13.
    Lord, J. M., Roberts, L. M., and Robertus, J. D. Ricin: structure, mode of action, and some current applications. Faseb J, 8: 201–208, 1994.Google Scholar
  14. 14.
    Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15: 245–250, 1978.CrossRefGoogle Scholar
  15. 15.
    Fodstad, O., Kvalheim, G., Godal, A., Lotsberg, J., Aamdal, S., Host, H., and Pihl, A. Phase I study of the plant protein ricin. Cancer Res, 44: 862–865, 1984.Google Scholar
  16. 16.
    Frankel, A. E. Immunotoxins, Boston, Norwell: Kluwer Academic Publishers; 1988.Google Scholar
  17. 17.
    Ghetie, V. and Vitetta, E. Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol Ther, 63: 209–234, 1994.CrossRefGoogle Scholar
  18. 18.
    Goldmacher, V. S., Scott, C. F., Lambert, J. M., McIntyre, G. D., Blättler, W. A., Collnhson, A. R., Stewart, J. K., Chong, L. D., Cook, S., Slayter, H. S., and et al. Cytotoxicity of gelonin and its conjugates with antibodies is determined by the extent of their endocytosis. J Cell Physiol, 141: 222–234, 1989.CrossRefGoogle Scholar
  19. 19.
    Blakey, D. C., J., W. E., M., W. P., and E., T. P. Antibody toxin conjugates: a perspective. In: H. Waldmann (ed.), Monoclonal antibody therapy, Vol. 45, pp. 5090. Basel: Karger, 1988.Google Scholar
  20. 20.
    Mandel, R., Ryser, H. J., Ghani, F., Wu, M., and Peak, D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Nat ! Acad Sci U S A, 90: 4112–4116, 1993.CrossRefGoogle Scholar
  21. 21.
    Barbieri, L., Battelli, M. G., and Stirpe, F. Reduction of ricin and other plant toxins by thiol:protein disulfide oxidoreductases. Arch Biochem Biophys, 216: 380–383, 1982.CrossRefGoogle Scholar
  22. 22.
    Varandani, P. T., Raveed, D., and Nafz, M. A. Insulin degradation. XXIII. Distribution of glutathione-insulin transhydrogenase in isolated rat hepatocytes as studied by immuno-ferritin and electron microscopy. Biochim Biophys Acta, 538: 343–353, 1978.CrossRefGoogle Scholar
  23. 23.
    Yoshimori, T., Semba, T., Takemoto, H., Akagi, S., Yamamoto, A., and Tashiro, Y. Protein disulfide-isomerase in rat exocrine pancreatic cells is exported from the endoplasmic reticulum despite possessing the retention signal. J Biol Chem, 265: 15984–15990, 1990.Google Scholar
  24. 24.
    Sellers, J. R., Cook, S., and Goldmacher, V. S. A cytotoxicity assay utilizing a fluorescent dye that determines accurate surviving fractions of cells. J Immunol Methods, 172: 255–264, 1994.CrossRefGoogle Scholar
  25. 25.
    Lambert, J. M., Goldmacher, V. S., Collinson, A. R., Nadler, L. M., and Blättler, W. A. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res, 51: 6236–6242, 1991.Google Scholar
  26. 26.
    Kreitman, R. J. Immunotoxins. Expert Opin Pharmacother, 1: 1117–1129, 2000.CrossRefGoogle Scholar
  27. 27.
    Scott, C. F., Jr., Goldmacher, V. S., Lambert, J. M., Jackson, J. V., and McIntyre, G. D. An immunotoxin composed of a monoclonal antitransferrin receptor antibody linked by a disulfide bond to the ribosome-inactivating protein gelonin: potent in vitro and in vivo effects against human tumors. J Natl Cancer Inst, 79: 1163–1172, 1987.Google Scholar
  28. 28.
    Shah, S. A., Halloran, P. M., Ferris, C. A., Levine, B. A., Bourret, L. A., Goldmacher, V. S., and Blättler, W. A. Anti-B4-blocked ricin immunotoxin shows therapeutic efficacy in four different SCID mouse tumor models. Cancer Res, 53: 1360–1367, 1993.Google Scholar
  29. 29.
    Brinkmann, U., Pai, L. H., FitzGerald, D. J., Willingham, M., and Pastan, I. B3(Fv)- PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc Natl Acad Sci U S A, 88: 8616–8620, 1991.CrossRefGoogle Scholar
  30. 30.
    Grossbard, M. L., Press, O. W., Appelbaum, F. R., Bernstein, I. D., and Nadler, L. M. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 80: 863878, 1992.Google Scholar
  31. 31.
    Grossbard, M. L., Multani, P. S., Freedman, A. S., O’Day, S., Gribben, J. G., Rhuda, C., Neuberg, D., and Nadler, L. M. A Phase II study of adjuvant therapy with antiB4-blocked ricin after autologous bone marrow transplantation for patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res, 5: 2392–2398, 1999.Google Scholar
  32. 32.
    Senderowicz, A. M., Vitetta, E., Headlee, D., Ghetie, V., Uhr, J. W., Figg, W. D., Lush, R. M., Stetler-Stevenson, M., Kershaw, G., Kingma, D. W., Jaffe, E. S., and Sausville, E. A. Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med, 126: 88 2885, 1997.Google Scholar
  33. 33.
    Lynch, T. J., Jr., Lambert, J. M., Coral, F., Shefner, J., Wen, P., Blättler, W. A., Collinson, A. R., Ariniello, P. D., Braman, G., Cook, S., Esseltine, D., Elias, A., Skarin, A., and Ritz, J. Immunotoxin therapy of small-cell lung cancer: a phase I study of N901-blocked ricin. J Clin Oncol, 15: 723–734, 1997.Google Scholar
  34. 34.
    Kreitman, R. J., Wilson, W. H., Bergeron, K., Raggio, M., Stetler-Stevenson, M., FitzGerald, D. J., and Pastan, I. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med, 345: 241–247, 2001.CrossRefGoogle Scholar
  35. 35.
    Ghetie, M. A., Ghetie, V., and Vitetta, E. S. Immunotoxins for the treatment of B-cell lymphomas. Mol Med, 3: 420–427, 1997.Google Scholar
  36. 36.
    Frankel, A. E., Kreitman, R. J., and Sausville, E. A. Targeted toxins. Clin Cancer Res, 6: 326–334, 2000.Google Scholar
  37. 37.
    Baluna, R. and Vitetta, E. S. Vascular leak syndrome: a side effect of immunotherapy. Immunopharmacology, 37.• 117–132, 1997.Google Scholar
  38. 38.
    Baluna, R., Rizo, J., Gordon, B. E., Ghetie, V., and Vitetta, E. S. Evidence for a structural motif in toxins and interleukin-2 that may be responsible for binding to endothelial cells and initiating vascular leak syndrome. Proc Natl Acad Sci U S A, 96: 3957–3962, 1999.CrossRefGoogle Scholar
  39. 39.
    Nicolaou, K. C., Stabila, P., Esmaeli-Azad, B., Wrasidlo, W., and Hiatt, A. Cell-specific regulation of apoptosis by designed enediynes. Proc Natl Acad Sci U S A, 90. 3142–3146, 1993.CrossRefGoogle Scholar
  40. 40.
    Hamann, P. R., Hinman, L. M., Hollander, I., Beyer, C. F., Lindh, D., Holcomb, R., Hallett, W., Tsou, H. R., Upeslacis, J., Shochat, D., Mountain, A., Flowers, D. A., and Bernstein, I. Gemtuzumab Ozogamicin, A Potent and Selective Anti-CD33 Antibody-Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Bioconjug Chem, 13: 47–58, 2002.CrossRefGoogle Scholar
  41. 41.
    Knoll, K., Wrasidlo, W., Scherberich, J. E., Gaedicke, G., and Fischer, P. Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin thetal1. Cancer Res, 60: 6089–6094, 2000.Google Scholar
  42. 42.
    Dowell, J. A., Korth-Bradley, J., Liu, H., King, S. P., and Berger, M. S. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol, 41: 1206–1214, 2001.CrossRefGoogle Scholar
  43. 43.
    Liu, C., Tadayoni, B. M., Bourret, L. A., Mattocks, K. M., Derr, S. M., Widdison, W. C., Kedersha, N. L., Ariniello, P. D., Goldmacher, V. S., Lambert, J. M., Blättler, W. A., and Chari, R. V. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A, 93: 8618–8623, 1996.CrossRefGoogle Scholar
  44. 44.
    Issell, B. F. and Crooke, S. T. Maytansine. Cancer Treat Rev, 5: 199–207, 1978.CrossRefGoogle Scholar
  45. 45.
    Chari, R. V., Jacket, K. A., Bourret, L. A., Den, S. M., Tadayoni, B. M., Mattocks, K. M., Shah, S. A., Liu, C., Blättler, W. A., and Goldmacher, V. S. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res, 55: 4079–4084, 1995.Google Scholar
  46. 46.
    Ojima, I., Slater, J. C., Kuduk, S. D., Takeuchi, C. S., Gimi, R. H., Sun, C. M., Park, Y. H., Pera, P., Veith, J. M., and Bernacki, R. J. Syntheses and structure-activity relationships of taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III. J Med Chem, 40: 267–278, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Victor S. Goldmacher
    • 1
  • Walter A. Blättler
    • 1
  • John M. Lambert
    • 1
  • Ravi V. J. Chari
    • 1
  1. 1.ImmunoGen, Inc.CambridgeUSA

Personalised recommendations