Targeted Apoptosis: Antibodies Linked to RNA Damaging Agents

  • Susanna M. Rybak
  • Michaela Arndt
  • Juergen Krauss
  • Dianne L. Newton
  • Bang K. Vu
  • Zhongyu Zhu


Generally, the new strategy in cancer drug discovery and development is to define and validate the most promising cancer related molecular targets to which new drugs can be designed. For small molecule drugs, the focus is on interfering with molecular targets that contribute to deregulated cell growth and signaling pathways, predominantly within the cancer cell. Antigens aberrantly expressed on the cancer cell surface also afford possible valid molecular targets. Thus antibodies against tumor related antigens are a class of drugs that fit the new paradigm for cancer drug development and treatment.


Antibody Fragment Variable Domain Antibody Molecule Constant Domain Recombinant Monoclonal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler, G., Milstein, C. Continuous culture of fused cells secreting antibody of predefined specifity, Nature. 256: 495–497, 1975.CrossRefGoogle Scholar
  2. 2.
    Gavilondo, J. V., Larrick, J. W. Antibody engineering at the millennium, Biotechniques. 29: 128–145, 2000.Google Scholar
  3. 3.
    Caprara, M.,Nilsen, T. RNA: versatility in form and function, Nature Structural Biology. 7: 831–833, 2000.Google Scholar
  4. 4.
    Schein, C. H. From housekeeper to microsurgeon: The diagnostic and therapeutic potential of ribonucleases, Nature Biotechnol. 15: 529–536, 1997.Google Scholar
  5. 5.
    Rybak, S. M., Newton, D. L. Natural and engineered cytotoxic ribonucleases: Therapeutic Potential, Exp. Cell Res. 253: 325–335, 1999.Google Scholar
  6. 6.
    Leland, P. A. and Raines, R. T. Cancer Chemotherapy–ribonucleases to the rescue, Chem. Biol. 8: 405–413, 2001.Google Scholar
  7. 7.
    Mikulski, S. M., Grossman, A. M., Carter, P. W., Shogen, K., Costanzi, J. J. Phase 1 human clinical trial of ONCONASE (P-30 protein) administered intravenously on a weekly schedule in cancer patients with solid tumors, Int. J. Oncol. 3: 57–64, 1993.Google Scholar
  8. 8.
    Iordanov, M. S., Ryabinina, O. P., Wong, J., Dinh, T.-H., Newton, D. L., Rybak, S. M., Magun, B. E. Molecular determinants of programmed cell death induced by the cytotoxic ribonuclease onconase: Evidence for cytotoxic mechanisms different from inhibition of protein synthesis, Cancer Res. 60: 1983–1994, 2000.Google Scholar
  9. 9.
    Iordanov, M., Wong, J., Newton, D., Rybak, S., Bright, R., Flavell, R., davis, R., Magun, B. Differential requirement for the stress-activated protein kinase/c-Jun NH2terminal kinase in RNA damage-induced apoptosis in primary and in immortalized fibroblasts, Molec Cell Biol Res Corn. 4: 122–128, 2000.CrossRefGoogle Scholar
  10. 10.
    D’Alessio, G. New and cryptic biological messages from RNases, Trends in Cell Biol. 3: 106–109, 1993.CrossRefGoogle Scholar
  11. 11.
    Cinatl, J. J., Cinatl, J., Kotchetkov, R., Motousek, J., Woodcock, B., Koehl, U., Vogel, J., Kornhuber, H., Schwabe, D. Bovine seminal ribonuclease exerts selective cytotoxicity toward neuroblastoma cells both sensitive and resistant to chemotherapeutic drugs, Anticancer res. 20: 853–859, 2000.Google Scholar
  12. 12.
    Sakakibara, R., Hashida, K., Tominaga, N., Sakai, K., Ishiguro, M., Imamura, S., Ohmatsu, F.,Sato, E. A putative mouse oocyte maturation inhibitory protein from urine of pregnant women: N-terminal sequence homology with human nonsecretory ribonuclease, Chem. Pharm. Bull. 39: 146–149, 1991.Google Scholar
  13. 13.
    Newton, D. L., Rybak, S. M. Unique recombinant human ribonuclease and inhibition of kaposi’s sarcoma cell growth, J Natl. Cancer Inst. 90: 1787–1791, 1998.Google Scholar
  14. 14.
    Better, M., Chang, C. P., Robinson, R. R., Horwitz, A. H. Escherichia coli secretion of an active chimeric antibody fragment, Science. 240: 1041–3., 1988.Google Scholar
  15. 15.
    Skerra, A., Pluckthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science. 240: 1038–41., 1988.Google Scholar
  16. 16.
    Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R. E., Haber, E., Crea, R.,, Oppermann, H. Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single-chain Fv analogue produced in Escherichia coli, Proc Natl Acad Sci U S A. 85: 5879–5883, 1988.Google Scholar
  17. 17.
    Glockshuber, R., Malia, M., Pfitzinger, I., Pluckthun, A. A comparison of strategies to stabilize immunoglobulin Fv fragments, Biochemistry. 29: 1362–1367, 1990.CrossRefGoogle Scholar
  18. 18.
    Adams, G. P., McCartney, J. E., Tai, M. S., Oppermann, H., Huston, J. S., Stafford, W. F. d., Bookman, M. A., Fand, I., Houston, L. L., Weiner, L. M. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-cerbB-2 single-chain Fv, Cancer Res. 53: 4026–4034, 1993.Google Scholar
  19. 19.
    Holliger, P., Prospero, T., Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments, Proc Natl Acad Sci U S A. 90.• 6444–8., 1993.Google Scholar
  20. 20.
    Kortt, A. A., Lah, M., Oddie, G. W., Gruen, C. L., Burns, J. E., Pearce, L. A., Atwell, J. L., McCoy, A. J., Howlett, G. J., Metzger, D. W., Webster, R. G., Hudson, P. J. Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five-and ten-residue linkers form dimers and with zero-residue linker a trimer, Protein Eng. 10: 423–33., 1997.Google Scholar
  21. 21.
    Rybak, S. M.,Newton, D. L. Immunoenzymes. In: S. M. Chamow and A. Ashkenazi (eds.), Antibody Fusion Proteins, pp. 53–110. New York, NY: John Wiley and Sons, 1999.Google Scholar
  22. 22.
    Newton, D. L., Hansen, H. J., Mikulski, S. M., Goldenberg, D. M., Rybak, S. M. Potent and specific antitumor activity of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma, Blood. 97: 528535, 2001.Google Scholar
  23. 23.
    Hursey, M., Newton, D. L., Hansen, H., Ruby, D., Goldenberg, D. M., Rybak, S. M. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: a new generation of therapeutics, Leukemia and Lymphoma 1–7, 2001.Google Scholar
  24. 24.
    Baluna, R. and Vitetta, E. S. Vascular leak syndrome: a side effect of immunotherapy, Immunopharmacol. 37.• 117–132, 1997.Google Scholar
  25. 25.
    Newton, D. L., Rybak, S. M. Antibody targeted therapeutics for lymphoma: new focus on the CD22 antigen and RNA, Expert Opin Biol Ther. 1: 995–1003, 2001.CrossRefGoogle Scholar
  26. 26.
    Adams, G. P., Schier, R., McCall, A. M., Crawford, R. S., Wolf, E. J., Weiner, L. M., Marks, J. D. Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu, Br J Cancer. 77: 1405–12, 1998.CrossRefGoogle Scholar
  27. 27.
    Milenic, D. E., Yokota, T., Filpula, D. R., Finkelman, M. A., Dodd, S. W., Wood, J. F., Whitlow, M., Snoy, P., Schlom, J. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49, Cancer Res. 51: 6363–71, 1991.Google Scholar
  28. 28.
    Berinstein, N. L., Grillo-Lopez, A. J., White, C. A., Bence-Bruckler, I., Maloney, D., Czuczman, M., Green, D., Rosenberg, J., McLaughlin, P., Shen, D. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non- Hodgkin’s lymphoma, Ann Oncol. 9: 995–1001., 1998.Google Scholar
  29. 29.
    Cobleigh, M. A., Vogel, C. L., Tripathy, D., Robert, N. J., Scholl, S., Fehrenbacher, L., Wolter, J. M., Paton, V., Shak, S., Lieberman, G., Slamon, D. J. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease, J Clin Oncol. 17: 2639–48., 1999.Google Scholar
  30. 30.
    Clauss, M. A., Jain, R. K. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues, Cancer Res. 50: 3487–92, 1990.Google Scholar
  31. 31.
    Adams, G. P., Schier, R., McCall, A., Wolf, E. J., Marks, J. D., Weiner, L. M. Tumor targeting properties of anti-c-erb-2 single-chain Fv molecules over a wide range of affinities for the same epitope, Tumor Targeting. 2: 154, 1996.Google Scholar
  32. 32.
    Adams, G. P., Schier, R., Marshall, K., Wolf, E. J., McCall, A. M., Marks, J. D., Weiner, L. M. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies, Cancer Res. 58: 485–90, 1998.Google Scholar
  33. 33.
    Weinstein, J. N., Eger, R. R., Covell, D. G., Black, C. D., Mulshine, J., Carrasquillo, J. A., Larson, S. M., Keenan, A. M. The pharmacology of monoclonal antibodies, Ann N Y Acad Sci. 507: 199–210, 1987.CrossRefGoogle Scholar
  34. 34.
    Adams, G. P., Schier, R., McCall, A. M., Simmons, H. H., Horak, E. M., Alpaugh, R. K., Marks, J. D., Weiner, L. M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules, Cancer Res. 61: 4750–5., 2001.Google Scholar
  35. 35.
    Nielsen, U. B., Adams, G. P., Weiner, L. M., Marks, J. D. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity [In Process Citation], Cancer Res. 60: 6434–40, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Susanna M. Rybak
    • 1
  • Michaela Arndt
    • 2
  • Juergen Krauss
    • 2
  • Dianne L. Newton
    • 2
  • Bang K. Vu
    • 2
  • Zhongyu Zhu
    • 2
  1. 1.Developmental Therapeutics Program, Division of Cancer Treatment and DiagnosisNational Cancer Institute at FrederickFrederickUSA
  2. 2.National Cancer Institute at FrederickSAIC FrederickFrederickUSA

Personalised recommendations