Molecular Mechanisms of Granuloma Formation in Schistosomiasis

  • Stephen J. Davies
  • James H. McKerrow


Trematodes of the genus Schistosoma reside in the bloodstream of their definitive vertebrate hosts, where they avoid immune destruction and survive for years or decades. Widespread species such as S. mansoni and S. japonicum remain important causes of intestinal and hepatic schistosomiasis in humans throughout South America, Africa and Asia, while S. haematobium, the causative agent of human urinary schistosomiasis, remains prevalent in many areas of Africa. Other species, such as S. bovis and S. mattheei, are of considerable veterinary concern. Despite their continued presence at intravascular locations for periods of years, the adult parasites themselves provoke remarkably little tissue damage or inflammation. In contrast, the eggs produced by adult schistosomes can cause considerable tissue damage and stimulate intense inflammatory and immune reactions. Indeed, the clinical classification of schistosomiasis as hepatic, intestinal or urinary depends on which organ or system is most severely affected by parasite eggs. Frequently over 100 μm long and possessing a tough proteinaceous shell, schistosome eggs trapped in host tissues such as the liver are not readily eliminated. Consequently, like other focal stimuli of chronic inflammation, parasite eggs become the focus of granulomatous inflammatory reactions known as granulomas. Persistence of eggs and the granulomas that surround them results in fibroblast activation, synthesis of extracellular matrix proteins, formation of intractable fibrotic scars and disruption of tissue architecture, ultimately leading to organ dysfunction and the clinical manifestations of schistosomiasis. In this chapter, we review the current understanding of the molecular mechanisms that drive granuloma formation in schistosomiasis. Experimental S. mansoni infections in the laboratory mouse closely resemble those observed in humans, both pathologically and immunologically, and provide an extremely malleable and useful model of the human disease. We will therefore pay particular attention to the latest insights obtained using this murine model of schistosome infection.


Adaptive Immune Response Granuloma Formation Schistosoma Mansoni Mycobacterium Bovis Schistosome Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas, A. K., Murphy, K. M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787–793.PubMedCrossRefGoogle Scholar
  2. Akhiani, A. A., Lycke, N., Nilsson, L. A., O1ling, S., and Ouchterlony, 0. (1996). Lack of interferon-gamma receptor does not influence the outcome of infection in murine schistosomiasis mansoni. Scand J Immunol 43, 257–262.PubMedCrossRefGoogle Scholar
  3. Amiri, P., Locksley, R. M., Parslow, T. G., Sadick, M., Rector, E., Ritter, D., and McKerrow, J. H. (1992). Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice [see comments]. Nature 356, 604–607.PubMedCrossRefGoogle Scholar
  4. Araujo, M. I., de Jesus, A. R., Bacellar, O., Sabin, E., Pearce, E., and Carvalho, E. M. (1996). Evidence of a T helper type 2 activation in human schistosomiasis. Eur J Immunol 26, 1399–1403.PubMedCrossRefGoogle Scholar
  5. Bean, A. G., Roach, D. R., Briscoe, H., France, M. P., Korner, H., Sedgwick, J. D., and Britton, W. J. (1999). Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162, 3504–3511.PubMedGoogle Scholar
  6. Brunet, L. R., Finkelman, F. D., Cheever, A. W., Kopf, M. A., and Pearce, E. J. (1997). IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. J Immunol 159, 777–785.PubMedGoogle Scholar
  7. Buchanan, R. D., Fine, D. P., and Colley, D. G. (1973). Schistosoma mansoni infection in mice depleted of thymus-dependent lymphocytes. II. Pathology and altered pathogenesis. Am J Pathol 71, 207–218.PubMedGoogle Scholar
  8. Byram, J. E., and von Lichtenberg, F. (1977). Altered schistosome granuloma formation in nude mice. Am J Trop Med Hyg 26, 944–956.PubMedGoogle Scholar
  9. Cai, Y., Langley, J. G., Smith, D. I., and Boros, D. L. (1996). A cloned major Schistosoma mansoni egg antigen with homologies to small heat shock proteins elicits Thl responsiveness. Infect Immun 64, 1750–1755.PubMedGoogle Scholar
  10. Caruso, A. M., Serbina, N., Klein, E., Triebold, K., Bloom, B. R., and Flynn, J. L. (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162, 5407–5416.PubMedGoogle Scholar
  11. Chan, J., and Kaufmann, S. H. E. (1994). Immune mechanisms of protection, B. R. Bloom, ed. ( Washington, DC: American Society for Microbiology).Google Scholar
  12. Cheever, A. W., Poindexter, R. W., and Wynn, T. A. (1999). Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. Infect Immun 67, 2201–2208.PubMedGoogle Scholar
  13. Cheever, A. W., Williams, M. E., Wynn, T. A., Finkelman, F. D., Seder, R. A., Cox, T. M., Hieny, S., Caspar, P., and Sher, A. (1994). Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 153, 753–759.Google Scholar
  14. Chensue, S. W., Terebuh, P. D., Warmington, K. S., Hershey, S. D., Evanoff, H. L., Kunkel, S. L., and Higashi, G. I. (1992). Role of IL-4 and IFN-gamma in Schistosoma mansoni egg-induced hypersensitivity granuloma formation. Orchestration, relative contribution, and relationship to macrophage function. J Immunol 148, 900–906.PubMedGoogle Scholar
  15. Chensue, S. W., Warmington, K., Ruth, J., Lincoln, P., Kuo, M. C., and Kunkel, S. L. (1994). Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Production of Thl and Th2 cytokines and relative contribution of tumor necrosis factor. Am J Pathol 145, 1105–1113.PubMedGoogle Scholar
  16. Chensue, S. W., Warmington, K. S., Ruth, J. H., Lincoln, P., and Kunkel, S. L. (1995). Cytokine function during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Local and regional participation of IFN- gamma, IL-10, and TNF. J Immunol 154, 5969–5976.PubMedGoogle Scholar
  17. Chiaramonte, M. G., Schopf, L. R., Neben, T. Y., Cheever, A. W., Donaldson, D. D., and Wynn, T. A. (1999). IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol 162, 920–930.PubMedGoogle Scholar
  18. Chikunguwo, S. M., Quinn, J. J., Harn, D. A., and Stadecker, M. J. (1993). The cell-mediated response to schistosomal antigens at the clonal level. III. Identification of soluble egg antigens recognized by cloned specific granulomagenic murine CD4+ Thl-type lymphocytes. J Immunol 150, 1413–1421.PubMedGoogle Scholar
  19. Cook, G. A., Metwali, A., Blum, A., Mathew, R., and Weinstock, J. V. (1993). Lymphokine expression in granulomas of Schistosoma mansoni-infected mice. Cell Immunol 152, 49–58.PubMedCrossRefGoogle Scholar
  20. Cooper, A. M., Roberts, A. D., Rhoades, E. R., Callahan, J. E., Getzy, D. M., and Orme, I. M. (1995). The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84, 423–432.PubMedGoogle Scholar
  21. Doenhoff, M., Musallam, R., Bain, J., and McGregor, A. (1979). Schistosoma mansoni infections in T-cell deprived mice, and the ameliorating effect of administering homologous chronic infection serum. I. Pathogenesis. Am J Trop Med Hyg 28, 260–263.Google Scholar
  22. Doenhoff, M. J., Pearson, S., Dunne, D. W., Bickle, Q., Lucas, S., Bain, J., Musallam, R., and Hassounah, O. (1981). Immunological control of hepatotoxicity and parasite egg excretion in Schistosoma mansoni infections: stage specificity of the reactivity of immune serum in T-cell deprived mice. Trans R Soc Trop Med Hyg 75, 41–53.PubMedCrossRefGoogle Scholar
  23. Dunne, D. W., and Doenhoff, M. J. (1983). Schistosoma mansoni egg antigens and hepatocyte damage in infected T cell-deprived mice. Contrib Microbiol Immunol 7, 22–29.PubMedGoogle Scholar
  24. Dunne, D. W., Jones, F. M., and Doenhoff, M. J. (1991). The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from Schistosoma mansoni eggs. Parasitology 103 Pt 2, 225–236.Google Scholar
  25. Ehlers, S., Benini, J., Kutsch, S., Endres, R., Rietschel, E. T., and Pfeffer, K. (1999). Fatal granuloma necrosis without exacerbated mycobacterial growth in tumor necrosis factor receptor p55 gene-deficient mice intravenously infected with Mycobacterium avium. Infect Immun 67, 3571–3579.PubMedGoogle Scholar
  26. Emile, J. F., Patey, N., Altare, F., Lamhamedi, S., Jouanguy, E., Boman, F., Quillard, J., Lecomte-Houcke, M., Verola, O., Mousnier, J. F., Dijoud, F., Blanche, S., Fischer, A., Brousse, N., and Casanova, J. L. (1997). Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol 181, 25–30.PubMedCrossRefGoogle Scholar
  27. Fallon, P. G., and Dunne, D. W. (1999). Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J Immunol 162, 4122–4132.PubMedGoogle Scholar
  28. Fallon, P. G., Smith, P., and Dunne, D. W. (1998). Type 1 and type 2 cytokine-producing mouse CD4+ and CD8+ T cells in acute Schistosoma mansoni infection. Eur J Immunol 28, 1408–1416.PubMedCrossRefGoogle Scholar
  29. Feldmann, M., Brennan, F. M., and Maini, R. N. (1996). Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14, 397–440.PubMedCrossRefGoogle Scholar
  30. Flesch, I. E., Hess, J. H., Oswald, I. P., and Kaufmann, S. H. (1994). Growth inhibition of Mycobacterium bovis by IFN-gamma stimulated macrophages: regulation by endogenous tumor necrosis factor-alpha and by IL-10. Int Immunol 6, 693–700.PubMedCrossRefGoogle Scholar
  31. Goerdt, S., and Orfanos, C. E. (1999). Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10, 137–142.PubMedCrossRefGoogle Scholar
  32. Grzych, J. M., Pearce, E., Cheever, A., Caulada, Z. A., Caspar, P., Heiny, S., Lewis, F., and Sher, A. (1991). Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J Immunol 146, 1322–1327.PubMedGoogle Scholar
  33. Hernandez, H. J., Sharpe, A. H., and Stadecker, M. J. (1999). Experimental murine schistosomiasis in the absence of B7 costimulatory molecules: reversal of elicited T cell cytokine profile and partial inhibition of egg granuloma formation. J Immunol 162, 2884–2889.PubMedGoogle Scholar
  34. Hernandez, H. J., Wang, Y., and Stadecker, M. J. (1997). In infection with Schistosoma mansoni, B cells are required for T helper type 2 cell responses but not for granuloma formation. J Immunol 158, 4832–4837.PubMedGoogle Scholar
  35. Hernandez, H. J., Wang, Y., Tzellas, N., and Stadecker, M. J. (1997). Expression of class II, but not class I, major histocompatibility complex molecules is required for granuloma formation in infection with Schistosoma mansoni. Eur J Immunol 27, 1170–1176.PubMedCrossRefGoogle Scholar
  36. Hill, J. O. (1992). CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J Exp Med 175, 1685–1695.PubMedCrossRefGoogle Scholar
  37. Horie, Y., Chervenak, R. P., Wolf, R., Gerritsen, M. E., Anderson, D. C., Komatsu, S., and Granger, D. N. (1997). Lymphocytes mediate TNF-alpha-induced endothelial cell adhesion molecule expression: studies on SCID and RAG-1 mutant mice. J Immunol 159, 5053–5062.PubMedGoogle Scholar
  38. Iacomini, J., Ricklan, D. E., and Stadecker, M. J. (1995). T cells expressing the gamma delta T cell receptor are not required for egg granuloma formation in schistosomiasis. Eur J Immunol 25, 884–888.PubMedCrossRefGoogle Scholar
  39. Jankovic, D., Cheever, A. W., Kullberg, M. C., Wynn, T. A., Yap, G., Caspar, P., Lewis, F. A., Clynes, R., Ravetch, J. V., and Sher, A. (1998). CD4+ T cell-mediated granulomatous pathology in schistosomiasis is downregulated by a B cell-dependent mechanism requiring Fc receptor signaling. J Exp Med 187, 619–629.PubMedCrossRefGoogle Scholar
  40. Jankovic, D., Kullberg, M. C., Noben-Trauth, N., Caspar, P., Ward, J. M., Cheever, A. W., Paul, W. E., and Sher, A. (1999). Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J Immunol 163, 337–342.PubMedGoogle Scholar
  41. Joseph, A. L., and Boros, D. L. (1993). Tumor necrosis factor plays a role in Schistosoma mansoni egg-induced granulomatous inflammation. J Immunol 151, 5461–5471.PubMedGoogle Scholar
  42. Kaneko, H., Yamada, H., Mizuno, S., Udagawa, T., Kazumi, Y., Sekikawa, K., and Sugawara, I. (1999). Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 79, 379–386.PubMedGoogle Scholar
  43. Kaplan, M. H., Whitfield, J. R., Boros, D. L., and Grusby, M. J. (1998). Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol 160, 1850–1856.PubMedGoogle Scholar
  44. Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F., and Vassalli, P. (1989). The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740.PubMedCrossRefGoogle Scholar
  45. King, C. L., Xianli, J., June, C. H., Abe, R., and Lee, K. P. (1996). CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur J Immunol 26, 2448–2455.PubMedCrossRefGoogle Scholar
  46. Leptak, C. L., and McKerrow, J. H. (1997). Schistosome egg granulomas and hepatic expression of TNF-alpha are dependent on immune priming during parasite maturation. J Inununol 158, 301–307.Google Scholar
  47. Mathew, R. C., and Boros, D. L. (1986). Anti-L3T4 antibody treatment suppresses hepatic granuloma formation and abrogates antigen-induced interleukin-2 production in Schistosoma mansoni infection. Infect Immun 54, 820–826.PubMedGoogle Scholar
  48. North, R. J., and Izzo, A. A. (1993). Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection. Tendency not to form granulomas in the lung is associated with faster bacterial growth in this organ. Am J Pathol 142, 1959–1966.PubMedGoogle Scholar
  49. Pearce, E. J., Caspar, P., Grzych, J. M., Lewis, F. A., and Sher, A. (1991). Downregulation of Thl cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med 173, 159–166.PubMedCrossRefGoogle Scholar
  50. Pearce, E. J., Cheever, A., Leonard, S., Covalesky, M., Fernandez-Botran, R., Kohler, G., and Kopf, M. (1996). Schistosoma mansoni in IL-4-deficient mice. Int Immunol 8, 435–444.PubMedCrossRefGoogle Scholar
  51. Rakasz, E., Blum, A. M., Metwali, A., Elliott, D. E., Li, J., Ballas, Z. K., Qadir, K., Lynch, R., and Weinstock, J. V. (1998). Localization and regulation of IFN-gamma production within the granulomas of murine schistosomiasis in IL-4-deficient and control mice. J Immunol 160, 4994–4999.PubMedGoogle Scholar
  52. Sabin, E. A., Kopf, M. A., and Pearce, E. J. (1996). Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 184, 1871–1878.PubMedCrossRefGoogle Scholar
  53. Sabin, E. A., and Pearce, E. J. (1995). Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol 155, 4844–4853.PubMedGoogle Scholar
  54. Senaldi, G., Yin, S., Shaklee, C. L., Piguet, P. F., Mak, T. W., and Ulich, T. R. (1996). Corynebacterium parvum-and Mycobacterium bovis bacillus Calmette- Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF- RI) knockout mice and by treatment with soluble TNF-RI. J Immunol 157, 5022–5026.PubMedGoogle Scholar
  55. Sher, A., Coffman, R. L., Hieny, S., Scott, P., and Cheever, A. W. (1990). Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci U S A 87, 61–65.PubMedCrossRefGoogle Scholar
  56. Subramanian, G., Kazura, J. W., Pearlman, E., Jia, X., Malhotra, I., and King, C. L. (1997). B7–2 requirement for helminth-induced granuloma formation and CD4 type 2 T helper cell cytokine expression. J Immunol 158, 5914–5920.PubMedGoogle Scholar
  57. Vella, A. T., and Pearce, E. J. (1992). CD4+ Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, Th0-like stage. J Immunol 148, 228322–90.Google Scholar
  58. Warren, K. S., Domingo, E. O., and Cowan, R. B. T. (1967). Granuloma formation around schistosome eggs as a manifestation of delayed hypersensitivity. Am J Pathol 51, 735–756.PubMedGoogle Scholar
  59. Wynn, T. A., Cheever, A. W., Jankovic, D., Poindexter, R. W., Caspar, P., Lewis, F. A., and Sher, A. (1995). An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596.PubMedCrossRefGoogle Scholar
  60. Wynn, T. A., Cheever, A. W., Williams, M. E., Hieny, S., Caspar, P., Kuhn, R., Muller, W., and Sher, A. (1998). IL-10 regulates liver pathology in acute murine Schistosomiasis mansoni but is not required for immune down-modulation of chronic disease. J Immunol 160, 4473–4480.PubMedGoogle Scholar
  61. Yap, G., Cheever, A., Caspar, P., Jankovic, D., and Sher, A. (1997). Unimpaired down-modulation of the hepatic granulomatous response in CD8 T-cell-and gamma interferon-deficient mice chronically infected with Schistosoma mansoni. Infect Immun 65, 2583–2586.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Stephen J. Davies
    • 1
  • James H. McKerrow
    • 1
  1. 1.Tropical Disease Research Unit, Department of PathologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations