Skip to main content

Molecular Mechanisms of Granuloma Formation in Schistosomiasis

  • Chapter
Biology of Parasitism

Abstract

Trematodes of the genus Schistosoma reside in the bloodstream of their definitive vertebrate hosts, where they avoid immune destruction and survive for years or decades. Widespread species such as S. mansoni and S. japonicum remain important causes of intestinal and hepatic schistosomiasis in humans throughout South America, Africa and Asia, while S. haematobium, the causative agent of human urinary schistosomiasis, remains prevalent in many areas of Africa. Other species, such as S. bovis and S. mattheei, are of considerable veterinary concern. Despite their continued presence at intravascular locations for periods of years, the adult parasites themselves provoke remarkably little tissue damage or inflammation. In contrast, the eggs produced by adult schistosomes can cause considerable tissue damage and stimulate intense inflammatory and immune reactions. Indeed, the clinical classification of schistosomiasis as hepatic, intestinal or urinary depends on which organ or system is most severely affected by parasite eggs. Frequently over 100 μm long and possessing a tough proteinaceous shell, schistosome eggs trapped in host tissues such as the liver are not readily eliminated. Consequently, like other focal stimuli of chronic inflammation, parasite eggs become the focus of granulomatous inflammatory reactions known as granulomas. Persistence of eggs and the granulomas that surround them results in fibroblast activation, synthesis of extracellular matrix proteins, formation of intractable fibrotic scars and disruption of tissue architecture, ultimately leading to organ dysfunction and the clinical manifestations of schistosomiasis. In this chapter, we review the current understanding of the molecular mechanisms that drive granuloma formation in schistosomiasis. Experimental S. mansoni infections in the laboratory mouse closely resemble those observed in humans, both pathologically and immunologically, and provide an extremely malleable and useful model of the human disease. We will therefore pay particular attention to the latest insights obtained using this murine model of schistosome infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, A. K., Murphy, K. M., and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Akhiani, A. A., Lycke, N., Nilsson, L. A., O1ling, S., and Ouchterlony, 0. (1996). Lack of interferon-gamma receptor does not influence the outcome of infection in murine schistosomiasis mansoni. Scand J Immunol 43, 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Amiri, P., Locksley, R. M., Parslow, T. G., Sadick, M., Rector, E., Ritter, D., and McKerrow, J. H. (1992). Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice [see comments]. Nature 356, 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Araujo, M. I., de Jesus, A. R., Bacellar, O., Sabin, E., Pearce, E., and Carvalho, E. M. (1996). Evidence of a T helper type 2 activation in human schistosomiasis. Eur J Immunol 26, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  • Bean, A. G., Roach, D. R., Briscoe, H., France, M. P., Korner, H., Sedgwick, J. D., and Britton, W. J. (1999). Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 162, 3504–3511.

    PubMed  CAS  Google Scholar 

  • Brunet, L. R., Finkelman, F. D., Cheever, A. W., Kopf, M. A., and Pearce, E. J. (1997). IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. J Immunol 159, 777–785.

    PubMed  CAS  Google Scholar 

  • Buchanan, R. D., Fine, D. P., and Colley, D. G. (1973). Schistosoma mansoni infection in mice depleted of thymus-dependent lymphocytes. II. Pathology and altered pathogenesis. Am J Pathol 71, 207–218.

    PubMed  CAS  Google Scholar 

  • Byram, J. E., and von Lichtenberg, F. (1977). Altered schistosome granuloma formation in nude mice. Am J Trop Med Hyg 26, 944–956.

    PubMed  CAS  Google Scholar 

  • Cai, Y., Langley, J. G., Smith, D. I., and Boros, D. L. (1996). A cloned major Schistosoma mansoni egg antigen with homologies to small heat shock proteins elicits Thl responsiveness. Infect Immun 64, 1750–1755.

    PubMed  CAS  Google Scholar 

  • Caruso, A. M., Serbina, N., Klein, E., Triebold, K., Bloom, B. R., and Flynn, J. L. (1999). Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162, 5407–5416.

    PubMed  CAS  Google Scholar 

  • Chan, J., and Kaufmann, S. H. E. (1994). Immune mechanisms of protection, B. R. Bloom, ed. ( Washington, DC: American Society for Microbiology).

    Google Scholar 

  • Cheever, A. W., Poindexter, R. W., and Wynn, T. A. (1999). Egg laying is delayed but worm fecundity is normal in SCID mice infected with Schistosoma japonicum and S. mansoni with or without recombinant tumor necrosis factor alpha treatment. Infect Immun 67, 2201–2208.

    PubMed  CAS  Google Scholar 

  • Cheever, A. W., Williams, M. E., Wynn, T. A., Finkelman, F. D., Seder, R. A., Cox, T. M., Hieny, S., Caspar, P., and Sher, A. (1994). Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 153, 753–759.

    Google Scholar 

  • Chensue, S. W., Terebuh, P. D., Warmington, K. S., Hershey, S. D., Evanoff, H. L., Kunkel, S. L., and Higashi, G. I. (1992). Role of IL-4 and IFN-gamma in Schistosoma mansoni egg-induced hypersensitivity granuloma formation. Orchestration, relative contribution, and relationship to macrophage function. J Immunol 148, 900–906.

    PubMed  CAS  Google Scholar 

  • Chensue, S. W., Warmington, K., Ruth, J., Lincoln, P., Kuo, M. C., and Kunkel, S. L. (1994). Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Production of Thl and Th2 cytokines and relative contribution of tumor necrosis factor. Am J Pathol 145, 1105–1113.

    PubMed  CAS  Google Scholar 

  • Chensue, S. W., Warmington, K. S., Ruth, J. H., Lincoln, P., and Kunkel, S. L. (1995). Cytokine function during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Local and regional participation of IFN- gamma, IL-10, and TNF. J Immunol 154, 5969–5976.

    PubMed  CAS  Google Scholar 

  • Chiaramonte, M. G., Schopf, L. R., Neben, T. Y., Cheever, A. W., Donaldson, D. D., and Wynn, T. A. (1999). IL-13 is a key regulatory cytokine for Th2 cell-mediated pulmonary granuloma formation and IgE responses induced by Schistosoma mansoni eggs. J Immunol 162, 920–930.

    PubMed  CAS  Google Scholar 

  • Chikunguwo, S. M., Quinn, J. J., Harn, D. A., and Stadecker, M. J. (1993). The cell-mediated response to schistosomal antigens at the clonal level. III. Identification of soluble egg antigens recognized by cloned specific granulomagenic murine CD4+ Thl-type lymphocytes. J Immunol 150, 1413–1421.

    PubMed  CAS  Google Scholar 

  • Cook, G. A., Metwali, A., Blum, A., Mathew, R., and Weinstock, J. V. (1993). Lymphokine expression in granulomas of Schistosoma mansoni-infected mice. Cell Immunol 152, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, A. M., Roberts, A. D., Rhoades, E. R., Callahan, J. E., Getzy, D. M., and Orme, I. M. (1995). The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84, 423–432.

    PubMed  CAS  Google Scholar 

  • Doenhoff, M., Musallam, R., Bain, J., and McGregor, A. (1979). Schistosoma mansoni infections in T-cell deprived mice, and the ameliorating effect of administering homologous chronic infection serum. I. Pathogenesis. Am J Trop Med Hyg 28, 260–263.

    CAS  Google Scholar 

  • Doenhoff, M. J., Pearson, S., Dunne, D. W., Bickle, Q., Lucas, S., Bain, J., Musallam, R., and Hassounah, O. (1981). Immunological control of hepatotoxicity and parasite egg excretion in Schistosoma mansoni infections: stage specificity of the reactivity of immune serum in T-cell deprived mice. Trans R Soc Trop Med Hyg 75, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Dunne, D. W., and Doenhoff, M. J. (1983). Schistosoma mansoni egg antigens and hepatocyte damage in infected T cell-deprived mice. Contrib Microbiol Immunol 7, 22–29.

    PubMed  CAS  Google Scholar 

  • Dunne, D. W., Jones, F. M., and Doenhoff, M. J. (1991). The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from Schistosoma mansoni eggs. Parasitology 103 Pt 2, 225–236.

    Google Scholar 

  • Ehlers, S., Benini, J., Kutsch, S., Endres, R., Rietschel, E. T., and Pfeffer, K. (1999). Fatal granuloma necrosis without exacerbated mycobacterial growth in tumor necrosis factor receptor p55 gene-deficient mice intravenously infected with Mycobacterium avium. Infect Immun 67, 3571–3579.

    PubMed  CAS  Google Scholar 

  • Emile, J. F., Patey, N., Altare, F., Lamhamedi, S., Jouanguy, E., Boman, F., Quillard, J., Lecomte-Houcke, M., Verola, O., Mousnier, J. F., Dijoud, F., Blanche, S., Fischer, A., Brousse, N., and Casanova, J. L. (1997). Correlation of granuloma structure with clinical outcome defines two types of idiopathic disseminated BCG infection. J Pathol 181, 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Fallon, P. G., and Dunne, D. W. (1999). Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J Immunol 162, 4122–4132.

    PubMed  CAS  Google Scholar 

  • Fallon, P. G., Smith, P., and Dunne, D. W. (1998). Type 1 and type 2 cytokine-producing mouse CD4+ and CD8+ T cells in acute Schistosoma mansoni infection. Eur J Immunol 28, 1408–1416.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, M., Brennan, F. M., and Maini, R. N. (1996). Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14, 397–440.

    Article  PubMed  CAS  Google Scholar 

  • Flesch, I. E., Hess, J. H., Oswald, I. P., and Kaufmann, S. H. (1994). Growth inhibition of Mycobacterium bovis by IFN-gamma stimulated macrophages: regulation by endogenous tumor necrosis factor-alpha and by IL-10. Int Immunol 6, 693–700.

    Article  PubMed  CAS  Google Scholar 

  • Goerdt, S., and Orfanos, C. E. (1999). Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Grzych, J. M., Pearce, E., Cheever, A., Caulada, Z. A., Caspar, P., Heiny, S., Lewis, F., and Sher, A. (1991). Egg deposition is the major stimulus for the production of Th2 cytokines in murine schistosomiasis mansoni. J Immunol 146, 1322–1327.

    PubMed  CAS  Google Scholar 

  • Hernandez, H. J., Sharpe, A. H., and Stadecker, M. J. (1999). Experimental murine schistosomiasis in the absence of B7 costimulatory molecules: reversal of elicited T cell cytokine profile and partial inhibition of egg granuloma formation. J Immunol 162, 2884–2889.

    PubMed  CAS  Google Scholar 

  • Hernandez, H. J., Wang, Y., and Stadecker, M. J. (1997). In infection with Schistosoma mansoni, B cells are required for T helper type 2 cell responses but not for granuloma formation. J Immunol 158, 4832–4837.

    PubMed  CAS  Google Scholar 

  • Hernandez, H. J., Wang, Y., Tzellas, N., and Stadecker, M. J. (1997). Expression of class II, but not class I, major histocompatibility complex molecules is required for granuloma formation in infection with Schistosoma mansoni. Eur J Immunol 27, 1170–1176.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J. O. (1992). CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J Exp Med 175, 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  • Horie, Y., Chervenak, R. P., Wolf, R., Gerritsen, M. E., Anderson, D. C., Komatsu, S., and Granger, D. N. (1997). Lymphocytes mediate TNF-alpha-induced endothelial cell adhesion molecule expression: studies on SCID and RAG-1 mutant mice. J Immunol 159, 5053–5062.

    PubMed  CAS  Google Scholar 

  • Iacomini, J., Ricklan, D. E., and Stadecker, M. J. (1995). T cells expressing the gamma delta T cell receptor are not required for egg granuloma formation in schistosomiasis. Eur J Immunol 25, 884–888.

    Article  PubMed  CAS  Google Scholar 

  • Jankovic, D., Cheever, A. W., Kullberg, M. C., Wynn, T. A., Yap, G., Caspar, P., Lewis, F. A., Clynes, R., Ravetch, J. V., and Sher, A. (1998). CD4+ T cell-mediated granulomatous pathology in schistosomiasis is downregulated by a B cell-dependent mechanism requiring Fc receptor signaling. J Exp Med 187, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Jankovic, D., Kullberg, M. C., Noben-Trauth, N., Caspar, P., Ward, J. M., Cheever, A. W., Paul, W. E., and Sher, A. (1999). Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J Immunol 163, 337–342.

    PubMed  CAS  Google Scholar 

  • Joseph, A. L., and Boros, D. L. (1993). Tumor necrosis factor plays a role in Schistosoma mansoni egg-induced granulomatous inflammation. J Immunol 151, 5461–5471.

    PubMed  CAS  Google Scholar 

  • Kaneko, H., Yamada, H., Mizuno, S., Udagawa, T., Kazumi, Y., Sekikawa, K., and Sugawara, I. (1999). Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 79, 379–386.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. H., Whitfield, J. R., Boros, D. L., and Grusby, M. J. (1998). Th2 cells are required for the Schistosoma mansoni egg-induced granulomatous response. J Immunol 160, 1850–1856.

    PubMed  CAS  Google Scholar 

  • Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F., and Vassalli, P. (1989). The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • King, C. L., Xianli, J., June, C. H., Abe, R., and Lee, K. P. (1996). CD28-deficient mice generate an impaired Th2 response to Schistosoma mansoni infection. Eur J Immunol 26, 2448–2455.

    Article  PubMed  CAS  Google Scholar 

  • Leptak, C. L., and McKerrow, J. H. (1997). Schistosome egg granulomas and hepatic expression of TNF-alpha are dependent on immune priming during parasite maturation. J Inununol 158, 301–307.

    CAS  Google Scholar 

  • Mathew, R. C., and Boros, D. L. (1986). Anti-L3T4 antibody treatment suppresses hepatic granuloma formation and abrogates antigen-induced interleukin-2 production in Schistosoma mansoni infection. Infect Immun 54, 820–826.

    PubMed  CAS  Google Scholar 

  • North, R. J., and Izzo, A. A. (1993). Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection. Tendency not to form granulomas in the lung is associated with faster bacterial growth in this organ. Am J Pathol 142, 1959–1966.

    PubMed  CAS  Google Scholar 

  • Pearce, E. J., Caspar, P., Grzych, J. M., Lewis, F. A., and Sher, A. (1991). Downregulation of Thl cytokine production accompanies induction of Th2 responses by a parasitic helminth, Schistosoma mansoni. J Exp Med 173, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, E. J., Cheever, A., Leonard, S., Covalesky, M., Fernandez-Botran, R., Kohler, G., and Kopf, M. (1996). Schistosoma mansoni in IL-4-deficient mice. Int Immunol 8, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Rakasz, E., Blum, A. M., Metwali, A., Elliott, D. E., Li, J., Ballas, Z. K., Qadir, K., Lynch, R., and Weinstock, J. V. (1998). Localization and regulation of IFN-gamma production within the granulomas of murine schistosomiasis in IL-4-deficient and control mice. J Immunol 160, 4994–4999.

    PubMed  CAS  Google Scholar 

  • Sabin, E. A., Kopf, M. A., and Pearce, E. J. (1996). Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med 184, 1871–1878.

    Article  PubMed  CAS  Google Scholar 

  • Sabin, E. A., and Pearce, E. J. (1995). Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol 155, 4844–4853.

    PubMed  CAS  Google Scholar 

  • Senaldi, G., Yin, S., Shaklee, C. L., Piguet, P. F., Mak, T. W., and Ulich, T. R. (1996). Corynebacterium parvum-and Mycobacterium bovis bacillus Calmette- Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF- RI) knockout mice and by treatment with soluble TNF-RI. J Immunol 157, 5022–5026.

    PubMed  CAS  Google Scholar 

  • Sher, A., Coffman, R. L., Hieny, S., Scott, P., and Cheever, A. W. (1990). Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci U S A 87, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, G., Kazura, J. W., Pearlman, E., Jia, X., Malhotra, I., and King, C. L. (1997). B7–2 requirement for helminth-induced granuloma formation and CD4 type 2 T helper cell cytokine expression. J Immunol 158, 5914–5920.

    PubMed  CAS  Google Scholar 

  • Vella, A. T., and Pearce, E. J. (1992). CD4+ Th2 response induced by Schistosoma mansoni eggs develops rapidly, through an early, transient, Th0-like stage. J Immunol 148, 228322–90.

    Google Scholar 

  • Warren, K. S., Domingo, E. O., and Cowan, R. B. T. (1967). Granuloma formation around schistosome eggs as a manifestation of delayed hypersensitivity. Am J Pathol 51, 735–756.

    PubMed  CAS  Google Scholar 

  • Wynn, T. A., Cheever, A. W., Jankovic, D., Poindexter, R. W., Caspar, P., Lewis, F. A., and Sher, A. (1995). An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594–596.

    Article  PubMed  CAS  Google Scholar 

  • Wynn, T. A., Cheever, A. W., Williams, M. E., Hieny, S., Caspar, P., Kuhn, R., Muller, W., and Sher, A. (1998). IL-10 regulates liver pathology in acute murine Schistosomiasis mansoni but is not required for immune down-modulation of chronic disease. J Immunol 160, 4473–4480.

    PubMed  CAS  Google Scholar 

  • Yap, G., Cheever, A., Caspar, P., Jankovic, D., and Sher, A. (1997). Unimpaired down-modulation of the hepatic granulomatous response in CD8 T-cell-and gamma interferon-deficient mice chronically infected with Schistosoma mansoni. Infect Immun 65, 2583–2586.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, S.J., McKerrow, J.H. (2000). Molecular Mechanisms of Granuloma Formation in Schistosomiasis. In: Tschudi, C., Pearce, E.J. (eds) Biology of Parasitism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4622-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4622-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4977-6

  • Online ISBN: 978-1-4757-4622-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics