Advertisement

Circadian Rhythmicity

Regulation in the Time Domain
  • Joseph S. Takahashi
  • Michael Menaker

Abstract

The control of rate and of temporal sequence is a major aspect of biological regulation. Inferences about causality are often made on the basis of experimentally determined temporal sequence with the unstated assumption that the underlying temporal processes are linear. Because many biological processes oscillate (especially those with feedback regulation), the assumption of linearity is likely to be false, and the causal connections based on it will often be wrong. When the underlying temporal organization is oscillatory, then processes can appear to occur after the events that they cause. In cases that involve synchronization of oscillations, the regulatory cycle often “phase lags” the oscillation that it controls (Pittendrigh, 1981b). This example is meant only to illustrate the importance of understanding temporal frameworks.

Keywords

Circadian Rhythm Pineal Gland House Sparrow Optic Lobe Circadian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, M. C., and Brown, A. M., 1979, Photoresponses of a sensitive extraretinal photoreceptor in Aplysia, J. Physiol 287: 267.PubMedGoogle Scholar
  2. Aschoff, J., 1981, Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4, Plenum Press, New York.CrossRefGoogle Scholar
  3. Aschoff, J., and Weyer, R., 1976, Human circadian rhythms: A multioscillatory system, Fed. Proc 35: 23–26.Google Scholar
  4. Baylor, D. A., and Hodgkin, A. L., 1973, Detection and resolution of visual stimuli by turtle photoreceptor, J. Physiol 234: 163.PubMedGoogle Scholar
  5. Benson, J. A., and Jacklet, J. W., 1977, Circadian rhythm of output from neurons in the eye of Aplysia. I. Effect of deuterium oxide and temperature, J. Exp. Biol 70: 151.Google Scholar
  6. Binkley, S., and Geller, E. B., 1975, Pineal N-acetyltransferase in chickens: Rhythm persists in constant darkness, J. Comp. Physiol 99: 67.CrossRefGoogle Scholar
  7. Binkley, S. A., Riebman, J. B., and Reilly, K. B., 1978, The pineal gland: A biological clock in vitro, Science 202: 1198.PubMedCrossRefGoogle Scholar
  8. Block, G. D., and McMahon, D. G., 1983, Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers, Brain Res. 265: 134.PubMedCrossRefGoogle Scholar
  9. Block, G. D., and Page, T. L., 1978, Circadian pacemakers in the nervous system, Annu. Rev. Neurosci 1: 19.PubMedCrossRefGoogle Scholar
  10. Block, G. D., and Roberts, M. H., 1981, Circadian pacemaker in the Bursatella eye: Properties of the rhythm and its effects on locomotor behavior, J. Comp. Physiol 142: 403.CrossRefGoogle Scholar
  11. Block, G. D., and Wallace, S. F., 1982, Localization of a circadian pacemaker in the eye of a mollusk, Bulla, Science 217: 155.Google Scholar
  12. Cicerone, C. M., Green, D. G., and Fisher, L. J., 1979, Cone input to ganglion cells in hereditary retinal degeneration, Science 203: 11–13.CrossRefGoogle Scholar
  13. Corrent, G., McAdoo, D. J., and Eskin, A., 1978, Serotonin shifts the phase of the circadian rhythm from the Aplysia eye, Science 202: 977.PubMedCrossRefGoogle Scholar
  14. Corrent, G., Eskin, A., and Kay, I., 1982, Entrainment of the circadian rhythm from the eye of Aplysia: Role of serotonin, Am. J. Physiol 242: R326.PubMedGoogle Scholar
  15. Deguchi, T., 1979a, Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland, Science 203: 12–45.CrossRefGoogle Scholar
  16. Deguchi, T., 1979b, A circadian oscillator in cultured cells of chicken pineal gland, Nature 282: 94.PubMedCrossRefGoogle Scholar
  17. Deguchi, T., 1979c, Role of adenosine 3’, 5’-monophosphate in the regulation of circadian oscillation of serotonin N-acetyltransferase activity in cultured chicken pineal glands, J. Neurochem 33: 45.PubMedCrossRefGoogle Scholar
  18. Deguchi, T., 1981, Rhodopsin-like photosensitivity of isolated chicken pineal gland, Nature 290: 706.PubMedCrossRefGoogle Scholar
  19. Dodt, E., and Heerd, E., 1962, Mode of action of pineal nerve fibers in frogs, J. Neurophysiol 25: 405.PubMedGoogle Scholar
  20. Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc 25: 23–39.Google Scholar
  21. Eskin, A., 1971, Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye, Z. Vgl. Physiol. 74: 353.Google Scholar
  22. Eskin, A., 1977, Neurophysiological mechanisms involved in photoentrainment of the circadian rhythm from the Aplysia eye, J. Neurobiol. 8: 273.PubMedCrossRefGoogle Scholar
  23. Eskin, A., 1979a, Identification and physiology of circadian pacemakers, Fed. Proc 38: 2570.PubMedGoogle Scholar
  24. Eskin, A., 1979b, Circadian system of the Aplysia eye: Properties of the pacemaker and mechanisms of its entrainment, Fed. Proc. 38: 25–73.Google Scholar
  25. Eskin, A., 1982, A protein synthesis inhibitor blocks the effect of serotonin and 8-benzylthio cAMP on the Aplysia eye circadian rhythm, Soc. Neurosci. Abstr. 8: 547.Google Scholar
  26. Eskin, A., and Harcombe, E., 1977, Eye of Navanax: Optic activity, circadian rhythm and morphology, Comp. Biochem. Physiol. 57A: 443.Google Scholar
  27. Eskin, A., and Takahashi, J. S., 1983, Adenylate cyclase activation shifts the phase of a circadian pacemaker, Science 220: 82.PubMedCrossRefGoogle Scholar
  28. Eskin, A., Corrent, G., Lin, C. Y., and McAdoo, P. J., 1982, Mechanism for shifting the phase of a circadian rhythm by serotonin: Involvement of cAMP, Proc. Natl. Acad. Sci. U.S.A 79: 660.PubMedCrossRefGoogle Scholar
  29. Feldman, J. F., 1982, Genetic approaches to circadian clocks, Am. Rev. Plant Physiol 33: 583.CrossRefGoogle Scholar
  30. Follett, B. K., and Follett, D. E. (eds), 1981, Biological Clocks in Seasonal Reproductive Cycles, John Wright and Sons, Bristol, United Kingdom.Google Scholar
  31. Gaston, S., and Menaker, M., 1968, Pineal function: The biological clock in the sparrow? Science 160: 11–25.CrossRefGoogle Scholar
  32. Green, D. J., and Gillette, R., 1982, Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice, Brain Res. 245: 198.PubMedCrossRefGoogle Scholar
  33. Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiamatic neurones, J. Comp. Physiol. 135: 349.Google Scholar
  34. Handler, A. M., and Konopka, R. J., 1979, Transplantation of a circadian pacemaker in Drosophila, Nature 279: 236.PubMedCrossRefGoogle Scholar
  35. Hoffman, K., 1971, Splitting of the circadian rhythm as a function of light intensity, in: Biochronometry ( M. Menaker, ed.), pp. 134–150, National Academy of Science, Washington, D.C.Google Scholar
  36. Hudson, D. J., and Lickey, M., 1980, Internal desynchronization between the identified circadian oscillators in Aplysia, Brain Res. 183: 481.PubMedCrossRefGoogle Scholar
  37. Inouye, S. T., and Kawamura, H., 1979, Persistance of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus, Proc. Natl. Acad. Sci. U.S.A 76: 59–62.Google Scholar
  38. Inouye, S. T., and Kawamura, H., 1982, Characteristics of a circadian pacemaker in the suprachiasmatic nucleus, J. Comp. Physiol 146: 153.CrossRefGoogle Scholar
  39. Jacklet, J. W., 1969, Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia, Science 164: 562.PubMedCrossRefGoogle Scholar
  40. Jacklet, J. W., 1974, The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia, J. Comp. Physiol. 90: 33.Google Scholar
  41. Jacklet, J. W., 1977, Neuronal circadian rhythms: Phase shifting by a protein synthesis inhibitor, Science 198: 69.Google Scholar
  42. Jacklet, J. W., 1981, Circadian timing by endogenous oscillators in the nervous system: Toward cellular mechanisms: Biol. Bull. 160: 199.CrossRefGoogle Scholar
  43. Kasai, C., Menaker, M., and Perez-Polo, R., 1979, Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro, Science 203: 656.CrossRefGoogle Scholar
  44. Koehler, W. K., and Fleissner, G., 1978, Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects, Nature 274: 708.PubMedCrossRefGoogle Scholar
  45. LaVail, M. M., Sidman, M., Raysin, R., and Sidman, R. L., 1974, Discrimination of light intensity by rats with inherited retinal degeneration: A behavioral and cytological study, Vision Res. 14: 693.PubMedCrossRefGoogle Scholar
  46. McMillan, J. P., Elliott, J. A., and Menaker, M., 1975, On the role of eyes and brain photoreceptors in the sparrow: Arrhythmicity in constant light, J. Comp. Physiol 102: 263.CrossRefGoogle Scholar
  47. McMurray, L., and Hastings, J. W., 1972, No desynchronization among four circadian rhythms in the unicellular alga, Conyaulaz polyedra, Science 175: 11–37.Google Scholar
  48. Menaker, M., 1968, Extraretinal light perception in the sparrow. I: Entrainment of the biological clock, Proc. Natl. Acad. Sci. U.S.A 59: 414.PubMedCrossRefGoogle Scholar
  49. Menaker, M., 1982, The search for principles of physiological organization in vertebrate circadian systems, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan and G. A. Gross, eds.), pp. 1–12, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  50. Menaker, M., and Underwood, H., 1976, Extraretinal photoreception in birds, Photochem. Photobiol. 23:299.CrossRefGoogle Scholar
  51. Moore, R. Y., 1978, Central neural control of circadian rhythms, in: Frontiers in Neuroendocrinology, Vol. 5 ( W. F. Ganong and L. Martini, eds.), pp. 185–206, Raven Press, New York.Google Scholar
  52. Moore-Ede, M. C., Sulzman, F. M., and Fuller, C. A., 1982, The Clocks That Time Us, Harvard University Press, Cambridge.Google Scholar
  53. Mote, M. I., and Black, K. R., 1981, Action spectrum and threshold sensitivity of entrainment of circadian running activity in the cockroach, Periplaneta Americana. Photochem. Photobiol 34: 257.Google Scholar
  54. Munz, F. W., and McFarland, W. N., 1977, Evolutionary adaptations of fishes to the photic environment, in: Handbook of Sensory Physiology. The Visual System in Vertebrates, Vol. VII/5 ( F. Crescitelli, ed.), pp. 193–274, Springer-Verlag, Berlin.Google Scholar
  55. Nelson, R., and Zucker, I., 1981, Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight, Comp. Biochem. Physiol 69A: 145.CrossRefGoogle Scholar
  56. Page, T. L., 1981a, Localization of circadian pacemakers in insects, in: Biological Clocks in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 113–124, John Wright and Sons, Bristol, United Kingdom.Google Scholar
  57. Page, T. L., 1981b, Effects of low temperature pulses on the circadian rhythm of locomotor activity in the cockroach, Am. J. Physiol 240: R144.PubMedGoogle Scholar
  58. Page, T. L., 1982a, Transplantation of the cockroach circadian pacemaker, Science 216: 73.PubMedCrossRefGoogle Scholar
  59. Page, T. L., 19826, Extraretinal photoreception in entrainment and photoperiodism in invertebrates, Experientia 38: 100.Google Scholar
  60. Page, T. L., Caldarola, P. C., and Pittendrigh, C. S., 1977, Mutual entrainment of bilaterally distributed circadian pacemakers, Proc. Natl. Acad. Sci. U.S.A 74: 12–77.CrossRefGoogle Scholar
  61. Pickard, G. E., Turek, F. W. Lamperti, A. A., and Silverman, A. J., 1982, The effect of neonatally administered monosodium glutamute (MSG) on the development of retinofugal projections and the entrainment of circadian locomotor activity, Behay. Neural. Biol 34: 433.Google Scholar
  62. Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), pp. 437–458, MIT Press, Cambridge.Google Scholar
  63. Pittendrigh, C. S., 1981a, Circadian systems: General perspective, in: Handbook of Behavioral Neurobiology. Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 57–80, Plenum Press, New York.Google Scholar
  64. Pittendrigh, C. S., 1981b, Circadian systems: Entrainment, in: Handbook of Behavioral Neurobiology, Biological Rhythms, Vol. 4 ( J. Aschoff, ed.), pp. 95–124, Plenum Press, New York.Google Scholar
  65. Pittendrigh, C. S., 1981e, Circadian organization and the photoperiodic phenomena, in: Biological Clock in Seasonal Reproductive Cycles ( B. K. Follett and D. E. Follett, eds.), pp. 1–35, John Wright and Sons, Bristol, United Kingdom.Google Scholar
  66. Pittendrigh, C. S., and Daan, S., 1976, A functional analysis of circadian pacemakers in nocturnal rodents, V. Pacemaker structure: A clock for all seasons, J. Comp. Physiol 106: 333.CrossRefGoogle Scholar
  67. Ripps, H., and Weale, R. A., 1976, The visual stimulus, in: The Eye, Vol. 2A ( H. Dayson, ed.), pp. 43–99, Academic Press, New York.Google Scholar
  68. Rothman, S., and Strumwasserr, F., 1976, Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide: Electrophysiological and biochemical studies, J. Gen. Physiol 68: 359.PubMedCrossRefGoogle Scholar
  69. Rusak, B., and Boulos, Z., 1981, Pathways for photic entrainment of mammaliam circadian rhythms, Photochem. Photobiol 34: 267.PubMedGoogle Scholar
  70. Rusak, B., and Zucker, I., 1979, Neural regulation of circadian rhythms, Physiol. Rev 59: 449.PubMedGoogle Scholar
  71. Simpson, S. M., and Follett, B. K., 1981, Pineal and hypothalamic pacemakers: Their role in regulating circadian rhythmicity in Japanese quail, J. Comb. Physiol 144: 381.CrossRefGoogle Scholar
  72. Strumwasser, F., Alvarez, R. B., Viele, D. P., and Woolum, J. C., 1979, Structure and function of a neuronal circadian oscillator system, in: Biological Rhythms and their Central Mechanism ( M. Suda, D. Hayaishi and H. Nakagawa, eds.), pp. 41–56, Elsevier/North-Holland, Amsterdam.Google Scholar
  73. Tabata, M., Tamura, T., and Niwa, H., 1975, Origin of the slow potential in the pineal organ of the rainbow trout, Vision Res. 15: 737.PubMedCrossRefGoogle Scholar
  74. Takahashi, J. S., 1981, Neural and endocrine regulation of avian circadian systems, Ph.D. dissertation, Department of Biology and Institute of Neuroscience, University of Oregon, Eugene.Google Scholar
  75. Takahashi, J. S., and Menaker, M., 1979, Physiology of avian circadian pacemakers, Fed. Proc 38: 25–83.Google Scholar
  76. Takahashi, J. S., and Menaker, M., 1982a, Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds, J. Comp. Physiol 146: 245.CrossRefGoogle Scholar
  77. Takahashi, J. S., and Menaker, M., 1982b, Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus, J. Neuroscience 2: 815.Google Scholar
  78. Takahashi, J. S., and Zatz, M., 1982a, Regulation of circadian rhythmicity, Science 217: 1104.PubMedCrossRefGoogle Scholar
  79. Takahashi, J. S., and Zatz, M., 1982b, Photic regulation of cyclic nucleotide levels and N-acetyltransferase activity in the cultured avian pineal, Soc. Neurosci. Abst 8: 546.Google Scholar
  80. Takahashi, J. S., Hamm, H., and Menaker, M., 1980, Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro, Proc. Natl. Acad. Sci. U.S.A 77: 2319.PubMedCrossRefGoogle Scholar
  81. Truman, J. W., 1972, Physiology of insect rhythms. II. The silkmoth brain as the location of the biological clock controlling eclosion. J. Comp. Physiol 81: 99.CrossRefGoogle Scholar
  82. Truman, J. W., 1976, Extraretinal photoreception in insects, Photochem. Photobiol 23: 215.CrossRefGoogle Scholar
  83. Turek, F. W., McMillan, J. P., and Menaker, M., 1976, Melatonin: Effects on the circadian locomotor rhythm of sparrows, Science 194: 1441.PubMedCrossRefGoogle Scholar
  84. Underwood, H., 1977, Circadian organization in lizards: The role of the pineal organ, Science 195:587.PubMedCrossRefGoogle Scholar
  85. Underwood, H., and Groos, G., 1982, Vertebrate circadian rhythms: Retinal and extraretinal photoreception, Experientia 28: 1013.CrossRefGoogle Scholar
  86. Underwood, H., and Menaker, M., 1976, Extraretinal photoreception in lizards, Photochem. Photobiol. 23:227.CrossRefGoogle Scholar
  87. Wainwright, S. D., 1980, Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured pineal glands, Nature 285: 478.PubMedCrossRefGoogle Scholar
  88. Wainwright, S. D., and Wainwright, L. K., 1979, Chick pineal serotonin acetyltransferase: A diurnal cycle maintained in vitro and its regulation by light, Can. J. Biochem 57: 700.PubMedCrossRefGoogle Scholar
  89. Wald, G., Brown, P. K., and Gibbons, I. R., 1963, The problem of visual excitation, J. Opt. Soc. Am 53: 20.PubMedCrossRefGoogle Scholar
  90. Zimmerman, N. H., and Menaker, M., 1975, Neural connections of sparrow pineal: Role in circadian control of activity, Science 190: 477.PubMedCrossRefGoogle Scholar
  91. Zimmerman, N. H., and Menaker, M., 1979, The pineal: A pacemaker within the circadian system of the house sparrow, Proc. Natl. Acad. Sci. U.S.A 76: 999.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Joseph S. Takahashi
    • 1
  • Michael Menaker
    • 2
  1. 1.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanstonUSA
  2. 2.Institute of NeuroscienceUniversity of OregonEugeneUSA

Personalised recommendations