Advertisement

The Effect of Steroid Hormones on Gene Transcription

  • John N. Anderson

Abstract

Steroid hormones modulate the metabolism, differentiation, and growth of a large number of cell types in eukaryotic organisms. It is generally assumed that steroid hormones control some of these processes by regulating the transcription of specific genes. This topic is reviewed in the current chapter beginning with a discussion of the evidence that steroid hormones can alter gene transcription, enlarging on this topic with a discussion of the regulatory mechanisms and strategies that might be involved in this effect, and ending with a discussion of the coordinate regulation of gene transcription by steroid hormones. Although the regulation of specific gene transcription is undoubtedly an important feature of steroid hormone action, such a mechanism cannot adequately explain all of the effects of steroid hormones on all target cells. The amphibian oocyte, for instance, undergoes progesterone-induced maturation in the absence of its nucleus (reviewed in Wasserman and Smith, 1978). Although nontranscriptional mechanisms will not be discussed in any detail in this chapter, they should always be considered when attempting to explain the pleiotropic actions of steroid hormones.

Keywords

Polytene Chromosome Globin Gene Chromatin Domain Lampbrush Chromosome Micrococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Worcel, A., and Weintraub, H., 1977, On the biological implications of chromatin structure, in: The Organization and Expression of the Eukaryotac Genome ( E. M. Bradbury and K. Javaherian, eds.), pp. 165–191, Academic Press, New York.Google Scholar
  2. Alt, F. W., Kellems, R. E., Bertino, J. R., and Schimke, R. T., 1978, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells, J. Biol. Chem. 253: 1357.PubMedGoogle Scholar
  3. Anderson, J. N., Clark, J. H., and Peck, E. J., Jr., 1972, The relationship between nuclear receptor-estrogen binding and uterotrophic responses, Biochem. Biophys. Res. Commun. 48: 1460.Google Scholar
  4. Anderson, J. N., Peck, E. J., Jr., and Clark, J. H., 1973, Nuclear receptor-estrogen complex: Relationship between concentration and early uterotrophic responses, Endocrinology 92: 1488.PubMedCrossRefGoogle Scholar
  5. Anderson, J. N., Peck, E. J., Jr., and Clark, J. H., 1975, Estrogen-induced uterine responses and growth: Relationship to receptor estrogen binding by uterine nuclei, Endocrinology 96: 160.PubMedCrossRefGoogle Scholar
  6. Anderson, J. N., Vanderbilt, J. N., Bloom, K. S., and Germain, B. J., 1983a, Effects of steroid hormones on chicken oviduct chromatin, in: Gene Regulation by Steroid Hormones II ( A. K. Roy and J. FI. Clark, eds.), pp. 17–59, Springer-Verlag, New York.CrossRefGoogle Scholar
  7. Anderson, J. N., Vanderbilt, J. N., Lawson, G. M., Tsai, M.-J., and O’Malley, B. W., 1983b, Chromatin structure of the ovalbumin gene family in the chicken oviduct, Biochemistry 22: 21.PubMedCrossRefGoogle Scholar
  8. Andre, J., Raynaud, A., and Rochefort, H., 1980, The extraction by micrococcal nuclease of glucocorticoid receptors and mouse mammary tumor virus DNA sequences is dissociated, Nucleic Acids Res. 8: 3393.PubMedCrossRefGoogle Scholar
  9. Ashburner, M., 1976, Aspects of polytene chromosome structure and function, in: Organization and Expression of Chromosomes ( V. G. Allfrey, E. F. K. Bautz, B. J. McCarthy, R. T. Schimke, and A. Tissieres, eds.), pp. 81–95, Abakon Verlagsgesellschaft, Berlin, Germany.Google Scholar
  10. Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17: 241.PubMedCrossRefGoogle Scholar
  11. Ashburner, M., Chihara, C., Meltzer, P., and Richards, G., 1974, Temporal control of puffing activity in polytene chromosomes, Cold Spring Harbor Symp. Quant. Biol. 38: 655.PubMedCrossRefGoogle Scholar
  12. Astwood, E. B., 1938, A six-hour assay for the quantitative determination of estrogen, Endocrinology 23: 25.CrossRefGoogle Scholar
  13. Baker, H. J., and Shapiro, D. J., 1977, Kinetics of estrogen induction of Xenopus laevis vitellogenin messenger RNA as measured by hybridization to complementary DNA, J. Biol. Chem. 252: 8428.PubMedGoogle Scholar
  14. Baker, H. J., and Shapiro, D. J., 1978, Rapid accumulation of vitellogenin messenger RNA during secondary estrogen stimulation of Xenopus laevis, J. Biol. Chem. 253: 4521.PubMedGoogle Scholar
  15. Barrack, E. R., Hawkins, E. F., and Coffey, D. S., 1979, The specific binding of estradiol to the nuclear matrix, Adv. Exp. Med. Biol. 117: 47.PubMedCrossRefGoogle Scholar
  16. Baxter, J. D., Eberhardt, N. L., Apriletti, J. W., Johnson, L. K., Ivarie, R. D., Schachter, B. S., Morris, J. A., Seeburg, P. H., Goodman, H. M., Latham, K. R., Polansky, J. R., and Martial, J. A., 1979, Thyroid hormone receptors and responses, Recent Prog. Horm. Res. 35: 97.PubMedGoogle Scholar
  17. Beermann, W., 1966, Differentiation at the level of the chromosomes, in: Cell Differentiation and Morphogenesis ( W. Beermann, ed.), pp. 24–54, North Holland Publishing Company, Amsterdam.Google Scholar
  18. Beermann, W., 1972, Chromomeres and genes, in: Developmental Studies on Giant Chromosomes ( W. Beer-mann, ed.), pp. 1–33, Springer-Verlag, New York.Google Scholar
  19. Bellard, M., Gannon, F., and Chambon, P., 1978, Nucleosome structure III: The structure and transcriptional activity of the chromatin containing the ovalbumin and globin genes in chick oviduct nuclei, Cold Spring Harbor Symp. Quant. Biol. 42: 779.PubMedCrossRefGoogle Scholar
  20. Benyajati, C., and Worcel, A., 1976, Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster, Cell 9: 393.PubMedCrossRefGoogle Scholar
  21. Berendes, H. D., 1968, Factors involved in the expression of gene activity in polytene chromosomes, Chromo-soma 24: 418.Google Scholar
  22. Berger, E., Ringler, R., Alahiotis, S., and Frank, M., 1978, Ecdysone-induced changes in morphology and protein synthesis in Drosophila cell cultures, Dec. Biol. 62: 498.CrossRefGoogle Scholar
  23. Billing, R. J., and Bonner, J., 1972, The structure of chromatin as revealed by DNase digestion studies, Biochim. Biophys. Acta 281: 453.PubMedCrossRefGoogle Scholar
  24. Bird, A. P., 1978, Use of restriction enzymes to study eukaryotic DNA methylation: II. The symmetry of methylated sites supports semiconservative copying of the methylation pattern, J. Mol. Biol. 118: 49.PubMedCrossRefGoogle Scholar
  25. Bird, A., Taggart, M., and Macleod, D., 1981, Loss of rDNA methylation accompanies the onset of ribosomal gene activity in early development of X. laevis, Cell 26: 381.PubMedCrossRefGoogle Scholar
  26. Bloom, K. S., and Anderson, J. N., 1978, Fractionation of hen oviduct chromatin into transcriptionally active and inactive regions after selective micrococcal nuclease digestion, Cell 15: 141.PubMedCrossRefGoogle Scholar
  27. Bloom, K. S., and Anderson, J. N., 1979, Conformation of ovalbumin and globin genes in chromatin during differential gene expression, J. Biol. Chem. 254: 10532.PubMedGoogle Scholar
  28. Bloom, K. S., and Anderson, J. N., 1982, Hormonal regulation of the conformation of the ovalbumin gene in chick oviduct chromatin, J. Biol. Chem. 257: 13018.PubMedGoogle Scholar
  29. Bonaldo, M. F., Santelli, R. V., and Lara, F. J. S., 1979, The transcript from a DNA puff of Rhynchosciara and its migration to the cytoplasm, Cell 17: 827.PubMedCrossRefGoogle Scholar
  30. Bonner, J., and Huang, R. C., 1963, Properties of chromosomal nucleohistone, J. Mol. Biol. 6:169.Google Scholar
  31. Bonner, J. J., 1982, An assessment of the ecdysteroid receptor of Drosophila, Cell 30: 7.Google Scholar
  32. Bonner, J. J., and Pardue, M. L., 1976, Ecdysone-stimulated RNA synthesis in imaginal discs of Drosophila melanogaster, Chromosoma 58: 87.PubMedCrossRefGoogle Scholar
  33. Bonner, J. J., and Pardue, M. L., 1977, Ecdysone-stimulated RNA synthesis in salivary glands of Drosophila melanogaster: Assay by in situ hybridization, Cell 12: 219.PubMedCrossRefGoogle Scholar
  34. Brady, J., Radonovich, M., Lavialle, C., and Salzman, N. P., 1981, Simian virus 40 maturation: Chromatin modifications increase the accessibility of viral DNA to nuclease and RNA polymerase, J. Virol. 39: 603.PubMedGoogle Scholar
  35. Brady, J. N., Radonovich, M., and Salzman, N. P., 1982, Accurate transcription of simian virus 40 chromatin in a HeLa cell extract, J. Virol. 44: 772.PubMedGoogle Scholar
  36. Breathnach, R., Mandel, J. L., and Chambon, P., 1977, Ovalbumin gene is split in chicken DNA, Nature 270: 314.PubMedCrossRefGoogle Scholar
  37. Breathnach, R., Mantei, N., and Chambon, P., 1980, Correct splicing of a chicken ovalbumin gene transcript in mouse L cells, Proc. Natl. Acad. Sci. U.S.A. 77: 740.PubMedCrossRefGoogle Scholar
  38. Brown, D. D., Korn, L. J., Birkenmeier, E., Peterson, R., and Sakonju, S., 1979, The in vitro transcription of Xenopus 5S DNA, in: Eucaryotic Gene Regulation (R. Axel, T. Maniatis, and C. F. Fox, eds.), pp. 511–519, Academic Press, New York.Google Scholar
  39. Buetti, E., and Diggelmann, H., 1981, Cloned mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones, Cell 23: 335.PubMedCrossRefGoogle Scholar
  40. Burdon, R. H., and Adams, R. L. P., 1969, The in vitro methylation of DNA in mouse fibroblasts, Biochim. Biophys. Acta 174: 322.PubMedCrossRefGoogle Scholar
  41. Burns, A. T. H., Deeley, R. G., Gordon, J. I., Udell, D. S., Mullinix, K. P., and Goldberger, R. F., 1978, Primary induction of vitellogenin mRNA in the rooster by 17ß-estradiol, Proc. Natl. Acad. Sci. U.S.A. 75: 1815.PubMedCrossRefGoogle Scholar
  42. Camerini-Otero, R. D., and Zasloff, M. A., 1980, Nucleosomal packaging of the thymidine kinase gene of herpes simplex virus transferred into mouse cells: An actively expressed single-copy gene, Proc. Natl. Acad. Sci. U.S.A. 77: 5079.PubMedCrossRefGoogle Scholar
  43. Camerini-Otero, R. D., Sollner-Webb, B., Simon, R. H., Williamson, P., Zasloff, M., and Felsenfeld, G., 1978, Nucleosome structure, DNA folding, and gene activity, Cold Spring Harbor Symp. Quant. Biol. 42: 57.PubMedCrossRefGoogle Scholar
  44. Chahal, S. S., Matthews, H. R., and Bradbury, E. M., 1980, Acetylation of histone H4 and its role in chromatin structure and function, Nature 287: 76.PubMedCrossRefGoogle Scholar
  45. Chambon, P., 1978, Summary: The molecular biology of the eukaryotic genome is coming of age, Cold Spring Harbor Symp. Quant. Biol. 42: 1209.PubMedCrossRefGoogle Scholar
  46. Chambon, P., Perrin, F., O’Hare, K., Mandel, J. L., LePennec, J. P., LeMeur, M., Krust, A., Heilig, R., Gerlinger, P., Gannon, F., Cochet, M., Breathnach, R., and Benoist, C., 1979, Structure and expression of ovalbumin and closely related chicken genes, in: Eucaryotic Gene Regulation ( R. Axel, T. Maniatis, and C. F. Fox, eds.), pp. 259–279, Academic Press, New York.CrossRefGoogle Scholar
  47. Clark, J. H., and Gorsky, J., 1969, Estrogen receptors: An evaluation of cytoplasmic-nuclear interactions in a cell-free system and a method for assay, Biochim. Biophys. Acta 192: 508.PubMedCrossRefGoogle Scholar
  48. Clark, J. H., and Peck, E. J., Jr., 1979, Female Sex Steroids, Springer-Verlag, New York.CrossRefGoogle Scholar
  49. Clark, J. H., Markaverich, B., Upchurch, S., Eriksson, H., Hardin, J. W., and Peck, E. Jr,Jr., 1980, Heterogeneity of estrogen binding sites: Relationship to estrogen receptors and estrogen responses, Recent Prog. Horm. Res. 36: 89.Google Scholar
  50. Clever, U., 1963, Von der ecdysonkonzentration abhängige genaktivitätsmuster in der speicheldrüsenchromosomen von Chironomus tentans, Dey. Biol. 6: 73.CrossRefGoogle Scholar
  51. Clever, U., 1966, Gene activity patterns and cellular differentiation, Am. Zool. 6: 33.PubMedGoogle Scholar
  52. Coca-Prados, M., Vidali, G., and Hsu, M.-T., 1980, Intracellular forms of simian virus 40 nucleoprotein complexes. III. Study of histone modifications, J. Virol. 36: 353.PubMedGoogle Scholar
  53. Coffin, P., 1981, Hormonal regulation of cloned genes, Nature 292: 492.CrossRefGoogle Scholar
  54. Colbert, D. A., Knoll, B. J., Woo, S. L. C., Mace, M. L., Tsai, M.-J., and O’Malley, B. W., 1980, Differential hormonal responsiveness of the ovalbumin gene and its pseudogenes in the chick oviduct, Biochemistry 19: 5586.PubMedCrossRefGoogle Scholar
  55. Commer, P., Schwartz, C., Tracy, S., Tamoki, T., and Chiu, J.-F., 1979, Dexamethasone inhibits a-fetoprotein gene expression in developing mouse liver, Biochem. Biophys. Res. Commun. 89: 1294.PubMedCrossRefGoogle Scholar
  56. Compere, S. J., and Palmiter, R. D., 1981, DNA methylation controls the inducibility of the mouse metallothionein-1 gene in lymphoid cells, Cell 25: 233.PubMedCrossRefGoogle Scholar
  57. Compton, J. G., Schrader, W. T., and O’Malley, B. W., 1982, Selective binding of chicken progesterone receptor A subunit to a DNA fragment containing ovalbumin gene sequences, Biochem. Bzophys. Res. Commun. 105: 96.CrossRefGoogle Scholar
  58. Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C., and Chambon, P., 1980, Promoter sequences of eukaryotic protein-coding genes, Science 209: 1406.PubMedCrossRefGoogle Scholar
  59. Cox, R. F., Haines, M. E., and Emtage, J. S., 1974, Quantitation of ovalbumin mRNA in hen and chick oviduct by hybridization to complementary DNA, Ear. J. Biochem. 49: 225.CrossRefGoogle Scholar
  60. Crick, F., 1979, Split genes and RNA splicing, Science 204: 264.PubMedCrossRefGoogle Scholar
  61. Daneholt, B., Case, S. T., Derksen, J., Lamb, M. M., Nelson, L., and Wieslander, L., 1978, The size and chromosomal location of the 75 S RNA transcription unit in Balbiani Ring 2, Cold Spring Harbor Symp. Quant. Biol. 42: 867.PubMedCrossRefGoogle Scholar
  62. Davie, J. R., and Candido, E. P. M., 1978, Acetylated histone H4 is preferentially associated with template-active chromatin, Proc. Natl. Acad. Sci. U.S.A. 75: 3574.PubMedCrossRefGoogle Scholar
  63. Dawid, I. B., and Wahli, W., 1979, Application of recombinant DNA technology to questions of developmental biology: A review, Dec. Biol. 69: 305.CrossRefGoogle Scholar
  64. Deeley, R. G., Gordon, J. I., Burns, A. T. H., Mullinix, K. P., Bina-Stein, M., and Goldberger, R. F., 1977a, Primary activation of the vitellogenin gene in the rooster, J. Biol. Chem. 252: 8310.PubMedGoogle Scholar
  65. Deeley, R. G., Udell, D. S., Burns, A. T. H., Gordon, J. I., and Goldberger, R. F., 1977b, Kinetics of avian vitellogenin messenger RNA induction, J. Biol. Chem. 252: 7913.PubMedGoogle Scholar
  66. Diacumakos, E. G., 1980, Introduction of macromolecules into viable mammalian cells by precise physical microinjection, in: Introduction of Macromolecules into Viable Mammalian Cells ( R. Baserga, C. Croce, and G. Rovera, eds.), pp. 85–98, Alan R. Liss, Inc., New York.Google Scholar
  67. Diberardino, M. A., 1980, Genetic stability and modulation of metazoan nuclei transplanted into eggs and oocytes, Differentiation 17: 17.PubMedCrossRefGoogle Scholar
  68. Doehmer, J., Barinaga, M., Vale, W., Rosenfeld, M. G., Verma, I. M., and Evans, R. M., 1982, Introduction of rat growth hormone gene into mouse fibroblasts via a retroviral DNA vector: Expression and regulation, Proc. Natl. Acad. Sci. U.S.A. 79: 2268.PubMedCrossRefGoogle Scholar
  69. Edström, J.-E., 1974, Polytene chromosomes in studies of gene expression, in: The Cell Nucleus, Vol. 2 ( H. Busch, ed.), pp. 293–332, Academic Press, New York.Google Scholar
  70. Edström, J.-E., Ericson, E., Lindgren, S., Lönn, U., and Rydlander, L., 1978, Fate of Balbiani-ring RNA in vivo, Cold Spring Harbor Symp. Quant. Biol. 42: 877.PubMedCrossRefGoogle Scholar
  71. Eicher, E. M., 1971, X-autosome translocations in the mouse: Total inactivation versus partial inactivation of the X-chromosome, Adv. Genet. 15: 175.CrossRefGoogle Scholar
  72. Eisen, H. J., 1980, An antiserum to the rat liver glucocorticoid receptor, Proc. Natl. Acad. Sci. U.S.A. 77: 3893.PubMedCrossRefGoogle Scholar
  73. Elgin, S. C. R., 1981, DNAase I-hypersensitive sites of chromatin, Cell 27: 413.PubMedCrossRefGoogle Scholar
  74. Elgin, S. C. R., 1982, Chromatin structure, DNA structure, Nature 300: 402.PubMedCrossRefGoogle Scholar
  75. Elgin, S. C. R., Serunian, L. A., and Sliver, L. M., 1978, Distribution patterns of Drosophila nonhistone chromosomal proteins, Cold Spring Harbor Symp. Quant. Biol. 42: 839.PubMedCrossRefGoogle Scholar
  76. Emmons, S. W., Klass, M. R., and Hirsh, D., 1979, Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. U.S.A. 76: 1333.PubMedCrossRefGoogle Scholar
  77. Engelke, D. R., Ng, S.-Y., Shastry, B. S., and Roeder, R. G., 1980, Specific interaction of a purified transcription factor with an internal control region of 5 S RNA genes, Cell 19: 717.PubMedCrossRefGoogle Scholar
  78. Falkner, F.-G., and Biessmann, H., 1980, Nuclear proteins in Drosophila melanogaster cells after heat shock and their binding to homologous DNA, Nucleic Acids Res. 8: 943.PubMedCrossRefGoogle Scholar
  79. Feigelson, P., and Kurtz, D. T., 1978, Hormonal modulation of a2„ globulin mRNA: Sequence measurements using a specific cDNA probe, Cold Spring Harbor Symp. Quant. Biol. 42: 659.PubMedCrossRefGoogle Scholar
  80. Feigelson, P., DeLap, L., Chen, C.-L. C., Chan, K.-M., and Kurtz, D. T., 1979, Glucocorticoid and developmental control of specific hepatic messenger RNA species in vivo and in hepatocytes in vitro, in: The Cell Nucleus 9 Vol. VII ( H. Busch, ed.), pp. 229–257, Academic Press, New York.Google Scholar
  81. Feinstein, S. C., Ross, S. R., and Yamamoto, K. R., 1982, Chromosomal position effects determine transcriptional potential of integrated mammary tumor virus DNA, J. Mol. Bzol. 156: 549.CrossRefGoogle Scholar
  82. Finch, J. T., and Klug, A., 1976, Solenoidal model for superstructure in chromatin, Proc. Natl. Acad. Sci. U.S.A. 73: 1897.PubMedCrossRefGoogle Scholar
  83. Fisher, E. F., and Caruthers, M. H., 1979, Studies on gene control regions XII. The functional significance of a Lac operator constitutive mutation, Nucleic Acids Res. 7: 401.PubMedCrossRefGoogle Scholar
  84. Flavell, R. A., 1980, The transcription of eukaryotic genes, Nature 285: 356.PubMedCrossRefGoogle Scholar
  85. Flint, S. J., and Weintraub, H. M., 1977, An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus genes, Cell 12: 783.PubMedCrossRefGoogle Scholar
  86. Foe, V. E., 1978, Modulation of ribosomal RNA synthesis in Oncopeltus fasczatus: An electron microscopic study of the relationship between changes in chromatin structure and transcriptional activity, Cold Spring Harbor Symp. Quant. Biol. 42: 723.PubMedCrossRefGoogle Scholar
  87. Folger-Bruce, K., Anderson, J. N., Hayward, M. A., and Shapiro, D. J., 1983, Nuclease sensitivity and DNA methylation in estrogen regulation of Xenopus laevzs vitellogenin gene expression, J. Biol. Chem. 258: 8908.Google Scholar
  88. Franke, W. W., Scheer, U., Trendelenburg, M., Zentgraf, H., and Spring, H., 1978, Morphology of transcriptionally active chromatin, Cold Spring Harbor Symp. Quant. Biol. 42: 755.PubMedCrossRefGoogle Scholar
  89. Gall, J. G., and Callan, H. G., 1962, 3H-uridine incorporation in lampbrush chromosomes, Proc. Natl. Acad. Sci. U.S.A. 48: 562.Google Scholar
  90. Ganguly, R., Mehta, N. M., Ganguly, N., and Banerjee, M. R., 1979, Glucocorticoid modulation of casein gene transcription in mouse mammary gland, Proc. Natl. Acad. Sci. U.S.A. 76: 6466.PubMedCrossRefGoogle Scholar
  91. Garel, A., and Axel, R., 1976, Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei, Proc. Natl. Acad. Sci. U.S.A. 73: 3966.PubMedCrossRefGoogle Scholar
  92. Garel, A., Zolan, M., and Axel, R., 1977, Genes transcribed at diverse rates have a similar conformation in chromatin, Proc. Natl. Acad. Sci. U.S.A. 74: 4867.PubMedCrossRefGoogle Scholar
  93. Gazit, B., Panet, A., and Cedar, H., 1980, Reconstitution of a deoxyribonuclease I-sensitive structure on active genes, Proc. Natl. Acad. Sci. U.S.A. 77: 1787.PubMedCrossRefGoogle Scholar
  94. Gehring, W. J., 1976, Determination, in: Organization and Expression of Chromosomes ( V. G. Allfrey, E. F. K. Bautz, B. J. McCarthy, R. T. Schimke, and A. Tissieres, eds.), pp. 97–113, Abakon Verlagsgesellschaft, Berlin, Germany.Google Scholar
  95. Gorski, J., and Gannon, F., 1976, Current models of steroid hormone action: A critique, Annu. Rev. Physiol. 38: 425.PubMedCrossRefGoogle Scholar
  96. Gottesfeld, J. M., and Melton, D. A., 1978, The length of nucleosome-associated DNA is the same in both transcribed and nontranscribed chromatin, Nature 273: 317.PubMedCrossRefGoogle Scholar
  97. Gottesfeld, J. M., and Partington, G. A., 1977, Distribution of messenger RNA-coding sequences in fractionated chromatin, Cell 12: 953.PubMedCrossRefGoogle Scholar
  98. Gottesfeld, J. M., Garrard, W. T., Bagi, G., Wilson, R. F., and Bonner, J., 1974, Partial purification of the template-active fraction of chromatin: A preliminary report, Proc. Natl. Acad. Sci. U.S.A. 71: 2193.PubMedCrossRefGoogle Scholar
  99. Govindan, M. V., Spiess, E., and Majors, J., 1982, Purified glucocorticoid receptor hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro, Proc. Natl. Acad. Sci. U.S.A. 79: 5157.PubMedCrossRefGoogle Scholar
  100. Greene, G. L., Closs, L. E., Fleming, H., DeSombre, E. R., and Jensen, E. V., 1977, Antibodies to estrogen receptor: Immunochemical similarity of estrophilin from various mammalian species, Proc. Natl. Acad. Sci. U.S.A. 74: 3681.PubMedCrossRefGoogle Scholar
  101. Greene, G. L., Fitch, F. W., and Jensen, E. V., 1980, Monoclonal antibodies to estrophilin: Probes for the study of estrogen receptor, Proc. Natl. Acad. Sci. U.S.A. 77: 157.PubMedCrossRefGoogle Scholar
  102. Gronemeyer, H., and Pongs, O., 1980, Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A. 77: 2108.PubMedCrossRefGoogle Scholar
  103. Groudine, M., Eisenman, R., and Weintraub, H., 1981, Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation, Nature 292: 311.PubMedCrossRefGoogle Scholar
  104. Grove, J. R., Dieckmann, B. S., Schroer, T. A., and Ringold, G. M., 1980, Isolation of glucocorticoid-unresponsive rat hepatoma cells by fluorescence-activated cell sorting, Cell 21: 47.PubMedCrossRefGoogle Scholar
  105. Gurdon, J. B., 1962, Adult frogs derived from the nuclei of single somatic cells, Dev. Bzol. 4: 256.CrossRefGoogle Scholar
  106. Hadorn, E., 1966, Dynamics of determination, in: Major Problems in Developmental Biology ( M. Locke, ed.), pp. 85–104, Academic Press, New York.Google Scholar
  107. Haigh, L. S., Owens, B. B., Hellewell, S., and Ingram, V. M., 1982, DNA methylation in chicken a-globin gene expression, Proc. Natl. Acad. Sci. U.S.A. 79: 5332.PubMedCrossRefGoogle Scholar
  108. Hardin, J. W., Clark, J. H. Glasser, S. R., and Peck, E. J. Jr., 1976, RNA polymerase activity and uterine growth: Differential stimulation by estradiol, estriol, and nafoxidine, Biochemistry 15: 1370.Google Scholar
  109. Harpold, M. M., Evans, R. M., Salditt-Georgieff, M., and Darnell, J. E., 1979, Production of mRNA in Chinese hamster cells: Relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences, Cell 17: 1025.PubMedCrossRefGoogle Scholar
  110. Harris, G. S., 1971, Nature of oestrogen specific binding sites in the nuclei of mouse uteri, Nature New Biol. 231: 246.PubMedCrossRefGoogle Scholar
  111. Harris, S. E., Means, A. R., Mitchell, W. M., and O’Malley, B. W., 1973, Synthesis of 3H DNA complementary to ovalbumin messenger RNA: Evidence for limited copies of the ovalbumin gene in chick oviduct, Proc. Natl. Acad. Sci. U.S.A. 70: 3776.PubMedCrossRefGoogle Scholar
  112. Harris, S. E., Rosen, J. M., Means, A. R., and O’Malley, B. W., 1975, Use of a specific probe for ovalbumin messenger RNA to quantitate estrogen-induced gene transcripts, Biochemistry 14: 2072.PubMedCrossRefGoogle Scholar
  113. Hastie, N. D., Held, W. A., and Toole, J. J., 1979, Multiple genes coding for the androgen-regulated major urinary proteins of the mouse, Cell 17: 449.PubMedCrossRefGoogle Scholar
  114. Hemminki, K., and Vauhkonen, M., 1977, Distribution of estrogen receptors in hen oviduct chromatin fractions in the course of DNAse II digestion, Biochim. Biophys. Acta 474: 109.PubMedCrossRefGoogle Scholar
  115. Hill, R. J., and Watt, F., 1978, “Native” salivary chromosomes of Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol. 42:859.Google Scholar
  116. Hill, R. S., 1979, A quantitative electron-microscope analysis of chromatin from Xenopus laevis lampbrush chromosomes, J. Cell Science 40: 145.PubMedGoogle Scholar
  117. Holliday, R., and Pugh, J. C., 1975, DNA modification mechanisms and gene activity during development, Science 187: 226.PubMedCrossRefGoogle Scholar
  118. Hughes, M. R., Compton, J. G., Schrader, W. T., and O’Malley, B. W., 1981, Interaction of the chick oviduct progesterone receptor with DNA, Biochemistry 20: 2481.PubMedCrossRefGoogle Scholar
  119. Hughes, S. H., Stubblefield, E., Payvar, F., Engel, J. D., Dodgson, J. B., Spector, D., Cordell, B., Schimke, R. T., and Varmus, H. E., 1979, Gene localization by chromosome fractionation: Globin genes are on at least two chromosomes and three estrogen-inducible genes are on three chromosomes, Proc. Natl. Acad. Sci. U.S.A. 76: 1348.PubMedCrossRefGoogle Scholar
  120. Hynes, N. E., Groner, B., Sippel, A. E., Nguyen-Huu, M. C., and Schutz, G., 1977, mRNA complexity and egg white protein mRNA content in mature and hormone-withdrawn oviduct, Cell 11: 923.Google Scholar
  121. Hynes, N. E., Groner, B., Sippel, A. E., Jeep, S., Wurtz, T., Nguyen-Huu, M. C., Giesecke, K., and Schütz, G., 1979, Control of cellular content of chicken egg white protein specific RNA during estrogen administration and withdrawal, Biochemistry 18: 616.PubMedCrossRefGoogle Scholar
  122. Hynes, N. E., Kennedy, N., Rahmsdorf, V., and Groner, B., 1981, Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells, Proc. Natl. Acad. Sci. U.S.A. 78: 2038.PubMedCrossRefGoogle Scholar
  123. Igb-Kemenes, T., and Zachau, H. G., 1978, Domains in chromatin structure, Cold Spring Harbor Symp. Quant. Biol. 42: 109.CrossRefGoogle Scholar
  124. Ivarie, R. D., and O’Farrell, P. H., 1978, The glucocorticoid domain: Steroid-mediated changes in the rate of synthesis of rat hepatoma proteins, Cell 13: 41.PubMedCrossRefGoogle Scholar
  125. Ivarie, R. D., Morris, J. A., and Eberhardt, N. L., 1980, Hormonal domains of response: Actions of glucocorticoid and thyroid hormones in regulating pleiotropic responses in cultured cells, Recent Prog. Horm. Res. 36: 195.PubMedGoogle Scholar
  126. Jackson, J. B., Pollock, J. M., Jr., and Rill, R. L., 1979, Chromatin fractionation procedure that yields nucleosomes containing near-stoichiometric amounts of high mobility group nonhistone chromosomal proteins, Biochemistry 18: 3739.PubMedCrossRefGoogle Scholar
  127. Jackson, V., and Chalkley, R., 1974, The binding of estradiol-17i3 to the bovine endometrial nuclear membrane, J. Biol. Chem. 249: 1615.PubMedGoogle Scholar
  128. Jakobovits, E., Saragosti, S., Yaniv, M., and Aloni, Y., 1980, Escherichta cob RNA polymerase in vitro mimics simian virus 40 in vivo transcription when the template is viral nucleoprotein, Proc. Natl. Acad. Scz. U.S.A. 77: 6556.Google Scholar
  129. Jamrich, M., Greenleaf, A. L., Bautz, F. A., and Bautz, E. K. F., 1978, Functional organization of polytene chromosomes, Cold Spring Harbor Symp. Quant. Biol. 42: 389.PubMedCrossRefGoogle Scholar
  130. Jensen, E. V., Greene, G. L., Closs, L. E., and DeSombre, E. R., 1979, The immunoendocrinology of estrophilin, Adv. Exp. Med. Biol. 117: 1.PubMedCrossRefGoogle Scholar
  131. Johnson, E. M., and Allfrey, V. G., 1978, Postsynthetic modifications of histone primary structure: Phosphorylation and acetylation as related to chromatin conformation and function, in: Biochemical Actions of Hormones,Vol. 5 ( G. Litwack, ed.), pp. 1–51, Academic Press, New York.Google Scholar
  132. Johnson, E. M., Campbell, G. R., and Allfrey, V. G., 1979, Different nucleosome structures on transcribing and nontranscribing ribosomal gene sequences, Science 206: 1192.PubMedCrossRefGoogle Scholar
  133. Jones, P. A., and Taylor, S. M., 1980, Cellular differentiation, cytidine analogs and DNA methylation, Cell 20: 85.PubMedCrossRefGoogle Scholar
  134. Jost, J.-P., Ohno, T., Panyim, S., and Schuerch, A. R., 1978, Appearance of vitellogenin mRNA sequences in chicken liver following primary and secondary stimulation by 173-estradiol, Eur. J. Btochem. 84: 355.CrossRefGoogle Scholar
  135. Jump, D. B., and Oppenheimer, J. H., 1980, Thyroid hormone receptor-containing fragment released from chromatin by deoxyribonuclease I and micrococcal nuclease, Science 209: 811.PubMedCrossRefGoogle Scholar
  136. Kafatos, F. C., 1972, mRNA stability and cellular differentiation, Acta Endocrinol. Suppl. 168: 319.Google Scholar
  137. Kalimi, M., Tsai, S. Y., Tsai, M.-J., Clark, J. H., and O’Malley, B. W., 1976. Effect of estrogen on gene expression in the chick oviduct: Correlation between nuclear-bound estrogen receptor and chromatin initiation sites for transcription, J. Biol. Chem. 251: 516.PubMedGoogle Scholar
  138. Katzenellenbogen, B. S., 1980, Dynamics of steroid hormone receptor action, Annu. Rev. Physiol. 42: 17.PubMedCrossRefGoogle Scholar
  139. Katzenellenbogen, B. S., and Gorski, J., 1972, Estrogen action in vitro: Induction of the synthesis of a specific uterine protein, J. Bzol. Chem. 247: 1299.Google Scholar
  140. Katzenellenbogen, B. S., Iwamoto, H. S., Heiman, D. F., Lan, N. C., and Katzenellenbogen, J. A., 1978, Stilbestrols and stilbestrol derivatives: Estrogenic potency and temporal relationships between estrogen receptor binding and uterine growth, Mol. Cell. Endocrinol. 10: 103.PubMedCrossRefGoogle Scholar
  141. Klemenz, R., Stillman, D. J., and Geiduschek, E. P., 1982, Specific interactions of Saccharomyces cerevisiae proteins with a promoter region of eukaryotic tRNA genes, Proc. Natl. Acad. Sci. U.S.A. 79:6191.Google Scholar
  142. Kornberg, R. D., 1977, Structure of chromatin, Annu. Rev. Biochem. 40: 931.Google Scholar
  143. Kumar, S. A., Beach, T. A., and Dickerman, H. W., 1979, Effect of Cibacron blue F3GA on oligonucleotide binding site of estradiol-receptor complexes of mouse uterine cytosol, Proc. Natl. Acad. Sci U.S.A. 76: 2199.PubMedCrossRefGoogle Scholar
  144. Kumar, S. A., Beach, T. A., and Dickerman, H. W., 1980, Specificity of oligodeoxynucleotide binding of mouse uterine cytosol estradiol receptors, Proc. Natl. Acad. Sci. U.S.A. 77: 3341.PubMedCrossRefGoogle Scholar
  145. Kuo, M. T., Mandel, J. L., and Chambon, P., 1979, DNA methylation: Correlation with DNase I sensitivity of chicken ovalbumin and conalbumin chromatin, Nucleic. Acids Res. 7: 2105.PubMedCrossRefGoogle Scholar
  146. Kurtz, D. T., 1981, Hormonal inducibility of rat ay globulin genes in transfected mouse cells, Nature 291: 629.PubMedCrossRefGoogle Scholar
  147. Kurtz, D. T., and Feigelson, P., 1977, Multihormonal induction of hepatic a2u-globulin mRNA as measured by hybridization to complementary DNA, Proc. Natl. Acad. Sci. U.S.A. 74: 4791.PubMedCrossRefGoogle Scholar
  148. Kurtz, D. T., Chang, K.-M., and Feigelson, P., 1978, Glucocorticoid induction of hepatic as-globulin synthesis and messenger RNA level in castrated male rats in vivo, J. Biol. Chem. 253: 7886.PubMedGoogle Scholar
  149. LaBella, F., and Vesco, C., 1980, Late modifications of simian virus 40 chromatin during the lytic cycle occur in an immature form of virion, J. Vzrol. 33: 1138.Google Scholar
  150. Lacy, E., and Axel, R., 1975, Analysis of DNA of isolated chromatin subunits, Proc. Natl. Acad. Sci. U.S.A. 72: 3978.PubMedCrossRefGoogle Scholar
  151. Laemmli, U. K., Cheng, S. M., Adolph, K. W., Paulson, J. R., Brown, J. A., and Baumbach, W. R., 1978. Metaphase chromosome structure: The role of nonhistone proteins, Cold Spring Harbor Symp. Quant. Biol. 42: 351.PubMedCrossRefGoogle Scholar
  152. Laird, C. D., Wilkinson, L. E., Foe, V. E., and Chooi, W. Y., 1976, Analysis of chromatin-associated fibre arrays, Chromosoma 58: 169.PubMedCrossRefGoogle Scholar
  153. Lamb, M. M., and Daneholt, B., 1979, Characterization of active transcription units in Balbiani rings of Chi -ronomus tentans, Cell 17: 835.PubMedCrossRefGoogle Scholar
  154. Lan, N. C., and Katzenellenbogen, B. S., 1976, Temporal relationships between hormone receptor binding and biological responses in the uterus: Studies with short-and long-acting derivatives of estriol, Endocrinology 98: 220.PubMedCrossRefGoogle Scholar
  155. Larsen, A., and Weintraub, H., 1982, An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin, Cell 29: 609.PubMedCrossRefGoogle Scholar
  156. Lawson, G. M., and Cole, R. D., 1979, Selective displacement of histone H1 from whole HeLa nuclei: Effect on chromatin structure in situ as probed my micrococcal nuclease, Biochemistry 18: 2160.PubMedCrossRefGoogle Scholar
  157. Lawson, G. M., Tsai, M.-J., and O’Malley, B. W., 1980, DNase I sensitivity of the nontranscribed sequences flanking the 5’ and 3’ ends of the ovomucoid gene and the ovalbumin and its related X and Y genes in hen oviduct nuclei, Biochemistry 19: 4403.PubMedCrossRefGoogle Scholar
  158. Lawson, G. M., Knoll, B. J., March, C. J., Woo, S. L. C., Tsai, M.-J., and O’Malley, B. W., 1982, Definition of 5’ and 3’ structural boundaries of the chromatin domain containing the ovalbumin multigene family, J. Biol. Chem. 257: 1501.PubMedGoogle Scholar
  159. Lebeau, M. C., Massol, N., and Baulieu, E. E., 1973, An insoluble receptor for oestrogens in the “residual” nuclear proteins of chick liver, Eur. J. Biochem. 36: 294.PubMedCrossRefGoogle Scholar
  160. Lefevre, G. Jr., 1974, The one band-one gene hypothesis: Evidence from a cytogenetic analysis of mutant and nonmutant rearrangement breakpoints in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol. 38: 591.CrossRefGoogle Scholar
  161. Lepesant, J.-A., Kejzlarova-Lepesant, J., and Garen, A., 1978, Ecdysone-inducible functions of larval fat bodies in Drosophila, Proc. Natl. Acad. Sci. U.S.A. 75: 5570.PubMedCrossRefGoogle Scholar
  162. Levinger, L., and Varshaysky, A., 1982, Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome, Cell 28: 375.PubMedCrossRefGoogle Scholar
  163. Levy, A., and Noll, M., 1981, Chromatin fine structure of active and repressed genes, Nature 289: 198.PubMedCrossRefGoogle Scholar
  164. Levy-Wilson, B., Connor, W., and Dixon, G. H., 1979, A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components, J. Biol. Chem. 254: 609.Google Scholar
  165. Levy-Wilson, B., Kuehl, L., and Dixon, G., 1980, The release of high mobility group protein H6 and protamine gene sequences upon selective DNAse I degradation of trout testis chromatin, Nucleic. Acids Res. 8: 2859.PubMedCrossRefGoogle Scholar
  166. Lezzi, M., and Robert, M., 1972, Chromosomes isolated from unfixed salivary glands of Chironomus, in: Developmental Studies on Giant Chromosomes ( W. Beermann, ed.), pp. 35–57, Springer-Verlag, New York.Google Scholar
  167. Liang, T., and Liao, S., 1974, Association of the uterine I7ß-estradiol-receptor complex with ribonucleoprotein in vitro and in vivo, J. Biol. Chem. 249: 4671.PubMedGoogle Scholar
  168. Liao, S., Mezzetti, G., and Chen, C., 1979, Androgen receptor and early biochemical responses, in: The Cell Nucleus, Vol. 7 ( H. Busch, ed.), pp. 201–227, Academic Press, New York.Google Scholar
  169. Libby, P. R., 1972, Histone acetylation and hormone action. Early effects of oestradiol-17f3 on histone acetylation in rat uterus, Biochem. J. 130: 663.PubMedGoogle Scholar
  170. Libby, P. R., 1973, Histone acetylation and hormone action. Early effects of aldosterone on histone acetylation in rat kidney, Biochem. J. 134: 907.PubMedGoogle Scholar
  171. Lilley, D. M. J., 1980, The inverted repeat as a recognizable structural feature in supercoiled DNA molecules, Proc. Natl. Acad. Sci. U.S.A. 77: 6468.PubMedCrossRefGoogle Scholar
  172. Long, E. O., and Dawid, I. B., 1980, Repeated genes in eukaryotes, Annu. Rev. Biochem. 49: 727.PubMedCrossRefGoogle Scholar
  173. Loor, R. M., Hu, A.-L., and Wang, T. Y., 1977, Structurally altered and transcriptionally activated rat prostate chromatin induced by androgens, Biochim. Biophys. Acta 477: 312.PubMedCrossRefGoogle Scholar
  174. Lyon, M. F., 1976, Chromosome condensation in relation to genetic activity, in: Organization and Expression of Chromosomes ( V. G. Allfrey, E. F. K. Bautz, B. J. McCarthy, R. T. Schimke, and A. Tissiéres, eds.), pp. 131–140, Abakon Verlagsgesellschaft, Berlin, Germany.Google Scholar
  175. MacGregor, H. C., 1980, Recent developments in the study of lampbrush chromosomes, Herechty 44:3. Mainwaring, W. I. P., and Jones, D. M., 1975, Influence of receptor complexes on the properties of prostate chromatin, including its transcription by RNA polymerase, J. Steroad Biochem. 6: 475.Google Scholar
  176. Maki, R., Kearney, J., Paige, C., and Tonegawa, S., 1980, Immunoglobulin gene rearrangement in immature B cells, Science 209: 1366.PubMedCrossRefGoogle Scholar
  177. Mandel, J. L., and Chambon, P., 1979, DNA methylation: Organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes, Nucleic Acids Res. 7: 2081.PubMedCrossRefGoogle Scholar
  178. Markaverich, B. M., Clark, J. H., and Hardin, J. W., 1978, RNA transcription and uterine growth: Differential effects of estradiol, estriol and nafoxidine on chromatin RNA initiation sites, Biochemistry 17: 3146.PubMedCrossRefGoogle Scholar
  179. Martial, J. A., Baxter, J. D., Goodman, H. M., and Seeburg, P. H., 1977a, Regulation of growth hormone messenger RNA by thyroid and glucocorticoid hormones, Proc. Natl. Acad. Sci. U.S.A. 74: 1816.PubMedCrossRefGoogle Scholar
  180. Martial, J. A., Seeburg, P. H., Guenzi, D., Goodman, H. M., and Baxter, J. D., 1977b, Regulation of growth hormone gene expression: Synergistic effects of thyroid and glucocorticoid hormones, Proc. Natl. Acad. Sci. U.S.A. 74: 4293.PubMedCrossRefGoogle Scholar
  181. Massol, N., Lebeau, M.-C., and Baulieu, E.-E., 1978, Estrogen receptor in hen oviduct chromatin, digested by micrococcal nuclease, Nucleic Acids Res. 5: 723.PubMedCrossRefGoogle Scholar
  182. Matthew, C. G. P., Goodwin, G. H., Wright, C. A., and Johns, E. W., 1981, The high mobility group proteins and transcribed nucleosomes, Cell Biol. Int. Rep. 5 (1): 37.CrossRefGoogle Scholar
  183. McGhee, J. D., and Felsenfeld, G., 1980, Nucleosome structure, Annu. Rev. Btochem. 49: 1115.CrossRefGoogle Scholar
  184. McGhee, J. D., and Ginder, G. D., 1979, Specific DNA methvlation sites in the vicinity of the chicken ß-globin genes, Nature 280: 419.PubMedCrossRefGoogle Scholar
  185. McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D., and Felsenfeld, G., 1981, A 200 base pair region at the 5’ end of the chicken adult i3-globin gene is accessible to nuclease digestion, Cell 27: 45.PubMedCrossRefGoogle Scholar
  186. McKnight, G. S., 1978, The induction of ovalbumin and conalbumin mRNA by estrogen and progesterone in chick oviduct explant cultures, Cell 14: 403.PubMedCrossRefGoogle Scholar
  187. McKnight, G. S., and Palmiter, R. D., 1979, Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct, J. Biol. Chem. 254: 9050.PubMedGoogle Scholar
  188. McKnight, G. S., Pennequin, P., and Schimke, R. T., 1975, Induction of ovalbumin mRNA sequences by estrogen and progesterone in chick oviduct as measured by hybridization to complementary DNA, J. Biol. Chem. 250: 8105.PubMedGoogle Scholar
  189. McKnight, S. L., Bustin, M., and Miller, O. L., Jr., 1978, Electron microscopic analysis of chromosome metabolism in the Drosophila melanogaster embryo, Cold Spring Harbor Symp. Quant. Biol. 42: 741.PubMedCrossRefGoogle Scholar
  190. Milner, M. J., 1977, The time during which 13-ecdysone is required for the differentiation in vitro and in situ of wing imaginal discs of Drosophila melanogaster, Dev. Biol. 56: 206.PubMedCrossRefGoogle Scholar
  191. Mizuno, S., and Cox, R. F., 1979, Estrogen withdrawal in chick oviduct. Evidence for continued expression of active unique genes using an “expressed” DNA probe, Biochemistry 18: 2049.PubMedCrossRefGoogle Scholar
  192. Moncharmont, B., Su, J.-L., and Parikh, I., 1982, Monoclonal antibodies against estrogen receptor: Interaction with different molecular forms and functions of the receptor, Biochemistry 21: 6916.PubMedCrossRefGoogle Scholar
  193. Moulton, B. C., and Barker, K. L., 1971, Synthesis and degradation of glucose-6-phosphate dehydrogenase in the rat uterus, Endocrinology 89: 1131.PubMedCrossRefGoogle Scholar
  194. Mulvihill, E. R., LePennec, J.-P., and Chambon, P., 1982, Chicken oviduct progesterone receptor: Location of specific regions of high-affinity binding in cloned DNA fragments of hormone-responsive genes, Cell 28: 621.PubMedCrossRefGoogle Scholar
  195. Nelson, D., Perry, M. E., and Chalkley, R., 1979, A correlation between nucleosome spacer region susceptibility to DNase I and histone acetylation, Nucleic Acids Res. 6: 561.PubMedCrossRefGoogle Scholar
  196. Nelson, D., Covault, J., and Chalkley, R., 1980, Segregation of rapidly acetylated histones into a chromatin fraction released from intact nuclei by the action of micrococcal nuclease, Nucleic Acids Res. 8: 1745.PubMedCrossRefGoogle Scholar
  197. Nickol, J. M., Lee, K.-L., and Kenney, F. T., 1978, Changes in hepatic levels of tyrosine aminotransferase messenger RNA during induction by hydrocortisone, J. Biol. Chem. 253: 4009.PubMedGoogle Scholar
  198. Old, R. W., Callan, H. G., and Gross, K. W., 1977, Localization of histone gene transcripts in newt lampbrush chromosomes by in situ hybridization, J. Cell Science 27: 57.PubMedGoogle Scholar
  199. O’Malley, B. W., Roop, D. R., Lai, E. C., Nordstrom, J. L., Catterall, J. F., Swaneck, G. E., Colbert, D. A., Tsai, M.-J., Dugaiczyk, A., and Woo, S. L. C., 1979a, The ovalbumin gene: Organization, structure, transcription, and regulation, Recent Prog. Horm. Res. 35: 1.PubMedGoogle Scholar
  200. O’Malley, B. W., Stein, J. R., Woo, S. L. C., Dugiaczyk, A., Catterall, J. F., and Lai, E. C., 1979b, A comparison of the sequence organization of the chicken ovalbumin and ovomucoid genes in: Eucaryotic Gene Regulation (R. Axel, T. Maniatis, and C. F. Fox, eds.), pp. 281–299, Academic Press, New York.Google Scholar
  201. Oudet, P., Gross-Bellard, M., and Chambon, P., 1975, Electron miscroscopic and biochemical evidence that chromatin structure is a repeating unit, Cell 4: 281.PubMedCrossRefGoogle Scholar
  202. Palmiter, R. D., 1975, Quantitation of parameters that determine the rate of ovalbumin synthesis, Cell 4:189. Palmiter, R. D., Moore, P. B., and Mulvihill, E. R., 1976, A significant lag in the induction of ovalbumin messenger RNA by steroid hormones: A receptor translocation hypothesis, Cell 8: 557.CrossRefGoogle Scholar
  203. Palmiter, R. D., Mulvihill, E. R., McKnight, G. S., and Senear, A. W., 1978, Regulation of gene expression in the chick oviduct by steroid hormones, Cold Spring Harbor Symp. Quant. Biol. 42: 639.PubMedCrossRefGoogle Scholar
  204. Panayotatos, N., and Wells, R. D., 1981, Cruciform structures in supercoiled DNA, Nature 289: 466.PubMedCrossRefGoogle Scholar
  205. Payvar, F., Wrange, O., Carlstedt-Duke, J., Okret, S., Gustafsson, J.-A., and Yamamoto, K., 1981, Purified glucocorticoid receptors bind in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo, Proc. Natl. Acad. Sci. U.S.A. 78: 6628.PubMedCrossRefGoogle Scholar
  206. Payvar, F., Firestone, G. L., Ross, S. R., Chandler, V. L., Wrange, O., Carlstedt-Duke, J., Gustafsson, J.-A., and Yamamoto, K. R., 1982, Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA, J. Cell Biochem. 19: 241.PubMedCrossRefGoogle Scholar
  207. Pelham, H. R. B., and Brown, D. D., 1980, A specific transcription factor that can bind either the 5 S RNA gene or 5 S RNA, Proc. Natl. Acad. Sci. U.S.A. 77: 4170.PubMedCrossRefGoogle Scholar
  208. Pelling, C., 1966, A replicative and synthetic chromosomal unit—The modern concept of the chromomere, Proc. R. Soc. (London) Ser. B 164: 279.CrossRefGoogle Scholar
  209. Pelling, C., 1972, Transcription in giant chromosomal puffs, in: Developmental Studies on Giant Chromosomes ( W. Beerman, ed.), pp. 87–99, Springer-Verlag, New York.Google Scholar
  210. Pfahl, M., 1982, Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region, Cell 31: 475.PubMedCrossRefGoogle Scholar
  211. Potter, S. S., and Thomas, C. A., Jr., 1978, The two-dimensional fractionation of Drosophila DNA, Cold Spring Harbor Symp. Quant. Biol. 42: 1023.PubMedCrossRefGoogle Scholar
  212. Proudfoot, N. J., Shander, M. H. M., Manley, J. L., Gefter, M. L., and Maniatis, T., 1980, Structure and in vitro transcription of human globin genes, Science 209: 1329.PubMedCrossRefGoogle Scholar
  213. Puca, G. A., and Bresciani, F., 1968, Receptor molecules for oestrogens from rat uterus, Nature 218:967. Puca, G. A., Nola, E., Hibner, U., Cicala, G., and Sica, V., 1975, Interaction of the estradiol receptor from calf uterus with its nuclear acceptor sites, J. Biol. Chem. 250: 6452.Google Scholar
  214. Razin, A., and Riggs, A., 1980, DNA methylation and gene function, Science 210: 604.PubMedCrossRefGoogle Scholar
  215. Reeves, R., 1978, Structure of Xenopus ribosomal gene chromatin during changes in genomic transcription rates, Cold Spring Harbor Symp. Quant. Biol. 42: 709.PubMedCrossRefGoogle Scholar
  216. Reeves, R., and Candido, E. P. M., 1980, Partial inhibition of histone deacetylase in active chromatin by HMG 14 and HMG 17, Nucleic Acids Res. 8: 1947.PubMedCrossRefGoogle Scholar
  217. Renkawitz, R., Beug, H., Graf, T., Matthias, P., Grez, M., and Schütz, G., 1982, Expression of a chicken lysozyme recombinant gene is regulated by progesterone and dexamethazone after microinjection into oviduct cells, Cell 31: 167.PubMedCrossRefGoogle Scholar
  218. Ringold, G. M., Yamamoto, K. R., Tomkins, G. M., Bishop, J. M., and Varmus, H. E., 1975, Dexamethasonemediated induction of mouse mammary tumor virus RNA: A system for studying glucocorticoid action, Cell 6: 299.PubMedCrossRefGoogle Scholar
  219. Ringold, G. M., Yamamoto, K. R., Bishop, J. M., and Varmus, H. E., 1977, Glucocorticoid stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA, Proc. Natl. Acad. Sci. U.S.A. 74: 2879.PubMedCrossRefGoogle Scholar
  220. Ringold, G. M., Shank, P. R., Varmus, H. E., Ring, J., and Yamamoto, K. R., 1979, Integration and transcription of mouse mammary tumor virus DNA in rat hepatoma cells, Proc. Natl. Acad. Sci. U.S.A. 76: 665.PubMedCrossRefGoogle Scholar
  221. Robins, D. M., Paek, I., Seeburg, P. H., and Axel, R., 1982, Regulated expression of human growth hormone genes in mouse cells, Cell 29: 623.PubMedCrossRefGoogle Scholar
  222. Roeder, G. S., Farabaugh, P. J., Chaleff, D. T., and Fink, G. R., 1980, The origins of gene instability in yeast, Science 209: 1375.PubMedCrossRefGoogle Scholar
  223. Roeder, R. G., Engelke, D. R., Segall, S., Ng, J., Shastry, B., and Weil, P. A., 1979, Factors involved in the transcription of purified genes by RNA polymerase III, in: Eucaryotic Gene Regulation ( R. Axel, T. Maniatis, and C. F. Fox, eds.), pp. 521–540, Academic Press, New York.CrossRefGoogle Scholar
  224. Roop, D. R., Nordstrom, J. L., Tsai, S. Y., Tsai, M.-J., and O’Malley, B. W. 1978, Transcription of structural and intervening sequences in the ovalbumin gene and identification of potential ovalbumin mRNA precursors, Cell 15: 671.PubMedCrossRefGoogle Scholar
  225. Roop, D. R., Tsai, M.-J., and O’Malley, B. W., 1980, Definition of the 5’ and 3’ ends of transcripts of the ovalbumin gene, Cell 19: 63.PubMedCrossRefGoogle Scholar
  226. Rosen, J. M., Matusik, R. J., Richards, D. A., Gupta, P., and Rodgers, J. R., 1980, Multihormonal regulation of casein gene expression at the transcriptional and posttranscriptional levels in the mammary gland, Recent. Prog. Horm. Res. 36: 157.PubMedGoogle Scholar
  227. Royal, A., Garapin, A., Cami, B., Perrin, F., Mandel, J. L., LeMeur, M., Brégégegre, F., Gannon, F., LePennec, J. P., Chambon, P., and Kourilsky, P., 1979, The ovalbumin gene region: Common features in the organization of three genes expressed in chicken oviduct under hormonal control, Nature 279: 125.PubMedCrossRefGoogle Scholar
  228. Ryan, R., Shupnik, M. A., and Gorski, J., 1979, Effect of estrogen on preprolactin messenger ribonucleic acid sequences, Biochemistry 18: 2044.PubMedCrossRefGoogle Scholar
  229. Ryffel, G. U., Wahli, W., and Weber, R., 1977, Quantitation of vitellogenin messenger RNA in the liver of male Xenopus toads during primary and secondary stimulation by estrogen, Cell 11: 213.PubMedCrossRefGoogle Scholar
  230. Sala-Trepat, J. M., Sargent, T. D., Sell, S., and Bonner, J., 1979, a-Fetoprotein and albumin genes of rats: No evidence for amplification-deletion of rearrangement in rat liver carcinogenesis, Proc. Natl. Acad. Sci. U.S.A. 76: 695.Google Scholar
  231. Samuels, H. H. Stanley, F., Casanova, J., and Shao, T. C., 1980, Thyroid hormone nuclear receptor levels are influenced by the acetylation of chromatin-associated proteins, J. Biol. Chem. 255: 2499.Google Scholar
  232. Scheer, U., Franke, W. W., Trendelenburg, M. F., and Spring, H., 1976, Classification of loops of lampbrush chromosomes according to the arrangement of transcriptional complexes, J. Cell Science 22: 503.PubMedGoogle Scholar
  233. Scheer, U., Spring, H., and Trendelenburg, M. F., 1979, Organization of transcriptionally active chromatin in lampbrush chromosome loops,in: The Cell Nucleus, Vol. VII (H. Busch, ed.), pp. 3–47, Academic Press, New York.Google Scholar
  234. Schenborn, E. T., and Karavolas, H. J., 1983, Hypothalamic progestin receptors: Evidence for two classes of high affinity binding sites, Endocrinology 112: 121.PubMedCrossRefGoogle Scholar
  235. Scherer, S., and Davis, R. W., 1980, Recombination of dispersed repeated DNA sequences in yeast, Science 209: 1380.PubMedCrossRefGoogle Scholar
  236. Schimke, R. T., McKnight, G. S., Shapiro, D J., Sullivan, D., and Palacios, R., 1975, Hormonal regulation of ovalbumin synthesis in the chick oviduct, Recent Prog. Horm. Res. 31: 175.PubMedGoogle Scholar
  237. Schrader, W. T., Toft, D. O., and O’Malley, B. W., 1972, Progesterone binding protein of chick oviduct. VI. Interaction of purified progesterone receptor components with nuclear constituents, J. Biol. Chem. 247: 2401.PubMedGoogle Scholar
  238. Schrader, W. T., Kuhn, R. W., and O’Malley, B. W., 1977, Progesterone-binding components of chick oviduct, J. Biol. Chem. 252: 299.PubMedGoogle Scholar
  239. Schütz, G., Nguyen-Huu, M. C., Giesecke, K., Hynes, N. E., Groner, B., Wurtz, T., and Sippel, A. E., 1978, Hormonal control of egg white protein messenger RNA synthesis in the chicken oviduct, Cold Spring Harbor Symp. Quant. Biol. 42: 617.PubMedCrossRefGoogle Scholar
  240. Scott, R. W., and Frankel, F. R., 1980, Enrichment of estradiol-receptor complexes in a transcriptionally active fraction of chromatin from MCF-7 cells, Proc. Natl. Acad. Sci. U.S.A. 77: 1291.PubMedCrossRefGoogle Scholar
  241. Sedat, J., and Manuelidis, L., 1978, A direct approach to the structure of eukaryotic chromosomes, Cold Spring Harbor Symp. Quant. Biol. 42: 331.PubMedCrossRefGoogle Scholar
  242. Senior, M. B., and Frankel, F. R., 1978, Evidence for two kinds of chromatin binding sites for the estradiolreceptor complex, Cell 14: 857.PubMedCrossRefGoogle Scholar
  243. Seybold, W. D., and Sullivan, D. T., 1978, Protein synthetic patterns during differentiation of imaginal discs in vitro, Der. Biol. 65: 69.Google Scholar
  244. Shapiro, D. J., 1982, Steroid hormone regulation of vitellogenin gene expression, CRC Critical Rev. Biochem. 12: 187.CrossRefGoogle Scholar
  245. Shapiro, L. E., Samuels, H. H., and Yaffe, B. M., 1978, Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GHL cells, Proc. Natl. Acad. Sci. U.S.A. 75: 45.PubMedCrossRefGoogle Scholar
  246. Shepherd, J. H., Mulvihill, E. R., Thomas, P. S., and Palmiter, R. D., 1980, Commitment of chick oviduct tubular gland cells to produce ovalbumin mRNA during hormonal withdrawal and restimulation, J. Cell Biol. 87: 142.PubMedCrossRefGoogle Scholar
  247. Sherman, M. R., Barzilai, D., Pine, P. `R., and Tuazon, F. B., 1979, Glucocorticoid receptor cleavage by leupeptin-sensitive enzymes in rat kidney cytosol, Adv. Exp. Med. Biol. 117: 357.Google Scholar
  248. Shermoen, A. W., and Beckendorf, S. K., 1982, A complex of interacting DNAase I-hypersensitive sites near the Drosophila glue protein gene, Sgs 4, Cell 29: 601.PubMedCrossRefGoogle Scholar
  249. Sica, V., and Bresciani, F., 1979, Estrogen-binding proteins of calf uterus. Purification to homogeneity of receptor from cytosol by affinity chromatography, Biochemistry 18: 2369.PubMedCrossRefGoogle Scholar
  250. Silver, L. M., and Elgin, S. C. R., 1978, Immunological analysis of protein distributions in Drosophila polytene chromosomes, in: The Cell Nucleus, Vol. 5 ( H. Busch, ed.), pp. 215–262, Academic Press, New York.Google Scholar
  251. Simpson, R. T., 1978, Structure of chromatin containing extensively acetylated H3 and 114, Cell 13:691. Snow, L. D., Eriksson, H., Hardin, J. W., Chan, L., Jackson, R. L., Clark, J. H., and Means, A. R., 1978, Nuclear estrogen receptors in the avian liver: Correlation with biological response, J. Steroid Biochem. 9: 1017.CrossRefGoogle Scholar
  252. Spelsberg, T. C., Webster, R., Pickler, G., Thrall, C., and Wells, D., 1976, Role of nuclear proteins as high affinity sites (“acceptors”) for progesterone in the avian oviduct, J. Steroid Biochem. 7: 1091.PubMedCrossRefGoogle Scholar
  253. Spradling, A. C., and Mahowald, A. P., 1980, Amplification of genes of chorion proteins during oogenesis in Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A. 77: 1096.CrossRefGoogle Scholar
  254. Stalder, J., Seebeck, T., and Braun, R., 1979, Accessibility of the ribosomal genes to micrococcal nuclease in Physarum polycephalum, Biochim. Biophys. Acta 561: 452.CrossRefGoogle Scholar
  255. Stalder, J., Larsen, A., Engel, J. D., Dolan, M., Groudine, M., and Weintraub, H., 1980a, Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I, Cell 20: 451.PubMedCrossRefGoogle Scholar
  256. Stalder, J., Groudine, M., Dodgson, J. B., Engel, J. D., and Weintraub, H., 19806, Hb switching in chickens, Cell 19: 973.Google Scholar
  257. Steggles, A. W., Spelsberg, T. C., Glasser, S. R., and O’Malley, B. W., 1971, Soluble complexes between steroid hormones and target-tissue receptors bind specifically to target-tissue chromatin, Proc. Natl. Acad. Sci. U.S.A. 68: 1479.PubMedCrossRefGoogle Scholar
  258. Storb, U., Arp, B., and Wilson, R., 1981, The switch region associated with immunoglobulin Cu genes is DNase I hypersensitive in T lymphocytes, Nature 294: 90.PubMedCrossRefGoogle Scholar
  259. Stunnenberg, H. G., and Birnstiel, M. L., 1982, Bioassay for components regulating eukaryotic gene expression: A chromosomal factor involved in the generation of histone mRNA 3’ termini, Proc. Natl. Acad. Sci. U.S.A. 79: 6201.PubMedCrossRefGoogle Scholar
  260. Steward, F. C., Mapes, M. O., Kent, A. E., and Holsten, R. D., 1964, Growth and development of cultured plant cells, Science 143: 20.PubMedCrossRefGoogle Scholar
  261. Sullivan, D., Palacios, R., Stavnezer, J., Taylor, J. M., Faras, A. J., Kiely, M. L., Summers, N. M., Bishop, J. M., and Schimke, R. T., 1973, Synthesis of a deoxyribonucleic acid sequence complementary to ovalbumin messenger ribonucleic acid and quantification of ovalbumin genes, J. Biol. Chem. 248: 7530.PubMedGoogle Scholar
  262. Swaneck, G. E., Nordstrom, J. L., Kreuzaler, F., Tsai, M.-J., and O’Malley, B. W., 1979, Effect of estrogen on gene expression in chicken oviduct: Evidence for transcriptional control of ovalbumin gene, Proc. Natl. Acad. Scz. U.S.A. 76: 1049.CrossRefGoogle Scholar
  263. Sweet, R. W., Chao, M. V., and Axel, R., 1982, The structure of the thymidine kinase gene promoter: Nuclease hypersensitivity correlates with expression, Cell 31: 347.PubMedCrossRefGoogle Scholar
  264. Tata, J. R., and Smith, D. F., 1979, Vitellogenesis: A versatile model for hormonal regulation of gene expression, Recent Prog. Horm. Res. 35: 47.PubMedGoogle Scholar
  265. Thoma, F., Koller, T., and Klug, A., 1979, Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J. Cell Biol. 83: 403.PubMedCrossRefGoogle Scholar
  266. Thrall, C. L., and Spelsberg, T. C., 1983, Factors affecting the binding of the chick oviduct progesteronereceptor to DNA: Evidence that DNA alone is not the nuclear acceptor site, Biochemistry 19: 4130.CrossRefGoogle Scholar
  267. Tobin, A. J., 1979, Evaluating the contribution of posttranscriptional processing to differential gene expression, Den. Biol. 68: 47.CrossRefGoogle Scholar
  268. Tomkins, G. M., 1975, The metabolic code, Science 189: 760.PubMedCrossRefGoogle Scholar
  269. Toole, J. J., Hastie, N. D., and Held, W. A., 1979, An abundant androgen-regulated mRNA in the mouse kidney, Cell 17: 441.PubMedCrossRefGoogle Scholar
  270. Tosi, L., Granieri, A., and Scarano, E., 1972, Enzymatic DNA modifications in isolated nuclei from developing sea urchin embryos, Exp. Cell Res. 72: 257.PubMedCrossRefGoogle Scholar
  271. Tsai, S.-Y., Roop, D. R., Tsai, M.-J., Stein, J. P., Means, A. R., and O’Malley, B. W., 1978, Effect of estrogen on gene expression in the chick oviduct. Regulation of the ovomucoid gene, Biochemistry 17: 5773.PubMedCrossRefGoogle Scholar
  272. Tsujimoto, Y., and Suzuki, Y., 1979, Structural analysis of the fibroin gene at the 5’ end and its surrounding regions, Cell 16: 425.PubMedCrossRefGoogle Scholar
  273. Ucker, D. S., Ross, S. R., and Yamamoto, K. R., 1981, Mammary tumor virus DNA contains sequences required for its hormone-regulated transcription, Cell 27: 257.PubMedCrossRefGoogle Scholar
  274. Vanderbilt, J. N., Bloom, K. S., and Anderson, J. N., 1982, Endogenous nuclease: Properties and effects on transcribed genes in chromatin, J. Biol. Chem. 257: 13009.PubMedGoogle Scholar
  275. van der Ploeg, L. H. T., and Flavell, R. A., 1980, DNA methylation in the human 4-globin locus in erythroid and nonerythroid tissues, Cell 19: 947.PubMedCrossRefGoogle Scholar
  276. Vedeckis, W. V., Schrader, W. T., and O’Malley, B. W., 1979, Structural relationships between the chick oviduct progesterone receptor A and B proteins, Ada. Exp. Med. Biol. 117: 309.CrossRefGoogle Scholar
  277. Vogelstein, B., Pardoll, D. M., and Coffey, D. S., 1980, Supercoiled loops and eucaryotic DNA replication, Cell 22: 79.PubMedCrossRefGoogle Scholar
  278. Wahli, W., and Dawid, I. B., 1980, Isolation of two closely related vitellogenin genes, including their flanking regions, from a Xenopus laevis gene library, Proc. Natl. Acad. Scz. U.S.A. 77: 1437.CrossRefGoogle Scholar
  279. Wahli, W., Wyler, T., Weber, R., and Ryffel, G. U., 1976, Size, complexity and abundance of a specific poly(A)-containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen, Eur. J. Biochem. 66: 457.PubMedCrossRefGoogle Scholar
  280. Wasserman, W. J., and Smith, L. D., 1978, Oocyte maturation in nonmammalian vertebrates, in: The Vertebrate Ovary ( R. E. Jones, ed.), pp. 443–468, Plenum Press, New York.Google Scholar
  281. Wasylyk, B., and Chambon, P., 1979, Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro, Eur. J. Bzochem. 98: 317.CrossRefGoogle Scholar
  282. Wasylyk, B., and Chambon, P., 1980, Studies on the mechanism of transcription of nucleosomal complexes, Eur. J. Biochem. 103: 219.PubMedCrossRefGoogle Scholar
  283. Wasylyk, B., Thevenin, G., Oudet, P., and Chambon, P., 1979, Transcription of in vitro assembled chromatin by Escherichia coli RNA polymerase, J. Mol. Biol. 128: 411.PubMedCrossRefGoogle Scholar
  284. Wasylyk, B., Kédinger, C., Corden, J., Brison, O., and Chambon, P., 1980, Specific in vitro initiation of transcription on conalbumin and ovalbumin genes and comparison with adenovirus-2 early and late genes, Nature 285: 367.PubMedCrossRefGoogle Scholar
  285. Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193: 848.PubMedCrossRefGoogle Scholar
  286. Weintraub, H., Worcel, A., and Alberts, B., 1976, A model for chromatin based upon two symmetrically paired half-nucleosomes, Cell 9: 409.PubMedCrossRefGoogle Scholar
  287. Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M., and Grainger, R. M., 1978, The generation and propagation of variegated chromosome structures, Cold Spring Harbor Symp. Quant. Btol. 42: 401.CrossRefGoogle Scholar
  288. Weintraub, H., Larsen, A., and Groudine, M., 1981, a-Globin-gene switching during the development of chicken embryos: Expression and chromosome structure, Cell 24: 333.Google Scholar
  289. Weintraub, H., Beug, H., Groudine, M., and Graf, T., 1982, Temperature-sensitive changes in the structures of globin chromatin in lines of red cell precursors transformed by tsAEV virus, Cell 28: 931.PubMedCrossRefGoogle Scholar
  290. Weisbrod, S. T., 1982a, Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography, Nucleic Acids Res. 10: 2017.PubMedCrossRefGoogle Scholar
  291. Weisbrod, S., 1982b, Active chromatin, Nature 297: 289.PubMedCrossRefGoogle Scholar
  292. Weisbrod, S., and Weintraub, H., 1979, Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin, Proc. Natl. Acad. Sci. U.S.A. 76: 630.PubMedCrossRefGoogle Scholar
  293. Weisbrod, S., and Weintraub, H., 1981, Isolation of actively transcribed nucleosomes using immobilized HMG 14 and 17 and analysis of a-6 chromatin, Cell 23: 391.PubMedCrossRefGoogle Scholar
  294. Weisbrod, S., Groudine, M., and Weintraub, H., 1980, Interaction of HMG 14 and 17 with actively transcribed genes, Cell 19: 289.PubMedCrossRefGoogle Scholar
  295. Weisbrod, S., Wickens, M. P., Whytock, S., and Gurdon, J. B., 1982, Active chromatin oocytes injected with somatic cell nuclei or cloned DNA, Dev. Biol. 94: 216.PubMedCrossRefGoogle Scholar
  296. Wensink, P. C., Finnegan, D. J., Donelson, J. E., and Hogness, D. S., 1974, A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster, Cell 3: 315.CrossRefGoogle Scholar
  297. Wickens, M. P., Woo, S., O’Malley, B. W., and Gurdon, J. B., 1980, Expression of a chicken chromosomal ovalbumin gene injected into frog oocyte nuclei, Nature 285: 628.PubMedCrossRefGoogle Scholar
  298. Wieland, S. J., and Fox, T. O., 1979, Putative androgen receptors distinguished in wild-type and testicular-feminized (Tfm) mice, Cell 17: 781.PubMedCrossRefGoogle Scholar
  299. Wiskocil, R., Bensky, P., Dower, W., Goldberger, R. F., Gordon, J. I., and Deeley, R. G., 1980, Coordinate regulation of two estrogen-dependent genes in avian liver, Proc. Natl. Acad. Sci. U.S.A. 77: 4474.PubMedCrossRefGoogle Scholar
  300. Wold, B. J., Klein, W. H., Hough-Evans, B. R., Britten, R. J., and Davidson, E. H., 1978, Sea urchin embryo mRNA sequences expressed in the nuclear RNA of adult tissues, Cell 14: 941.PubMedCrossRefGoogle Scholar
  301. Woo, S. L. C., Beattie, W. G., Catterall, J. F., Dugaiczyk, A., Staden, R., Brownlee, G. G., and O’Malley, B. W., 1981, Complete nucleotide sequence of the chicken chromosomal ovalbumin gene and its biological significance, Biochemistry 20: 6437.PubMedCrossRefGoogle Scholar
  302. Wu, C., 1980, The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNAse I, Nature 286: 854.PubMedCrossRefGoogle Scholar
  303. Wu, C., and Gilbert, W., 1981, Tissue-specific exposure of chromatin structure at the 5’ terminus of the rat preproinsulin II gene, Proc. Natl. Acad. Sci. U.S.A. 78: 1577.PubMedCrossRefGoogle Scholar
  304. Wu, C., Wong, Y.-C., and Elgin, S. C. R., 1979, The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity, Cell 16: 807.PubMedCrossRefGoogle Scholar
  305. Wu, G.-J., 1978, Adenovirus DNA-directed transcription of 5.5 S RNA In vitro, Proc. Natl. Acad. Sci. U.S.A. 75: 2175.CrossRefGoogle Scholar
  306. Yamamoto, K. R., and Alberts, B., 1975, The interaction of estradiol-receptor protein with the genome: An argument for the existence of undetected specific sites, Cell 4: 301.PubMedCrossRefGoogle Scholar
  307. Yamamoto, K. R., and Alberts, B. M., 1976, Steroid receptors: Elements for modulation of eukaryotic transcription, Annu. Rev. Biochem. 45: 721.PubMedCrossRefGoogle Scholar
  308. Yamamoto, K. R., Stallcup, M. R., Ring, J., and Ringold, G. M., 1978, Mammary tumor virus DNA: A glucocorticoid-responsive transposable element, Cold Spring Harbor Symp. Quant. Biol. 42: 625.PubMedCrossRefGoogle Scholar
  309. Yamamoto, K. R., Payvar, F., Firestone, G. L., Maler, B. A., Wrange, O., Carlstedt-Duke, J., Gustafsson, J.-A., and Chandler, V. L., 1983, Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro, Cold Spring Harbor Symp. Quant. Btol. 47: 977.Google Scholar
  310. Young, N. S., Benz, E. J., Jr., Kantor, J. A., Kretschmer, P., and Nienhuis, A. W., 1978, Hemoglobin switching in sheep: Only the y gene is in the active conformation in fetal liver but all the ß and y genes are in the active conformation in bone marrow, Proc. Natl. Acad. Sci. U.S.A. 75: 5884.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • John N. Anderson
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations