Advertisement

Activation of Transcription by the Cyclic AMP Receptor Protein

  • Benoit De Crombrugghe
  • Stephen Busby
  • Henri Buc

Abstract

Cyclic AMP (cAMP) serves a central role in controlling the catabolic activity of both prokaryotic and eukaryotic cells. In bacteria the effects of cAMP are mediated by the cAMP receptor protein (CRP or CAP). Our aim in this article is to address the question: How does CRP activate transcription in bacterial cells? A detailed examination of the mode of action of CRP should help us understand better the mechanisms which govern the activation of genes in prokaryotes, and may also provide a conceptual framework in discussions on the role of activators of transcription in eukaryotes (e.g., enhancing sequences, steroid hormones).

Keywords

cAMP Receptor Protein Catabolite Activator Protein Galactose Operon cAMP Binding Domain Catabolite Gene Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, K., Beyreuther, K., Fanning, E., Geisler, N., Gronenborn, B., Klemm, A., Muller-Hill, B., Pfahl, M., and Schmitz, A., 1972, How lac repressor binds to DNA, Nature 237: 322.PubMedCrossRefGoogle Scholar
  2. Aiba, H., 1983, Autoregulation of the E. coli crp gene: CRP is a transcriptional repressor for its own gene, Cell 32: 141.PubMedCrossRefGoogle Scholar
  3. Aiba, H., and Krakow, J., 1981, Isolation and characterisation of the amino carboxy proximal fragments of the adenosine cyclic 3’,5’-phosphate receptor protein of Escherichia colt, Biochemistry 20: 4774.PubMedCrossRefGoogle Scholar
  4. Aiba, H., Adhya, S., and de Crombrugghe, B., 1981, Evidence for two functional gal promoters in intact Esch-erichia coli cells, J. Biol. Chem. 256: 1 1905.Google Scholar
  5. Aiba, H., Fujimoto, S., and Ozaki, N., 1982, Molecular cloning and nucleotide sequencing of the gene for the E. coli cAMP receptor protein, Nucleic Acids Res. 10: 1345.PubMedCrossRefGoogle Scholar
  6. Anderson, W. B., Schneider, A. B., Emmer, M., Perlman, R. L., and Pastan, I., 1971, Purification and properties of the cyclic adenosine 3’,5’-monophosphate-dependent gene transcription in Escherichia coli, J. Biol. Chem. 246: 5929.Google Scholar
  7. Anderson, W. B., Perlman, R. L., and Pastan, I., 1972, Effect of adenosine 3’,5’-monophosphate analogues on the activity of the cyclic adenosine 3’,5’-monophosphate receptor in Escherichia cola, J. Biol. Chem. 247: 2712.Google Scholar
  8. Anderson, W. F., Ohlendorf, D. H., Takeda, Y., and Matthews, B., 1981, Structure of the Cro repressor from bacteriophage y and its interaction with DNA, Nature 290: 754.PubMedCrossRefGoogle Scholar
  9. Anderson, W. F., Takeda, Y., Ohlendorf, D., and Matthews, B., 1982, Proposed a-helical supersecondary structure associated with protein-DNA recognition, J. Mol. Biol. 159: 745.PubMedCrossRefGoogle Scholar
  10. Bedouelle, H., Schmeissner, U., Hofnung, M., and Rosenberg, M., 1982, Promoters of the maIEFG and malKlamB operons in Escherichia coli K12, J. Mol. Biol. 161: 519.PubMedCrossRefGoogle Scholar
  11. Blazy, B., Takahashi, M., and Baudras, A., 1980, Binding of CRP* to DNA dependent RNA polymerase from E. coli: Modulation by cAMP of the interactions with free and DNA-bound hobo and core enzyme, Mol. Biol. Rep. 6: 39.PubMedCrossRefGoogle Scholar
  12. Busby, S., Aiba, H., and de Crombrugghe, B., 1982a, Mutations in the Escherichia coli galactose operon that define two promoters and the binding site of the cyclic AMP receptor protein, J. Mol. Biol. 154: 211.PubMedCrossRefGoogle Scholar
  13. Busby, S., Irani, M., and de Crombrugghe, B., 1982b, Isolation of mutant promoters in the Escherichia colt galactose operon using local mutagenesis on cloned DNA fragments, J. Mol. Biol. 154: 197.PubMedCrossRefGoogle Scholar
  14. Busby, S., and Dreyfus, M., 1983, Segment specific mutagenesis of the regulatory region in the Escherichia coli galactose operon: Isolation of mutations reducing the initiation of transcription and translation, Gene 21: 123.CrossRefGoogle Scholar
  15. Busby, S., Kotlarz, D., and Buc, H., 1983, Deletion mutagenesis of the Escherichia coli galactose operon promoter region, J. Mol. Biol. 167: 259.Google Scholar
  16. Casadaban, M., 1976, Regulation of the regulatory gene for the arabinose pathway, araC, J. Mol. Biol. 104: 557.PubMedCrossRefGoogle Scholar
  17. Chamberlin, M., 1974, The selectivity of transcription, Annu. Rev. Biochem. 43: 721.PubMedCrossRefGoogle Scholar
  18. Chang, J. J., Dubochet, J., Baudras, A., Blazy, B., and Takahashi, M., 1981, Electron microscope observation of a fibre structure formed by non-specific binding of cAMP receptor protein to DNA, J. Mol. Biol. 150: 435.PubMedCrossRefGoogle Scholar
  19. Chapon, C., 1982a, Expression of malT, the regulator gene of the maltose regulon in Escherichia coli, is limited both by transcription and translation, EMBO J. 1: 369.Google Scholar
  20. Chapon, C., 1982b, Role of catabolite activator protein in the maltose regulon of Escherichia coli, J. Bacterzol. 150: 722.Google Scholar
  21. Cossart, P., and Gicquel-Sanzey, B., 1982, Cloning and sequence of the CRP gene of Escherichia coli K12, Nucleic Acids Res. 10: 1363.PubMedCrossRefGoogle Scholar
  22. Crothers, D., and Fried, M., 1983, Transmission of long range effects in DNA, Cold Spring Harbor Symp. Quant. Biol. (in press).Google Scholar
  23. Debarbouille, M., and Schwartz, M., 1979, The use of gene fusions to study the expression of malT, the positive regulator of the maltose region, J. Mol. Biol. 132: 521.PubMedCrossRefGoogle Scholar
  24. de Crombrugghe, B., and Pastan, I., 1978, Cyclic AMP, the cyclic AMP receptor protein and their dual control of the galactose operon, in: The Operon (J. Miller and W. Reznikoff, eds.) pp. 303–324, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  25. de Crombrugghe, B., Chen, B., Anderson, W., Nissley, P., Gottesman, M., and Pastan, I., 1971a, lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription, Nat. New Biol. 231: 139.Google Scholar
  26. de Crombrugghe, B., Chen, B., Gottesman, M., Pastan, I., Varmus, H., Emmer, M., and Perlman, R., 1971 b,Regulation of the mRNA synthesis in a soluble cell-free system, Nat. New Biol. 230: 37.Google Scholar
  27. de Crombrugghe, B., Pastan, I., Shaw, W., and Rosner, J., 1973, Stimulation by cyclic AMP and ppGpp of chloramphenicol acetyl transferase synthesis, Nat. New Biol. 241: 237.PubMedGoogle Scholar
  28. Deeley, M. C., and Yanofsky, C., 1982, Transcription initiation at the tryptophanase promoter of E. coli K12, J. Bacteriol. 151: 942.Google Scholar
  29. Dickson, R., Abelson, J., Johnson, R., Reznikoff, W., and Barnes, W., 1977, Nucleotide sequence changes produced by mutations in the lac promoter of Escherichia coli, J. Mol. Biol. 111: 65.PubMedCrossRefGoogle Scholar
  30. Ebright, R., 1982, Sequence homologies in the DNA of six sites known to bind to the catabolite gene activator protein of Escherichia coli, in: Molecular Structure and Biological Activity ( J. Griffen and H. Duax, eds.), pp. 91–100, Elsevier, New York.Google Scholar
  31. Eilen, E., and Krakow, J., 1977, Cyclic AMP mediated intersubunit disulphide crosslinking of the cyclic AMP receptor protein of Escherichia coli, J. Mol. Bzol. 114: 47.CrossRefGoogle Scholar
  32. Eilen, E., Pampeno, C., and Krakow, J. S., 1978, Production and properties of the a core derived from the cyclic adenosine monophosphate receptor protein of Escherichia coli, Biochemistry 17: 2469.PubMedCrossRefGoogle Scholar
  33. Englesberg, E., 1971, Regulation in the L-arabinose system, in: Metabolic Pathways: Metabolic Regulation,Vol. 1 ( H. Vogel, ed.), p. 257, Academic Press, New York.Google Scholar
  34. Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet. 8: 219.CrossRefGoogle Scholar
  35. Epstein, W., Rothman-Denes, L. B., and Hesse, J., 1975, Adenosine 3’,5’-cyclic monophosphate as mediator of catabolite repression in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 72: 2300.PubMedCrossRefGoogle Scholar
  36. Eron, L., and Block, R., 1971, Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 68: 1828.PubMedCrossRefGoogle Scholar
  37. Friden, P., Newman, T., and Freundlich, M., 1982, Nucleotide sequence of the ilvB promoter-regulatory region: A biosynthetic operon controlled by attenuation and cyclic AMP, Proc. Natl. Acad. Sci. U.S.A. 79: 6156.PubMedCrossRefGoogle Scholar
  38. Fried, M., and Crothers, D., 1981, Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis, Nucleic Acids Res. 9: 6505.PubMedCrossRefGoogle Scholar
  39. Fried, M., and Crothers, D., 1983, CAP and RNA polymerase interactions with the lac promoter: Binding stoichiometry and longer range effects, Nucleic Acids Res. 11: 141.PubMedCrossRefGoogle Scholar
  40. Fried, M., Wu, H.-M., and Crothers, D., 1983, CAP binding to B and Z forms of DNA (in press).Google Scholar
  41. Garner, M., and Revzin, A., 1981, A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: Applications to components of the Escherichia coli lactose operon regulatory region,Nucleic Acids Res. 9: 3047.Google Scholar
  42. Garner, M., and Revzin, A., 1982, Stoichiometry of catabolite activator protein adenosine cyclic 3’,5’-monophosphate interactions at the lac promoter of Escherichia coli, Biochemistry 21: 6032.PubMedCrossRefGoogle Scholar
  43. Gicquel-Sanzey, B., and Cossart, P., 1982, Homologies between different procaryotic DNA-binding regulatory proteins and between their sites of action, EMBO J. 1: 591.Google Scholar
  44. Guidi-Rontani, C., Danchin, A., and Ullmann, A., 1980, Catabolite repression in Escherichia cols mutants lacking cyclic AMP receptor protein, Proc. Natl. Acad. Sci. U.S.A. 77: 5799.PubMedCrossRefGoogle Scholar
  45. Hawley, D., 1982, Control of transcription initiation frequency from the Tg and TRM promoters of bacteriophage and lambda, Ph.D. Thesis, Harvard University.Google Scholar
  46. Hawley, D., and McClure, W. R., 1982, Mechanism of activation of transcription initiation from the y PRM promoter, J. Mol. Biol. 157: 493.PubMedCrossRefGoogle Scholar
  47. Hawley, D. K., Malan, T. P., Mulligan, M., and McClure, W., 1982, Intermediates on the pathway to open complex formation, in: Promoters: Structure and Function (R. Rodriguez and M. Chamberlin, eds.),pp. 54–68, Praeger, New York.Google Scholar
  48. Hirsch, J., and Schleif, R., 1977, The araC promoter: Transcription, mapping and interaction with the araBAD promoter, Cell 11: 545.CrossRefGoogle Scholar
  49. Hofnung, M., Schwartz, M., and Hatfield, D., 1971, Complementation studies in the maltose region of the Escherichia coli K12 genetic map, J. Mol. Biol. 61: 681.PubMedCrossRefGoogle Scholar
  50. Hopkins, J., 1974, A new class of promoter mutations in the lactose operon of Escherichia cols, J. Mol. Biol. 87: 715.PubMedCrossRefGoogle Scholar
  51. Johnston, D. E., and McClure, W. R., 1976, Abortive initiation of in vitro RNA synthesis on bacteriophage y DNA, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), pp. 413–428, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  52. Kolb, A., and Buc, H., 1982, Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res. 10: 473.PubMedCrossRefGoogle Scholar
  53. Kolb, A., Busby, S., Herbert, M., Kotlarz, D., and Buc, H., 1983, Comparison of the binding site for the Escherichia coli cAMP receptor protein at the lactose and galactose promoters, EMBO J. 2: 217.Google Scholar
  54. Kosiba, B., and Schleif, R., 1982, Arabinose inducible promoter from Escherichia cols: Its cloning from chro-mosomal DNA, identification as the araFG promoter, and sequence, J. Mol. Biol. 156: 53.PubMedCrossRefGoogle Scholar
  55. Krakow, J., 1975, Cyclic adenosine monophosphate receptor: Effect of cyclic AMP analogs on DNA binding and proteolytis inactivation, Biochim. Biophys. Acta 383: 345.PubMedCrossRefGoogle Scholar
  56. Krakow, J., and Pastan, I., 1973, Cyclic adenosine monophosphate receptor: Loss of cAMP-dependent DNA binding after proteolysis in the presence of cyclic adenosine monophosphate, Proc. Natl. Acad. Sci. U.S.A. 70: 2529.PubMedCrossRefGoogle Scholar
  57. Kumar, S. A., Murthy, N. S., and Krakow, J. S., 1980, Ligand-induced change in the radius of gyration of cAMP receptor protein from E. coli, FEBS Lett. 109: 121.PubMedCrossRefGoogle Scholar
  58. Lee, N., 1978, Molecular aspects of ara regulation, in: The Operon ( J. Miller and W. Reznikoff, eds.), pp. 389–409, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  59. Lee, N., Geilow, W. O., and Wallace, R. G., 1981, The mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and Pimp, in the L-arabinose operon regulatory region of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 78: 752.PubMedCrossRefGoogle Scholar
  60. Le Grice, S., and Matzura, H., 1980, Localization of the transcription initiation site of the chloramphenicol resistance gene on plasmid pAC184, FEBS Lett. 110: 11.CrossRefGoogle Scholar
  61. Le Grice, S., and Matzura, H., 1981, Binding of RNA polymerase and the catabolite gene activator protein within the cat promoter in Escherichia coli, J. Mol. Biol. 150: 185.PubMedCrossRefGoogle Scholar
  62. Le Grice, S., Matzura, H., Marcoli, R., Iida, S., and Bickle, T., 1982, The catabolite sensitive promoter for the chloramphenicol acetylase transferase gene is preceded by two binding sites for the catabolite gene activator protein, J. Bacteriol. 150: 312.PubMedGoogle Scholar
  63. Lis, J., and Schleif, R., 1973, Different cyclic AMP requirements for induction of the arabinose and lactose operons of Escherichia coli, J. Mol. Biol. 79: 149.PubMedCrossRefGoogle Scholar
  64. Majors, J., 1975, Specific binding of CAP factor to lac promoter DNA, Nature 256: 672.PubMedCrossRefGoogle Scholar
  65. Majors, J., 1977, Control of the E. coli lac operon at the molecular level, Ph.D. Thesis, Harvard University.Google Scholar
  66. Malan, T. P., 1981, Dual promoter regulation of the lactose operon, Ph.D. Thesis, Harvard University. Malan, T. P., Kolb, A., Buc, H., and McClure, W., 1983, The mechanism of cAMP-CRP activation of lac operon transcription initiation. I. Activation of the P1 promoter, personal communication.Google Scholar
  67. Mallick, U., and Herrlich, P., 1979, Regulation of synthesis of a major outer membrane protein: Cyclic AMP represses Escherichia coli protein III synthesis, Proc. Natl. Acad. Sci. U.S.A. 76: 5520.PubMedCrossRefGoogle Scholar
  68. Matthews B., Ohlendorf, D., Anderson, W., and Takeda, Y., 1982, Stucture of the DNA binding region of lac repressor inferred from its homology with cro repressor, Proc. Natl. Acad. Sci. U.S.A. 79: 1428.PubMedCrossRefGoogle Scholar
  69. McClure, W. R., 1980, Rate-limiting steps in RAN chain initiation, Proc. Natl. Acad. Sci. U.S.A. 77: 5634.PubMedCrossRefGoogle Scholar
  70. McClure, W. R., and Hawley, D. K., 1982, Hierarchies of promoter recognition displayed by E. coli RNA polymerase, in: Mobility and Recognition in Cell Bzology (H. Sund and C. Veeger, eds.), pp. 317-333, Walter de Gruyter, Berlin.Google Scholar
  71. McClure, W. R., Hawley, D. K., and Malan, T. P., 1982, The mechanism of RNA polymerase activation on the X PRM and lac P + promoters, in: Promoters: Structure and Function (R. Rodriguez and M. Chamberlin, eds.), pp. 111-120, Praeger Press, New York.Google Scholar
  72. McKay, D., and Steitz, T., 1981, Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA, Nature 290: 744.PubMedCrossRefGoogle Scholar
  73. McKay, D., Weber, I., and Steitz, T., 1982, Structure of the catabolite gene activator protein at 2.9 A resolution, J. Biol. Chem. 257: 9518.PubMedGoogle Scholar
  74. Miyada, C. G., Soberon, X., Itakura, K., and Wilcox, G., 1982, The use of synthetic oligodeoxyribonucleotides to produce specific deletions in the araBAD promoter of Escherichia coli B r, Gene 17: 167.PubMedCrossRefGoogle Scholar
  75. Movva, R., Green, P., Nakamura, K., and Inouye, M., 1981, Interaction of cAMP receptor protein with the ompA gene, a gene for a major outer membrane protein in Escherichia coli, FEBS Lett. 128: 186.PubMedCrossRefGoogle Scholar
  76. Musso, R., DiLauro, R., Adhya, S., and de Crombrugghe, B., 1977, Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interdispersed promoters, Cell 12: 847.PubMedCrossRefGoogle Scholar
  77. Nissley, S. P., Anderson, W., Gallo, M., Pastan, I., and Perlman, R., 1972, The binding of cyclic adenosine monophosphate receptor to DNA, J. Biol. Chem. 247: 4264.PubMedGoogle Scholar
  78. Ogden, S., Haggerty, D., Stoner, C., Kolodrubetz, D., and Schleif, R., 1980, The Escherichia coli L-arabinose operon: Binding sites of the regulatory protein and a mechanism of positive and negative regulation, Proc. Natl. Acad. Sci. U.S.A. 77: 3346.PubMedCrossRefGoogle Scholar
  79. Pabo, C., and Lewis, M., 1982, The operator-binding domain of X repressor: Structure and DNA recognition, Nature 298: 443.PubMedCrossRefGoogle Scholar
  80. Pampeno, C., and Krakow, J., 1979, Cross-linking of the cAMP receptor protein of Escherichia coli by ophenylene dimaleimide as a probe of conformation, Biochemistry 18: 1519.PubMedCrossRefGoogle Scholar
  81. Perlman, R., and Pastan, I., 1969, Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 37: 151.PubMedCrossRefGoogle Scholar
  82. Piovant, M., and Lazdunski, C., 1975, Different cyclic adenosine 3’-5’-monophosphate requirements for induction of ß-galactosidase and tryptophanase. Effect of osmotic pressure on intracellular cyclic adenosine 3’5’-monophosphate concentrations, Biochemistry 14: 1821.PubMedCrossRefGoogle Scholar
  83. Queen, C., and Rosenberg, M., 1981, A promoter on pBR322 activated by cAMP receptor protein, Nucleic Acids Res. 9: 3365.PubMedCrossRefGoogle Scholar
  84. Raibaud, O., and Schwartz, M., 1980, Restriction map of the Escherichia coli malA region and identification of the malT product, J. Bacteriol. 143: 761.PubMedGoogle Scholar
  85. Reznikoff, W. S., and Abelson, J., 1978, The lac promoter, in: The Operon ( J. Miller and W. Reznikoff, eds.), pp. 221–243, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  86. Reznikoff, W. S., Maquat, E., Munson, R., Johnson, C., and Mandeckiz, W., 1982, The lac promoter: Analysis of structural signals for transcription, initiation, and identification of a new sequence-specific event, in: Promoters, Structure and Function (R. L. Rodriguez and M. J. Chamberlin, eds.), pp. 80–95, Praeger Press, New York.Google Scholar
  87. Riggs, A. D., Reiness, G., and Zubay, G., 1971, Purification and DNA-binding properties of the catabolite gene activator protein, Proc. Natl. Acad. Sci. U.S.A. 68: 1222.PubMedCrossRefGoogle Scholar
  88. Rosenberg, M., and Court, D., 1979, Regulatory sequences involved in the promotion and termination of RNA transcription, Annu. Rev. Genet. 13: 319.PubMedCrossRefGoogle Scholar
  89. Sabourin, D., and Beckwith, J., 1975, Deletion of E. coli crp genes, J. Bacteriol. 122: 338.PubMedGoogle Scholar
  90. Salemme, F. R., 1982, A model for catabolite activator protein binding to supercoiled DNA, Proc. Natl. Acad. Sci. U.S.A. 79: 5263.PubMedCrossRefGoogle Scholar
  91. Sauer, R., Yocum, R., Doolittle, R., Lewis, M., and Pabo, C., 1982, Homology among DNA binding proteins suggests use of a conserved supersecondary structure, Nature 298: 447.PubMedCrossRefGoogle Scholar
  92. Saxe, S., and Revzin, A., 1979, Cooperative binding to DNA of catabolite activator protein of Escherichia coli, Biochemistry 18: 255.Google Scholar
  93. Schlesinger, D. H., 1978, Structural studies on the cyclic AMP receptor protein of E. coli, Fed. Proc., Fed. Am. Soc. Exp. Biol. 37: 1619.Google Scholar
  94. Schmitz, A., 1981, Cyclic AMP receptor protein interacts with lactose operator DNA, Nucleic Acids Res. 9: 277.PubMedCrossRefGoogle Scholar
  95. Schmitz, A., and Galas, D. J., 1979, The interaction of RNA polymerase and lac repressor with the lac control region, Nucleic Acids Res. 6: 111.PubMedCrossRefGoogle Scholar
  96. Schwartz, D., and Beckwith, J., 1970, Mutants missing a factor necessary for the expression of catabolite sensitive operons in E. coli, in: The Lactose Operon (J. Beckwith and D. Zipser, eds.), pp. 417-422, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  97. Shanblatt, S., and Revzin, A., 1983, Two catabolite activator protein molecules bind to the galactose promoter region of Escherichia colt in the presence of RNA polymerase, Proc. Natl. Acad. Sci. U.S.A. 80: 1594.PubMedCrossRefGoogle Scholar
  98. Siebenlist, U., Simpson, R. B., and Gilbert, W., 1980, E. coli RNA polymerase interacts homogeneously with two different promoters, Cell 20: 269.Google Scholar
  99. Silverstone, A. E., Arditti, R. R., and Magasanik, B., 1970, Catabolite insensitive revertants of lac promoter mutants, Proc. Natl. Acad. Sci. U.S.A. 66: 773.CrossRefGoogle Scholar
  100. Simpson, R., 1980, Interaction of the cAMP receptor protein with the lac promoter, Nucleic Acids Res. 8:759. Stefano, J., and Gralla, J., 1982, Spacer mutations in the lac p’ promoter, Proc. Natl. Acad. Sci. U.S.A. 79: 1069.Google Scholar
  101. Steitz, T., Ohlendorf, D., McKay, D., Anderson, W., and Matthews, J. B., 1982a, Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins, Proc. Natl. Acad. Sci. U.S.A. 79: 3097.PubMedCrossRefGoogle Scholar
  102. Steitz, T., Weber, I. T., and Matthew, J. B., 1982b, The catabolite gene activator protein: Structure, homology with other proteins, cyclic-AMP and DNA binding, in: Cold Spring Harbor Symposium on Structures of DNA, Vol. 47, p. 419–426, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  103. Takahashi, M., Blazy, B., and Baudras, A., 1979, Non-specific interactions of CRP from E. coli with native and denatured DNAs: Control of binding by cAMP and cGMP and by cation concentration, Nucleic Acids Res. 7: 1699.PubMedCrossRefGoogle Scholar
  104. Takahashi, T., Blazy, B., and Baudras, A., 1980, An equilibrium study of the cooperative binding of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate to the adenosine cyclic 3’,5’-monophosphate receptor protein from Escherichia coli, Biochemistry 19: 5124.PubMedCrossRefGoogle Scholar
  105. Takahashi, M., Blazy, B., Baudras, A., and Hillen, W., 1983, On the origin of selectivity in recognition by CRP of its specific binding site of the lactose promoter region, J. Mol. Biol. (in press).Google Scholar
  106. Taniguchi, T., and de Crombrugghe, B., 1983, Interactions of RNA polymerase and’ the cyclic AMP receptor protein on DNA of the E. coli galactose operon, Nucleic Acids Res. 11: 5165.CrossRefGoogle Scholar
  107. Taniguchi, T., O’Neill, M., and de Crombrugghe, B., 1979, Interaction site of Escherzchia coli cyclic AMP receptor protein on DNA of galactose operon promoters, Proc. Natl. Acad. Sci. U.S.A. 76: 5090.CrossRefGoogle Scholar
  108. Tsugita, A., Blazy, B., Takahashi, M., and Baudras, A., 1982, A characterization by sequencing of the terminus of the polypeptide chain of the cyclic AMP receptor protein from E. coli and the subtitisin produced N-terminal fragment, FEBS Lett. 144: 304.CrossRefGoogle Scholar
  109. Ullmann, A., and Danchin, A., 1983, Role of cyclic AMP in bacteria, Ado. Cyclzc Nucl. Res. 15 (in press). Ullmann, A., Joseph, E., and Danchin, A., 1979, Cyclic AMP as a moderation of polarity in polycistronic transcriptional units, Proc. Natl. Acad. Sci. U.S.A. 76:3194.Google Scholar
  110. Unger, B., Clore, G., Gronenborn, A., and Hillen, W., 1983, Specific DNA binding of the cyclic AMP receptor protein with the lac operon stabilizer double stranded DNA in the presence of cyclic AMP, EMBO J. 2: 289.Google Scholar
  111. Valentin-Hansen, P., 1982, Tandem CRP binding sites in the deo operon of Escherichia coli K12, EMBO J. 1: 1049.Google Scholar
  112. Valentin-Hansen, P., Aiba, H., and Schumperli, D., 1982, The structure of tandem regulatory regions in the deo operon of Escherichia coli K12, EMBO J. 1: 317.Google Scholar
  113. Varmus, H., Perlman, R., and Pastan, I., 1970, Regulation of lac transcription in E. coli by cyclic adenosine 3’,5’-monophosphate, J. Biol. Chem. 245: 6366.PubMedGoogle Scholar
  114. Wallace, R. G., Lee, N., and Fowler, A., 1980, the araC gene of Escherichia coli: Transcriptional and translational start points and complete nucleotide sequence, Gene 12: 179.Google Scholar
  115. Walter, G., Zillig, W., Palm, P., and Fuchs, R., 1967, Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase, Eur. J. Biochem. 3: 194.PubMedCrossRefGoogle Scholar
  116. Weber, I., McKay, D., and Steitz, T., 1982a, Two helix DNA binding motif of CAP found in lac repressor and gal repressor, Nucleic Acids Res. 10: 5085.PubMedCrossRefGoogle Scholar
  117. Weber, I., Takio, K., Titani, K., and Steitz, T., 1982b, The cAMP binding domains of the regulatory subunit of cAMP dependent protein kinase and of the catabolite gene activator protein are homologous, Proc. Natl. Acad. Sci. U.S.A. 79: 7679.PubMedCrossRefGoogle Scholar
  118. Wilcox, G., Meuris, P., Bass, P., and Englesberg, E., 1974, Regulation of the L-arabinose operon in vitro, J. Biol. Chem. 249: 2946.PubMedGoogle Scholar
  119. Wu, F. Y.-H., Nath, K., and Wu, C.-W., 1974, Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A fluorescent probe study, Biochemistry 13: 2567.Google Scholar
  120. Wu, C.-W., and Wu, F. Y.-H., 1974, Conformational transitions of cyclic adenosine monophosphate receptor protein of Escherichia coli. A temperature jump study, Biochemzstry 13: 257Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Benoit De Crombrugghe
    • 1
  • Stephen Busby
    • 2
  • Henri Buc
    • 2
  1. 1.Laboratory of Molecular BiologyNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Department of Molecular BiologyInstitut PasteurParisFrance

Personalised recommendations