• Sol M. Michaelson
  • James C. Lin


If biological perturbations as a result of exposure to electromagnetic energies should occur, they could be manifested by general “stress” responses characterized by functional changes in regulatory systems of the body. The main integrators of these regulatory systems appear to be the brain and central nervous system (CNS). The CNS and the hypothalamus in particular mediate the classical biological responses to factors that may impose a strain on the homeostatic mechanisms of the body.


Body Temperature Microwave Radiation Skin Temperature Heat Production Basal Metabolic Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, D. I., A. J. Harris, P. Beaconsfield, and J. M. Schroeder (1957) Changes in peripheral blood flow produced by short-wave diathermy. Arch. Phys. Med. 38: 369.Google Scholar
  2. Abramson, D. I., Y. Bell, H. Rejal, S. Tuck, C. Burnett, and C. J. Fleischer (1960) Changes in blood flow, oxygen uptake, and tissue temperatures produced by therapeutic physical agents. II. Effect of short wave diathermy. Am. J. Phys. Med. 39: 87.CrossRefGoogle Scholar
  3. Addington, C. H., C. Osborn, G. Swartz, F. P. Fischer, and Y. T. Sarkees (1959) Thermal effects of 200 megacycles (CW) irradiation as related to shape, location, and orientation in the field. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley, pp. 10–14.Google Scholar
  4. Addington, C. H., C. Osborn, G. Swartz, F. P. Fischer, R. A. Neubauer, and Y. T. Sarkees (1961) Biological effects of microwave energy at 200 Mc. In: Biological Effects of Microwave Radiation, Vol. 1, M. F. Peyton (ed.). Plenum Press, New York, p. 177.Google Scholar
  5. Adolph, E. F. (1947) Tolerance to heat and dehydration in several species of mammals Am. J. Physiol. 151: 564.Google Scholar
  6. Adolph, E. F. (1979) Look at physiological integration. Am. J. Physiol. 6: R255.Google Scholar
  7. Allen, S. J. (1975) Measurements of power absorption by human phantoms immersed in radiofrequency fields. Ann. N.Y. Acad. Sci. 247: 494.CrossRefGoogle Scholar
  8. American National Standards Institute (1973) Techniques and Instrumentation for the Measurement of Potentially Hazardous Electromagnetic Radiation at Microwave Frequencies. ANSI Publ. C95.3–1973, NY.Google Scholar
  9. Astrand, P.-O., and K. Rodahl (1970) Temperature regulation. Textbook of Work Physiology. McGraw-Hill, New York, pp. 491–536.Google Scholar
  10. Baranski, S., and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Penn.Google Scholar
  11. Bass, D. E., and A. Henschel (1956) Responses of body fluid compartments to heat and cold. Physiol. Rev. 36: 128.Google Scholar
  12. Beischer, D. E., and V. R. Reno (1974) Microwave reflection and diffraction by man. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 254–259.Google Scholar
  13. Benzinger, T. H., C. Kitzinger, and A. W. Pratt (1963) The human thermostat. In: Temperature—Its Measurement and Control in Science and Industry, Vol. 3, J. D. Hardy (ed.). Reinhold, New York, p. 637.Google Scholar
  14. Bligh, J. (1966) The thermosensitivity of the hypothalamus and thermoregulation in mammals. Biol. Rev. 41: 317.CrossRefGoogle Scholar
  15. Bligh, J. (1973) Temperature Regulation in Mammals and Other Vertebrates. North-Holland, Amsterdam.Google Scholar
  16. Bligh, J. (1979) The central neurology of mammalian thermoregulation. Neuroscience 4: 1213.CrossRefGoogle Scholar
  17. Bligh, J., and K. G. Johnson (1973) Glossary of terms for thermal physiology. J. Appl. Physiol. 35: 941.Google Scholar
  18. Boulant, J. A., and J. D. Hardy (1974) The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. (London) 240: 639.Google Scholar
  19. Boyle, A. C., H. F. Cook, and T. J. Buchanan (1950) The effects of micro-waves; a preliminary investigation. Br. J. Phys. Med. 13: 2.Google Scholar
  20. Boyle, A. C., H. F. Cook, and D. L. Woolf (1952) Further investigations into effects of microwaves. Ann. Phys. Med. 1: 3.Google Scholar
  21. Bullard, R. W. (1971) Temperature regulation. In: Physiology, 3rd edition, E. E. Selkurt (ed.). Little, Brown, Boston, p. 651.Google Scholar
  22. Cabanac, M. (1969) Plaisir ou deplaisir de la sensation thermique et homeothermie. Physiol. Behay. 4: 359.CrossRefGoogle Scholar
  23. Cabanac, M. (1971) Physiological role of pleasure. Science 173: 1103.CrossRefGoogle Scholar
  24. Carlisle, H. J. (1970) Thermal reinforcement and temperature regulation. In: Animal Psychophysics, the Design and Conduct of Sensory Experiments, W. C. Stebbins (ed.). Appleton—Century—Crofts, New York, pp. 211–229.Google Scholar
  25. Chatonnet, J., and M. Cabanac (1965) The perception of thermal comfort. Int. J. Biometeorol. 9: 183.CrossRefGoogle Scholar
  26. Cook, H. F. (1951) The dielectric behavior of some types of human tissues at microwave frequencies. Br. J. Appl. Phys. 2: 295.CrossRefGoogle Scholar
  27. Cook, H. F. (1952) A physical investigation of the heat production in human tissues when exposed to microwaves. Br. J. Appl. Phys. 3: 245.Google Scholar
  28. Corbit, J. D. (1970) Behavioral regulation of body temperature. In: Physiological and Behavioral Temperature Regulation, J. Hardy, A. P. Gagge, and J. A. J. Stolwijk (eds.). Thomas, Springfield, Ill., pp. 777–830.Google Scholar
  29. Corbit, J. D. (1973) Thermal motivation. Neurosci. Res. Program Bull. 11 (4): 317.Google Scholar
  30. Czerski, P. (1975) Microwave effects on the blood-forming system with particular reference to the lymphocyte. Ann. N.Y. Acad. Sci. 247: 232.CrossRefGoogle Scholar
  31. Czerski, P., and S. Szmigielski (1974) Microwave bioeffects, current status and concepts. In: Proc. 5th European Microwave Conference, Hamburg, pp. 348–354.Google Scholar
  32. Deichmann, W. B. (1966) Biological effects of microwave radiation of 24,000 megacycles. Arch. Toxicol. 22: 24.CrossRefGoogle Scholar
  33. Deichmann, W. B., and F. H. Stephens, Jr. (1961) Microwave radiation of 10 mW/cm2 and factors that influence biological effects at various power densities. Ind. Med. Surg. 30: 221.Google Scholar
  34. Deichmann, W. B., M. Keplinger, and E. Bernal (1959a) Relation of interrupted pulsed microwaves to biological hazards. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C Süsskind (ed.). University of California, Berkeley, p. 77.Google Scholar
  35. Deichmann, W. B., E. Bernal, and M. Keplinger (1959b) Effects of environmental temperature and air volume exchange on survival of rats exposed to microwave radiation of 24,000 megacycles. Ind. Med. Surg. 28: 535.Google Scholar
  36. Deichmann, W. B., F. H. Stephens, M. Keplinger, and K. F. Lampe (1959c) Acute effects of microwave radiation on experimental animals (24,000 Mc). J. Occup. Med. 1: 369.Google Scholar
  37. Deichmann, W. B., J. Miale, and K. Landeen (1964) Effect of microwave radiation on the hemopoietic system of the rat. Toxicol. Appl. Pharmacol. 6: 71.CrossRefGoogle Scholar
  38. England, T. S. (1950) Dielectric properties of human body for wave-length in 1–10 cm range. Nature (London) 166: 480.CrossRefGoogle Scholar
  39. Engle, J. P., J. F. Herrick, K. G. Wakim, J. H. Grindlay, and F. H. Krusen (1950) The effects of microwaves on bone and bone marrow and on adjacent tissues. Arch. Phys. Med. 31: 453.Google Scholar
  40. Fischer, E., and S. Solomon (1965) Physiological responses to heat and cold. In: Therapeutic Heat and Cold, S. Licht (ed.). E. Licht, New Haven, Conn., p. 126.Google Scholar
  41. Fukalova, P. P. (1964) The effect of short and ultrashort waves on body temperature and survival of experimental animals. In: The Biological Effect of Radio frequency Electromagnetic Fields. Institute of Work Hygiene and Occupational Diseases, AMN, SSR, Issue 2, Moscow, pp. 78–79.Google Scholar
  42. Gagge, A. P., and J. C. Stevens (1968) Thermal sensitivity and comfort. In: The Skin Senses, D. R. Kenshalo (ed.). Thomas, Springfield, Ill., p. 345.Google Scholar
  43. Gersten, J. W., K. G. Wakim, J. F. Herrick, and F. H. Krusen (1949) Effect of microwave diathermy on the peripheral circulation and on tissue temperature in man. Arch. Phys. Med. 30: 7.Google Scholar
  44. Gillis, M. F., and P. C. Walkup (1969) Studies on the effects of added endogenous heat and on heat exchanger designs. In: Proc. Artificial Heart Program Conference, R. J. Hegeli (ed.). HEW, NIH, Washington, D.C., pp. 883–892.Google Scholar
  45. Gilstrap, L. O., Jr., J. S. McNeil, L. P. Greenberg, and R. B. Spodak (1964) A Compilation of Biological Laws, Effects and Phenomena, with Associated Physical Analogs. Wright-Patterson AFB, Ohio.Google Scholar
  46. Goldman, R. F. (1983) Acclimation to heat and suggestion, by inference, for microwave radiation. In: Microwaves and Thermoregulation, E. R. Adair (ed.). Academic Press, New York.Google Scholar
  47. Gordon, Z. V. (1955) Occupational health aspects of radio-frequency electromagnetic radiation. In: Ergonomics and Physical Environmental Factors. Occupational Safety and Health Series, No. 21, International Labour Office, Geneva, p. 159.Google Scholar
  48. Gordon, Z. V. (1960) The problem of the biological action of UHF. Tr. Nii Gig. Tr. Prof. USSR 1: 5.Google Scholar
  49. Gordon, Z. V. (1966) Biological Effect of Microwaves in Occupational Hygiene. Izd. Med., Leningrad (TT 70–50087, NASA TI ’ F-633, 1970 ).Google Scholar
  50. Gordon, Z. V., and Y. A. Lobanoya (1960) The temperature reaction of animals under the influence of SHF-UHF. Tr. Nii Gig. Tr. Prof. USSR 1: 59.Google Scholar
  51. Guy, A. W. (1975) Engineering considerations and measurements. In: AGARD Lecture Series No. 78 on Radiation Hazards. AGARD Document LS-78, pp. 91–936.Google Scholar
  52. Hainsworth, F. R. (1967) Saliva spreading, activity, and body temperature regulation in the rat. Am. J. Physiol. 212: 1288.Google Scholar
  53. Hammel, H. T. (1968) Regulation of internal body temperature. Ann. Rev. Physiol. 30: 641.CrossRefGoogle Scholar
  54. Hammel, H. T., F. T. Caldwell, Jr., and R. M. Abrams (1967) Regulation of body temperature in the blue-tongued lizard. Science 156: 1260.CrossRefGoogle Scholar
  55. Hardy, J. D. (1953–1954) Control of heat loss and heat production in physiologic temperature regulation. Harvey Lect. p. 242.Google Scholar
  56. Hardy, J. D. (1961) Physiology of temperature regulation. Physiol. Rev. 41: 521.Google Scholar
  57. Hardy, J. D. (1967) Central and peripheral factors in physiological temperature regulation. In: Les concepts de Claude Bernard sur le Milieu Interieur. Masson, Paris, p. 247.Google Scholar
  58. Hastings, F. W., and L. T. Harmison (1969) Artificial Heart Program Conference, R. J. Hegyeli (ed.). HEW, NIH, Washington, D.C.Google Scholar
  59. Herrick, J. F., and F. H. Krusen (1953) Certain physiologic and pathologic effects of microwaves. Electrical Eng. 72: 239.Google Scholar
  60. Herrick, J. F., D. G. Jelatis, and G. H. Lee (1950) Dielectric properties of tissues important in microwave diathermy. Fed. Proc. 9: 60.Google Scholar
  61. Hoeft, L. O. (1965) Microwave heating, a study of the critical exposure variables for man and experimental animals. Aerosp. Med. 36: 621.Google Scholar
  62. Hori, T., and Y. Harada (1976) Responses of midbrain raphe neurons to local temperature. Pfluegers Arch. 364: 205.CrossRefGoogle Scholar
  63. Hyde, A. S., and J. J. Friedman (1968) Some effects of acute and chronic microwave irradiation of mice. In: Thermal Problems in Aerospace Medicine, J. D. Hardy (ed.). Unwin, Ltd., Old Woking, Surrey, pp. 163–175.Google Scholar
  64. Imig, C. J., and G. W. Searle (1962) Studies on Organisms Exposed to 2450 Mc-CW Microwave Irradiation. RADC-TDR-62–358, Contract AF 41 (657)113, Griffiths AFB, New York.Google Scholar
  65. Irving, I. (1966) Adaptations to cold. Sci. Am. 214: 94.CrossRefGoogle Scholar
  66. Ivanov, K. P. (1975) Temperature signalization and its processing in an organism. In: Mechanisms of Information Processing in Sensory Systems. Izdatel’stvo Nauka, Leningrad, p. 7.Google Scholar
  67. Jahns, R. (1976) Difference projections of cutaneous thermal inputs to single units of the midbrain raphe nuclei. Brain Res. 101: 355.CrossRefGoogle Scholar
  68. Kalyada, T. V. (1973) Adaptive reactions of the human body in response to radiowave irradiation. In: The Problem of Adaptation in Labor Hygiene, Y. I. Lynblina and N. A. Minkina (eds.). Moscow, p. 89.Google Scholar
  69. Kholodov, Y. A. (1966) The Effect of Electromagnetic and Magnetic Fields on the Central Nervous System. Nauka, Moscow, p. 283 (NASA TT-F-465).Google Scholar
  70. Kottke, F., D. Koza, W. Kubicek, and M. Olson (1949) Deep circulatory response to short wave diathermy and microwave diathermy in man. Arch. Phys. Med. 30: 431.Google Scholar
  71. Krusen, F. H., J. F. Herrick, U. Leden, and K. G. Wakim (1947) Microkymatotherapy: Preliminary report of experimental studies of the heating effect of microwaves (radar) in living tissues. Proc. Mayo Clin. 22: 209.Google Scholar
  72. Krusen, F. H., F. J. Kottke, and P. M. Ellwood (eds.) (1971) Handbook of Physical Medicine and Rehabilitation. Saunders, Philadelphia.Google Scholar
  73. Laties, V. G., and B. Weiss (1959) Thyroid state and working for heat in the cold. Am. J. Physiol. 197: 1028.Google Scholar
  74. Laties, V. G., and B. Weiss (1980) Behavior in the cold after acclimation. Science 131: 1891.CrossRefGoogle Scholar
  75. Leden, U. M., J. F. Herrick, K. G. Wakim, and F. H. Krusen (1947) Preliminary studies on the heating and circulating effects of microwaves (radar). Br. J. Phys. Med. 10: 177.Google Scholar
  76. Lehmann, J. F. (1971) Diathermy. In: Handbook of Physical Medicine and Rehabilitation, F. H. Krusen, F. J. Kottke, and P. M. Ellwood (eds.). Saunders, Philadelphia, p. 273.Google Scholar
  77. Lehmann, J. F. (ed.). (1982) Therapeutic Heat and Cold. Williams and Wilkins, Baltimore.Google Scholar
  78. Lehmann, J. F., A. W. Guy, V. C. Johnston, G. D. Brunner, and J. W. Bell (1962a) Comparison of relative heating patterns produced in tissues by exposure to microwave energy at frequencies of 2450 and 900 meagcycles. Arch. Phys. Med. 43: 69.Google Scholar
  79. Lehmann, J F, J. A. McMillan, G. D. Brunner, and V. C. Johnston (1962b) Heating patterns produced in specimens by microwaves of the frequency of 2456 megacycles when applied with the “A”, “B”, and “C” directors. Arch. Phys. Med. 43: 538.Google Scholar
  80. Lehmann, J. F., G. D. Brunner, J. A. McMillan, D. R. Silverman, and V. C. Johnston (1964) Modification of heating patterns produced by microwaves at the frequencies of 2456 and 900 Mc by physiologic factors in the human. Arch. Phys. Med. Rehabil. 45: 555.Google Scholar
  81. Lehmann, J. F., V. C. Johnston, J. A. McMillan, D. R. Silverman, G. D. Brunner, and L. A. Rathbun (1965) Comparison of deep heating by microwaves at frequencies of 2456 and 900 megacycles. Arch. Phys. Med. 46: 307.Google Scholar
  82. Lehmann, J. F., D. R. Silverman, B. A. Baum, N. L. Kirk, and V. C. Johnston (1966) Temperature distributions in the human thigh, produced by infrared, hot pack and microwave application. Arch. Phys. Med. Rehabil. 47: 291.Google Scholar
  83. Lehmann, J. F., A. W. Guy, J. B. Stonebridge, and B. J. de Lateur (1978) Evaluation of a therapeutic direct contact 915 MHz microwave applicator for effective deep tissue heating in humans. IEEE Trans. Microwave Theory Tech. MTT 26: 556.Google Scholar
  84. Lipton, J. M. (1968) Effects of preoptic lesions on heat-escape responding colonic temperature in the rat. Physiol. Behay. 3: 165.CrossRefGoogle Scholar
  85. Lipton, J. M., D. D. Avery, and D. R. Marotto (1970) Determinants of behavioral thermoregulation against heat: Thermal intensity and skin temperature levels. Physiol. Behay. 5: 1083.CrossRefGoogle Scholar
  86. Lobanova, Y. A. (1960) Survival and development of animals at various intensities and duration of SHF action. Tr. Nü Gig. Tr. Prof. AMN SSSR 1: 61.Google Scholar
  87. Lubin, M., G. W. Curtis, H. R. Dudley, L. E. Bird, P. F. Daley, D. G. Cogan, and J. Fricker (1960) Effects of ultrahigh frequency radiation on animals. AMA Arch. Ind. Health 21: 555.Google Scholar
  88. Marha, K., J. Musil, and H. Tuha (1968) Electromagnetic Fields and the Living Environment. State Health Publishing House, Prague (Transl. SBN 911302–13–7, San Francisco Press, 1971 ).Google Scholar
  89. Michaelson, S. M. (1970) Biological effects of microwave exposure. In: Biological Effects and Health Implications of Microwave Radiation, S. F. Cleary (ed.). Symposium Proceedings, HEW Publ. BRH/DBE 70–2, p. 35.Google Scholar
  90. Michaelson, S. M. (1974a) Effects of exposure to microwaves: Problems and perspectives. Environ. Health Perspect. 8: 133.Google Scholar
  91. Michaelson, S. M. (1974b) Thermal effects of single and repeated exposures to microwaves—A review. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, p. 1.Google Scholar
  92. Michaelson, S. M. (1983) Thermoregulation in intense microwave fields. In: Microwave and Thermoregulation, E. R. Adair (ed.). Academic Press, New York, pp. 283–295.CrossRefGoogle Scholar
  93. Michaelson, S. M., J. Howland, R. A. E. Thomson, and H. Mermagen (1959) Comparison of responses to 2800 Mc and 200 Mc microwaves or increased environmental temperature. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley.Google Scholar
  94. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1961) Physiologic aspects of microwave irradiation of mammals. Am. I. Physiol. 201: 351.Google Scholar
  95. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67–461, Griffiths AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  96. Millard, J. B. (1961) Effect of high-frequency currents and infra-red rays on the circulation of the lower limb in man. Ann. Phys. Med. 6: 45.Google Scholar
  97. Milroy, W. C., and S. M. Michaelson (1971) Biological effects of microwave radiation. Health Phys. 20: 567.CrossRefGoogle Scholar
  98. Mirutenko, V. I. (1962) Investigating local thermal effect of electromagnetic (3 cm) waves on animals. Fiziol. Zh. Akad. Nauk UKR SSR 8: 382.Google Scholar
  99. Mirutenko, V. I. (1964a) The thermal effects of a SHF electromagnetic field on animals, and some problems of SHF-field dosimetry. In: The Biological Action of Ultrasound and Super High Frequency Electromagnetic Vibrations. Nauk Dumka Akad. Nauk UKR SSR Inst. Fiziol., Kiev, p. 62.Google Scholar
  100. Mirutenko, V. I. (1964b) Effect of blood circulation on the distribution of heat, and the magnitude of the thermal effect during action of a SHF-UHF electromagnetic field on animals. Fiziol. Zh. Akad. Nauk UKR SSR 10: 641.Google Scholar
  101. Nakayama, T., H. T. Hammel, J. D. Hardy, and J. S. Eisenman (1983) Thermal stimulation of electrical activity of single units of the preoptic region. Am. J. Physiol. 204: 1122.Google Scholar
  102. Newburgh, L. H. (1949) Physiology of Heat Regulation and the Science of Clothing. Saunders, Philadelphia.Google Scholar
  103. Norman, J., C. Pegg, G. Sandberg, R. Lee, and F. Huffman (1969) Effects of intracorporeal heat and radiation on dogs. In: Proc. Artificial Heart Program Conference, R. J. Hegyeli (ed.). HEW, NIH, Washington, D.C., pp. 901–912.Google Scholar
  104. Petrov, I. R. (ed.) (1970) Influence of Microwave Radiation on the Organism of Man and Animals. Meditsina Press, Leningrad (NASA TT F-708, 1971 ).Google Scholar
  105. Phillips, R. D., E. L. Hunt, R. D. Castro, and N. W. King (1975) Thermoregulatory, metabolic and cardiovascular response of rats to microwaves. J. Appl. Physiol. 38: 630.Google Scholar
  106. Poison, P., D. C. L. Jones, A. Karp, and J. S. Krebs (1974) Mortality in Rats Exposed to CW Microwave Radiation at 0.95, 2.45, 4.54, and 7. 44 GHz. Final Technical Report, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  107. Prausnitz, S., and C. Stisskind (1959) Temperature regulation in laboratory animals irradiated with 3-cm microwaves. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley, p. 33.Google Scholar
  108. Prausnitz, S., and C Süsskind (1962) Effects of chronic microwave irradiation on mice. IRE Trans. Bio-Med. Electron. BME 9: 104.CrossRefGoogle Scholar
  109. Presman, A. S. (1968) Electromagnetic Fields and Life, Izd-vo Nauka, Moscow (Transi. Plenum Press, 1970 ).Google Scholar
  110. Rae, J. W., Jr., J. F. Herrick, K. G. Wakim, and F. H. Krusen (1949) A comparative study of temperatures produced by microwave and short wave diathermy. Arch. Phys. Med. 30: 199.Google Scholar
  111. Rawson, R. (1969) Studies of the effects of additional endogenous heat. In: Proc. Artificial Heart Program Conference, R. J. Hegyeli (ed.). HEW, NIH, Washington, D.C., pp. 893–912.Google Scholar
  112. Richardson, A. V. (1958) Review of the work conducted at the St. Louis University School of Medicine. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, pp. 169–174.Google Scholar
  113. Saito, M., and H. P. Schwan (1961) The time constants of pearl-chain formation. In: Biological Effects of Microwave Radiation, Vol. I. M. F. Peyton (ed.). Plenum Press, New York, p. 85.Google Scholar
  114. Samaras, G. M., L. R. Muroff, and G. E. Anderson (1971) Prolongation of life during high-intensity microwave exposures. IEEE Trans. Microwave Theory Tech. MTT 19: 245.CrossRefGoogle Scholar
  115. Sancetta, S. M., J. Kramer, and E. Husni (1958) The effects of “dry” heat on the circulation of man. I. General hemodynamics. Am. Heart J. 56: 212.CrossRefGoogle Scholar
  116. Satinoff, E. (1964) Behavioral thermoregulation in response to local cooling of the rat brain. Am. J. Physiol. 206: 1389.Google Scholar
  117. Schrot, J., and T. D. Hawkins (1974) Lethal effects of 3000 MHz radiation on the rat. Radiat. Res. 59: 504.CrossRefGoogle Scholar
  118. Schwan, H. P. (1957) Electrical properties of tissues and cell suspension. Adv. Biol. Med. Phys. 5: 147.Google Scholar
  119. Schwan, H. P. (1958) Biophysics of diathermy. In: Therapeutic Heat, S. H. Licht (ed.). E. Licht, New Haven, Conn., pp. 55–115.Google Scholar
  120. Schwan, H. P. (1960) Characteristics of absorption and energy transfer of microwaves and ultrasound in tissue. In: Medical Physics, Vol. 3, O. Glasser (ed.). Year Book Medical, Chicago, p. 1.Google Scholar
  121. Schwan, H. P., and E. Carstensen (1953) Application of electric and acoustic impedance measuring techniques to problems in diathermy. Am. Inst. Electrical Eng. Trans. 72: 106.Google Scholar
  122. Schwan, H. P., and G. M. Piersol (1954) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part I. Biophysical aspects. Am. J. Phys. Med. 33: 371.Google Scholar
  123. Schwan, H. P., and G. M. Piersol (1955) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part H. Physiological and clinical aspects. Am. J. Phys. Med. 34: 425.Google Scholar
  124. Searle, G. W., R. W. Dahlen, C. J. Imig, C. C. Wunder, J. D. Thomson, J. A. Thomas, and W. J. Moressi (1961) Effects of 2450 Mc microwaves in dogs, rats and larvae of the common fruit fly. In: Biological Effects of Microwave Radiation, Vol. I, M. F. Peyton (ed.). Plenum Press, New York, p. 187.Google Scholar
  125. Selye, H. (1950) Stress. Acta, Inc., Montreal.Google Scholar
  126. Semenov, A. I. (1965) The effect of UHF on the temperature or rabbit femoral tissues. Byull. Eksp. Biol. Med. 60: 64.CrossRefGoogle Scholar
  127. Sher, L. D., E. Kresch, and H. P. Schwan (1970) On the possibility of nonthermal biological effects of pulsed electromagnetic radiation. Biophys. J. 10: 970.CrossRefGoogle Scholar
  128. Silverman, D. R., and L. Pendleton (1968) A comparison of the effects of continuous and pulsed short-wave diathermy on peripheral circulation. Arch. Phys. Med. 4: 429.Google Scholar
  129. Solov’ev, N. A. (1963) Responses of the entire living organism to an electromagnetic field. Tr. Vses. Nauchno Issled. Inst. Med. Instrum. Oborudovaniya 3: 120.Google Scholar
  130. Stevens, J. C., and S. S. Stevens (1980) Warmth and cold: Dynamics of sensory intensity. J. Exp. Psychol. 60: 183.CrossRefGoogle Scholar
  131. Stolwijk, J. A. J. (1975) Physiological response to whole body and regional hyperthermia. In: Proceedings of the International Symposium on Cancer Therapy by Hyperthermia and Radiation. Washington, D.C., pp. 28–30.Google Scholar
  132. Stolwijk, J. A. J. (1977) Responses to the thermal environment. Fed. Proc. 36: 1655.Google Scholar
  133. Subbota, A. G., and Z. B. Svetlova (1972) Labor Hygiene and the Biological Action of Radio-Frequency Electromagnetic Waves. Moscow, p. 13.Google Scholar
  134. Süsskind, C. (1958) Biological Effects of Microwave Radiations. Ann. Sci. Rep., Univ. California, Inst. Eng. Res., Ser. 60(205), RADC-TR-298.Google Scholar
  135. Tyagin, N. V. (1957) Study of the thermal effect of SHF—UHF electromagnetic fields on various animals using the thermometric method. Tr. Voen. Med. Akad. Kirov 73: 9.Google Scholar
  136. Weiss, B., and V. G. Laties (1960) Magnitude of reinforcement as a variable in thermoregulatory behavior. J. Comp. Physiol. Psychol. 53: 603.CrossRefGoogle Scholar
  137. Weiss, B., and V. G. Laties (1961) Behavioral thermoregulation. Science 133: 1338.CrossRefGoogle Scholar
  138. Winslow, C. E. A., L. P. Herrington, and A. P. Gagge (1937) Relationship between atmospheric conditions, physiological reactions and sensations of pleasantness. Am. J. Hyg. 26: 103.Google Scholar
  139. Wise, C. W., B. Castlemen, and A. L. Watkins (1949) Effects of diathermy on bone growth in the albino rat. J. Bone Joint Surg. 31A: 487.Google Scholar
  140. Worden, R. E., J. F. Herrick, K. G. Wakim, and F. H. Krusen (1948) The heating effects of microwaves with and without ischemia. Arch. Phys. Med. 29: 751.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations