Advertisement

Propagation and Absorption in Tissue Media

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

The propagation of electromagnetic waves in biological materials is governed by the dielectric constant, conductivity, source configuration, and the geometrical factors that describe the tissue structure. These parameters also determine the quantity of energy a given biological body extracts from the propagating wave. When the radius of curvature of the body surface is large compared to the wavelength and beam width of the impinging radiation, planar tissue models may be used to estimate the absorbed energy and its distribution inside the body. Otherwise, the absorbed energy will be dictated by the size of the body, the curvature of its surface, the ratio of body size to wavelength, and the source characteristics.

Keywords

Plane Wave Tissue Medium Prolate Spheroid Microwave Theory Tech Biological Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S. J., and W. D. Hurt (1979) Calorimetric measurements of microwave energy absorption by mice after simultaneous exposure of 18 animals Radio Sci. 14: 1S.CrossRefGoogle Scholar
  2. Asano, A., and G. Yamamoto (1975) Light scattering by spheroidal particles. Appl. Opt. 14: 29.Google Scholar
  3. Barber, P. (1977a) Electromagnetic power absorption in prolate spheroidal models of man and animals at resonance. IEEE Trans. Biomed. Eng. BME-24: 513.CrossRefGoogle Scholar
  4. Barber, P. W. (1977b) Resonance electromagnetic absorption by nonspherical dielectric objects. IEEE Trans. Microwave Theory Tech. MTT-25: 373.CrossRefGoogle Scholar
  5. Barber, P. W., and C. Yeh (1975) Scattering of electromagnetic waves by arbitrary shaped dielectric bodies. Appl. Opt. 14: 2864.CrossRefGoogle Scholar
  6. Borup, D. T., and O. P. Gandhi (1984) Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies. IEEE Trans. Microwave Theory Tech. MTT-32: 355.CrossRefGoogle Scholar
  7. Chatterjee, I., M. J. Hagman, and O. P. Gandhi (1980) Electromagnetic energy deposition in an inhomogeneous block model for near-field irradiation conditions. IEEE Trans. Microwave Theory Tech. MTT-28: 1452.CrossRefGoogle Scholar
  8. Chen, K. M. (1980) Interaction of electromagnetic fields with biological bodies. In: Research Topics in Electromagnetic Theory, J. A. Kong (ed.). Wiley, New York, p. 290.Google Scholar
  9. Chen, K. M., and B. S. Guru (1977) Internal EM field and absorbed power density in human torsos induced by 1–500 MHz EM waves. IEEE Trans. Microwave Theory Tech. MTT-25: 746.Google Scholar
  10. Chou, C. K., A. W. Guy, L. E. Borneman, L. L. Kunz, and P. Kramar (1983) Chronic exposure of rabbits to 0.5 and 5 mW/cm2 2450-MHz CW microwave radiation. Bioelectromagnetics 4: 63.CrossRefGoogle Scholar
  11. Conover, D. L., W. E. Murray, Jr., E. D. Foley, J. M. Lary, and W. H. Parr (1980) Measurement of electric and magnetic field strengths from industrial radio frequency (6–38 MHz) plastic sealers. Proc. IEEE 68: 17.CrossRefGoogle Scholar
  12. Deford, J. F., O. P. Gandhi, and M. J. Hagman (1983) Moment-method solutions and SAR calculations for inhomogeneous models of man with large number of cells. IEEE Trans. Microwave Theory Tech. MTT-31: 848.CrossRefGoogle Scholar
  13. de Lorge, J. O. (1984) Operant behavior and colonic temperature of Macaca mulatta exposed to RF fields at and above resonance frequencies. Biolectromagnetics 5: 233.CrossRefGoogle Scholar
  14. Dumey, C. H. (1980) Electromagnetic dosimetry for models of humans and animals: A review of theoretical and numerical techniques. Proc. IEEE 68: 22.Google Scholar
  15. Durney, C. H., C. C. Johnson, and H. Massoudi (1975) Long wave-length analysis of plane wave irradiation of a prolate spheroidal model of man. IEEE Trans. Microwave Theory Tech. MTT-23: 246.CrossRefGoogle Scholar
  16. Dumey, C. H., C. C. Johnson, P. W. Barber, H. Massoudi, M. F. Iskander, J. L. Lords, D. K. Ryser, S. J. Allen, and J. C. Mitchell (1978) Radiofrequency Radiation Dosimetry Handbook, 2nd ed. Rep. SAM-TR-28–22/32, USAF School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  17. Durney, C. H., M. F. Iskander, H. Massoudi, and C. C. Johnson (1979) An empirical formula for broadband SAR calculations of prolate spheroidal models of humans and animals. IEEE Trans. Microwave Theory Tech. MTT-27: 758.CrossRefGoogle Scholar
  18. Durney, C. H., M. F. Iskander, H. Massoudi, S. J. Allen, and J. C. Mitchell (1980) Radio Frequency Radiation Dosimetry Handbook, 3rd ed. Brooks AFB, Texas.Google Scholar
  19. Gandhi, O. P. (1975) Frequency and orientation effects on whole animal absorption of electromagnetic waves. IEEE Trans. Biomed. Eng. BME-22: 536.CrossRefGoogle Scholar
  20. Gandhi, O. P. (1980) State of the knowledge for electromagnetic absorbed dose in man and animals. Proc. IEEE 68: 24.CrossRefGoogle Scholar
  21. Gandhi, O. P. (1982) Electromagnetic absorption in inhomogeneous model of man for realistic exposure conditions. Bioelectromagnetics 3: 81.CrossRefGoogle Scholar
  22. Gandhi, O. P., E. L. Hunt, and J. A. D’Andrea (1977) Deposition of EM energy in animals and in models of man with and without grounding and reflector effects. Radio Sci. 12: 39S.CrossRefGoogle Scholar
  23. Gandhi, O. P., M. J. Hagman, and J. A. D’Andrea (1979) Part-body and multi-body effects on absorption of radio frequency electromagnetic energy by animals and by models of man. Radio Sci. 14: 15S.Google Scholar
  24. Guru, B. S., and K. M. Chen (1976) Experimental and theoretical studies in electromagnetic field induced inside finite biological bodies. IEEE Trans. Microwave Theory Tech. MTT-24: 433.CrossRefGoogle Scholar
  25. Guy, A. W. (1974) Quantitation of induced electromagnetic field patterns in tissue and associated biological effects. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski (ed.). Polish Medical Publishers, Warsaw, pp. 203–216.Google Scholar
  26. Guy, A. W., and C. K. Chou (1976) System for quantitative chronic exposure of a population of rodents to UHF fields. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8011, pp. 389–410.Google Scholar
  27. Guy, A. W., and C. K. Chou (1978) Microwave and RF dosimetry. In: The Physical Basis of Electromagnetic Interaction with Biological Systems, L. S. Taylor, and A. Y. Cheung (eds.). HEW Publ. (FDA) 78–8055, pp. 165–216.Google Scholar
  28. Guy, A. W., J. C. Lin, and C. K. Chou (1975) Electrophysiologic effects of electromagnetic fields on animals. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, p. 167.CrossRefGoogle Scholar
  29. Guy, A. W., M. D. Webb, and C. C. Sorensen (1976) Determination of power absorption in man exposed to HF electromagnetic fields by thermographic measurements on scale models. IEEE Trans. Biomed. Eng. BME-23: 361.CrossRefGoogle Scholar
  30. Guy, A. W., J. Wallace, and J. A. McDougall (1979) Circularly polarized 2450-MHz waveguide system for chronic exposure of small animals to microwaves. Radio Sci. 14: 63S.CrossRefGoogle Scholar
  31. Hagman, M. J. (1978) Numerical Studies of Absorption of Electromagnetic Energy by Man. Ph.D. dissertation, Department of Electrical Engineering, University of Utah.Google Scholar
  32. Hagman, M. J., O. P. Gandhi, and C. H. Durney (1979a) Numerical calculation of electromagnetic energy deposition for a realistic model of man. IEEE Trans. Microwave Theory Tech. MTT-27:804.CrossRefGoogle Scholar
  33. Hagman, M. J., O. P. Gandhi, J. A. D’Andrea, and I. Chatterjee (1979b) Head resonance: Numerical solutions and experimental results. IEEE Trans. Microwave Theory Tech. MIT-27: 809.CrossRefGoogle Scholar
  34. Harrington, R. F. (1968) Field Computation by Moment Methods. McGraw—Hill, New York.Google Scholar
  35. Harrington, R. F., and J. R. Mautz (1972) Green’s function for surfaces of revolution. Radio Sci. 7 :603.CrossRefGoogle Scholar
  36. Hill, D. A. (1982) Human whole-body RF absorption studies using a TEM cell exposure system. IEEE Trans. Microwave Theory Tech. MTT-30: 1847.CrossRefGoogle Scholar
  37. Ho, H. S., and A. W. Guy (1975) Development of dosimetry for RF and microwave radiation. Health Phys. 29: 317.CrossRefGoogle Scholar
  38. Huang, A. T., M. E. Engle, J. A. Elder, J. B. Kinn, and T. R. Ward (1977) The effects of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci. 12: 173S.CrossRefGoogle Scholar
  39. Johnson, C. C., and A. W. Guy (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.CrossRefGoogle Scholar
  40. Johnson, C. C:, C. H. Durney, and H. Massoudi (1975) Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals. IEEE Trans. Microwave Theory Tech. MTT-23:739.CrossRefGoogle Scholar
  41. Joines, W. T., and R. J. Spiegel (1975) Resonance absorption of microwaves by the human skull. IEEE Trans. Biomed. Eng. BME-21: 46.CrossRefGoogle Scholar
  42. Karimullah, K., K. M. Chen, and D. P. Nyquist (1980) Electromagnetic coupling between a thin-wire antenna and a neighboring biological body. IEEE Trans. Microwave Theory Tech. MIT-28: 1218.Google Scholar
  43. Kinn, J. B. (1977) Whole-body dosimetry of microwave radiation in small animals: The effect of body mass and exposure geometry. Radio Sci. 12: 61S.CrossRefGoogle Scholar
  44. Kritikos, H. N., and H. P. Schwan (1972) Hot spot generated in conduction spheres by EM waves and biological implications. IEEE Trans. Biomed. Eng. BME-19: 53.CrossRefGoogle Scholar
  45. Kritikos, H. N., and H. P. Schwan (1975) The distribution of heating potential inside lossy spheres. IEEE Trans. Biomed. Eng. BME-22: 457.CrossRefGoogle Scholar
  46. Lakhtakia, A., M. F. Iskander, and C. H. Durney (1983) An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratios. IEEE Trans. Microwave Theory Tech. MIT-32: 640.CrossRefGoogle Scholar
  47. Leicher-Preka, A., and H. S. Ho (1976) Dependence of total and distributed absorbed microwave energy upon size and orientation of rat phantoms in waveguide. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8011, pp. 158–168.Google Scholar
  48. Lin, J. C. (1975) Microwave properties of fresh mammalian brain tissues at body temperature. IEEE Trans. Biomed. Eng. BME-22: 74.CrossRefGoogle Scholar
  49. Lin, J. C. (1976) Interaction of two cross-polarized electromagnetic waves with mammalian cranial structures. IEEE Trans. Biomed. Eng. BME-23: 371.CrossRefGoogle Scholar
  50. Lin, J. C. (1978) Microwave biophysics. In: Microwave Bioeffects and Radiation Safety, M. A. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 15–54.Google Scholar
  51. Lin, J. C. (1980) Whole-body exposure in the near zone of HF electromagnetic fields. Int. Electromagnetic Waves and Biology Symposium, Jouy en Josas, France.Google Scholar
  52. Lin, J. C. (1986) Computer methods for field intensity predictions. In: Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow (eds.). CRC Press, Boca Raton, Fla, pp. 273–314.Google Scholar
  53. Lin, J. C., and C. L. Wu (1976) Scattering of microwaves by dielectric materials used in laboratory animal restrainers. IEEE Trans. Microwave Theory Tech. MTT-24: 219.CrossRefGoogle Scholar
  54. Lin, J. C., A. W. Guy, and C. C. Johnson (1973a) Power deposition in a spherical model of man exposed to 1–20 MHz electromagnetic fields. IEEE Trans. Microwave Theory Tech. MIT-21: 791.CrossRefGoogle Scholar
  55. Lin, J. C., A. W. Guy, and G. H. Kraft (1973b) Microwave selective brain heating. J. Microwave Power 8: 275.Google Scholar
  56. Lin, J. C., H. M. Grove, and J. C. Sharp (1975) Comparative measurement of dielectric properites of fresh mammalian tissues. Proc. Conference Proc. Electromagnetic Meas., p. 246.Google Scholar
  57. Lin, J. C., H. J. Bassen, and C. L. Wu (1977) Perturbation effects of animal restraining materials on microwave exposure. IEEE Trans. Biomed. Eng. BME-24: 80.CrossRefGoogle Scholar
  58. Liversay, D. E., and K. M. Chen (1974) Electromagnetic fields induced inside arbitrary shaped biological bodies. IEEE Trans. Microwave Theory Tech. MTT-22: 1273.CrossRefGoogle Scholar
  59. Marshall, S. V., and R. F. Brown (1983) Experimental determination of whole body average SAR of mice exposed to 200–400 MHz CW. Bioelectromagnetics 4: 267.CrossRefGoogle Scholar
  60. Massoudi, H., C. H. Durney, and C. C. Johnson (1977) Long wavelength electromagnetic power absorption in ellipsoidal models of man and animals. IEEE Trans. Microwave Theory Tech. MTT-25: 41.Google Scholar
  61. Massoudi, H., C. H. Durney, P. W. Barber, and M. F. Iskander (1982) Post resonance EM absorption by man and animals. Bioelectromagnetics 3: 333.CrossRefGoogle Scholar
  62. Mautz, J. R., and R. F. Harrington (1969) Radiation and scattering from bodies of revolution. Appl. Sci. Res. 20: 405.CrossRefGoogle Scholar
  63. Olsen, R. G. (1979) Preliminary studies: Far-field microwave dosimetric measurements in a full-sized model of man. J. Microwave Power 14: 383.Google Scholar
  64. Olsen, R. G. (1982) Far-field dosimetric measurements in a full-sized man model at 2 GHz. Bioelectromagnetics 3: 433.CrossRefGoogle Scholar
  65. Olsen, R. G., T. A. Griner, and G. D. Prettyman (1980) Far-field microwave dosimetry in a rhesus monkey model. Bioelectromagnetics 1: 149.CrossRefGoogle Scholar
  66. Olsen, R. G., J. O. de Lorge, J. R. Forstall, and C. S. Ezell (1984) A circular waveguide irradiation system for nonhuman primates: Design and dosimetry. Bioelectromagnetics 5: 79.CrossRefGoogle Scholar
  67. Phillips, R. D., E. L. Hunt, and N. W. King (1975) Field measurements, absorbed dose, and biological dosimetry of microwaves. Ann. N.Y. Acad. Sci. 247: 499.CrossRefGoogle Scholar
  68. Poggio, A. J., and E. K. Miller (1973) Integral equation solution of three-dimensional scattering problems. In: Computer Techniques for Electromagnetics, R. Mittra (ed.). Pergamon Press, New York, p. 159.Google Scholar
  69. Pogorzelski, R. J., and T. K. Wu (1977) Computations of scattering from inhomogeneous penetrable elliptic cylinders by means of invariant imbedding. URSI Symp. Electromagnetic Wave Theory, Stanford, p. 323.Google Scholar
  70. Rowlandson, G. I., and P. W. Barber (1979) Absorption of high frequency RF energy by biological models: Calculations based on geometrical optics. Radio Sci. 14: 43S.CrossRefGoogle Scholar
  71. Rukspollmuang, S., and K. M. Chen (1979) Heating of spherical vs. realistic models of human and infrahuman heads by electromagnetic waves. Radio Sci. 14: 51.CrossRefGoogle Scholar
  72. Schelkunoff, S. A. (1951) Field equivalence theorems. Commun. Pure Appl. Math. 4:43. Schwan, H. P. (1957) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 4: 147.Google Scholar
  73. Schwan, H. P. (1958) Survey of microwave absorption characteristics of body tissues. In: Proceedings of the Second Annual Tri-service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 126.Google Scholar
  74. Schwan, H. P. (1968) Microwave biophysics. In: Microwave Power Engineering, E. C. Okress (ed.). Academic Press, New York, p. 213.Google Scholar
  75. Schwan, H. P., and K. R. Foster (1980) RF-field interaction with biological systems: Electrical properties and biophysical mechanisms. Proc. IEEE 68: 104.CrossRefGoogle Scholar
  76. Schwan, H. P., and K. Li (1956) Hazards due to total body irradiation by radar. Proc. IRE 44: 1572.CrossRefGoogle Scholar
  77. Schwan, H. P., and G. M. Piersol (1954) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part I. Biophysical aspects. Am. J. Phys. Med. 33: 371.Google Scholar
  78. Segal, A. S. (1981) The Design and Characterization of a Crawford Cell Animal Exposure Facility for Dosimetric Measurements Between 225 and 500 MHz. M.S., E.E. thesis, University of Illinois, Urbana—Champaign.Google Scholar
  79. Shapiro, A. R., R. F. Lutomirski, and H. T. Yura (1971) Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave. IEEE Trans. Microwave Theory Tech. MTT-19: 187.CrossRefGoogle Scholar
  80. Stratton, J. A. (1941) Electromagnetic Theory. McGraw—Hill, New York.MATHGoogle Scholar
  81. Taflove, A. (1980) Application of the finite-difference time domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Electromagn. Compat. 22:191CrossRefGoogle Scholar
  82. Taflove, A., and M. E. Brodwin (1975a) Numerical solution of steady-state EM scattering problems using the time dependent Maxwell’s equation. IEEE Trans. Microwave Theory Tech. MTT-23: 623.CrossRefGoogle Scholar
  83. Taflove, A., and M. E. Brodwin (1975b) Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Trans. Microwave Theory Tech. MTT-23: 888.CrossRefGoogle Scholar
  84. Taflove, A., and J. C. Lin (1981) Finite difference time domain computation of microwave absorption in models of biological bodies. Abstracts of Bioelectromagnetics Society Annual Meeting, Washington, D.C., p. 62.Google Scholar
  85. Taflove, A., and K. Umashankar (1982) A hybrid moment method/finite difference time domain approach to electromagnetic coupling and aperture penetration into complex geometries. IEEE Trans. Antennas Propag. 30: 617.CrossRefGoogle Scholar
  86. Waterman, P. C. (1965) Matrix formulation of electromagnetic scattering. Proc. IEEE 53: 805.CrossRefGoogle Scholar
  87. Weil, C. M. (1975) Absorption characteristics of multi-layered sphere models exposed to UHF/microwave radiation. IEEE Trans. Biomed. Eng. BME-22: 468.MathSciNetCrossRefGoogle Scholar
  88. Wu, C. L., and J. C. Lin (1977) Absorption and scattering of EM waves by prolate spheroidal models of biological structures. IEEE AP-S Int. Symp., Stanford, Calif., p. 142.Google Scholar
  89. Wu, T. K. (1979) Electromagnetic fields and power deposition in body of revolution models of man. IEEE Trans. Microwave Theory Tech. MIT-27: 279.Google Scholar
  90. Wu, T. K., and L. L. Tsai (1977a) Scattering from arbitrary-shaped lossy dielectric bodies of revolution. Radio Sci. 12: 709.CrossRefGoogle Scholar
  91. Wu, T. K., and L. L. Tsai (1977b) Electromagnetic fields induced inside arbitrary cylinders of biological tissue. IEEE Trans. Microwave Theory Tech. MTT-25: 61.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations