Cataracts and Other Ocular Effects

  • Sol M. Michaelson
  • James C. Lin


Cataract is the best known of all eye diseases, but despite wide public awareness and research that has been devoted to elucidation of its etiology, knowledge of the biochemistry of the normal and pathological lens is still somewhat fragmentary. During the past 25 years, numerous investigations in animals and several surveys among human populations have been devoted to assessing the relationship between exposure to microwaves and subsequent development of cataracts. It is significant that of the many experiments on rabbits by several investigators using various techniques, power density >100 mW/cm2 for 1 hr or longer appears to be the lowest time—power threshold in the frequency range of 2450 to 10,000 Hz. In other species of animals such as dogs and nonhuman primates, the threshold for experimental microwave-induced cataract appears to be even higher. Data that are presented to indicate nonthermal, cumulative, or direct cellular effects are equivocal. If one carefully reviews the human data that are presently available, little is added to our knowledge of microwave cataractogenesis.


Microwave Radiation Aqueous Humor Lens Opacity Human Lens Lens Capsule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addington, C., F. Fischer, R. Neubauer, C. Osborn, Y. Sarkees, and G. Swartz (1958) Review of work conducted by the University of Buffalo: Studies on the biological effects of 200 mc. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 189.Google Scholar
  2. Albert, D. M., and H. G. Scheie (eds.) (1969) Adler’s Textbook of Ophthalmology, 8th edition. Saunders, Philadelphia, p. 22.Google Scholar
  3. Appleton, B. (1973) Results of clinical surveys for microwave ocular effects. HEW Publ. ( FDA ) 73–8031.Google Scholar
  4. Appleton, B. (1975) Comment. Ann. N.Y. Acad. Sci. 247: 133.CrossRefGoogle Scholar
  5. Appleton, B., S. Hirsch, and P. V. K. Brown (1975) Investigation of single-exposure microwave ocular effects at 3000 MHz. Ann. N.Y. Acad. Sci. 247: 125.CrossRefGoogle Scholar
  6. Auricchio, G., and M. Testa (1972) Some biochemical differences between cortical (pale) and nuclear (brown) cataracts. Ophthalmologica 164: 228.CrossRefGoogle Scholar
  7. Axelsson, U. (1968) Glaucoma, miotic therapy and cataract. Acta Ophthalmol. 46: 83, 99, 831.Google Scholar
  8. Axelsson, U. (1973) Miotic-induced cataract. Ciba Found. Symp. 19: 249.Google Scholar
  9. Baillie, H. D. (1970) Thermal and nonthermal cataractogenesis by microwaves. In: Biological Effects and Health Implications of Microwave Radiation, S. Cleary (ed.) HEW, PHS, BRH/DBE 70–2, p. 59.Google Scholar
  10. Baillie, H. D., A. Heaton, and D. Pal (1970) The dissipation of microwaves as heat in the eye. In: Biological Effects and Health Implications of Microwave Radiation, S. Cleary (ed.). PHS, BRH/DBE 70–2, p. 85.Google Scholar
  11. Barber, W. (1973) Human cataractogenesis: A review. Exp. Eye Res. 16: 85.CrossRefGoogle Scholar
  12. Becker, O. (1877) Pathologie and therapie des Linsen-systems. In: Handbuch der Gesamter Augenheilkunde, Vol. VI, A. Graefe and T. Saemisch (eds.). Sect. 5, p. 157.Google Scholar
  13. Bettman, J. W. (1946) Experimental dinitrophenol cataract. Am. J. Ophthalmol. 29: 1388.Google Scholar
  14. Bettman, J. W., W. E. Fung, R. G. Webster, P. O. Nuyes, and N. J. Vincent (1968) Cataractogenic effects of corticosteroids in animals. Am. J. Ophthalmol. 65: 581.Google Scholar
  15. Birenbaum, L., M. Grosoff, S. W. Rosenthal, and M. M. Zaret (1969a) Effects of microwaves on the eye. IEEE Trans. Biomed. Eng. BME-16: 7.Google Scholar
  16. Birenbaum, L., I. T. Kaplan, W. Metlay, S. W. Rosenthal, H. Schmidt, and M. M. Zaret (1969b) Effect of microwaves on the rabbit eye. J. Microwave Power 4: 232.Google Scholar
  17. Black, R. L., R. B. Oglesby, L. von Sallman, and J. J. Bunim (1960) Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. J. Am. Med. Med. Assoc. 174: 166.CrossRefGoogle Scholar
  18. Blair, H. A. (1964) The constancy of repair rate and of irreparability during protracted exposure to ionizing radiation. Ann. N.Y. Acad. Sci. 114: 150.CrossRefGoogle Scholar
  19. Boettner, E. A., and J. R. Wolter (1962) Transmission of the ocular media. Invest. Ophthalmol. 16: 776.Google Scholar
  20. Burditt, A. F., and F. L. Caird (1968) Natural history of lens opacities in diabetics. Br. J. Ophthalmol. 52: 433.CrossRefGoogle Scholar
  21. Caird, F. I. (1973) Problems of cataract epidemiology with special reference to diabetes. Ciba Found. Symp. 19: 281.Google Scholar
  22. Carpenter, R. L. (1970) Experimental microwave cataract: A review. In: Biological Effects and Health Implications of Microwave Radiation, S. Cleary (ed.). HEW, PHS, BRH/DBE 70–2, p. 76.Google Scholar
  23. Carpenter, R. L. (1975) Comment. Ann. N.Y. Acad. Sci. 247: 154.CrossRefGoogle Scholar
  24. Carpenter, R. L. (1979) Ocular effects of microwave radiation. Bull. N.Y. Acad. Med. 55: 1048.Google Scholar
  25. Carpenter, R. L., and C. A. van Ummersen (1968) The action of microwave radiation on the eye. J. Microwave Power 3: 3.Google Scholar
  26. Carpenter, R. L., D. K. Biddle, and C. A. van Ummersen (1960a) Biological effects of microwave radiation with particular reference to the eye. Proc. Third. Int. Conf. Med. Electron. 3: 401.Google Scholar
  27. Carpenter, R. L., D. K. Biddle, and C. A. van Ummersen (1960b) Opacities in the lens of the eye experimentally induced by exposure to microwave radiation. IRE Trans. Med. Electron. 7: 152.CrossRefGoogle Scholar
  28. Carpenter, R. L., E. S. Ferri, and G. J. Hagan (1972a) Lens opacities in eyes of rabbits following repeated daily irradiation at 2.45 GI-1z. International Microwave Power Institute Symposium, Ottawa.Google Scholar
  29. Carpenter, R. L., E. S. Ferri, and G. J. Hagan (1972b) Perturbation of the microwave field by experimental animal and apparatus in biological research. In: International Microwave Power Institute Symposium, Ottawa, p. 196.Google Scholar
  30. Carpenter, R. L., G. J. Hagan, and E. S. Ferri (1975) Use of a dielectric lens for experimental microwave irradiation of the eye. Ann. N.Y. Acad. Sci. 247: 154.CrossRefGoogle Scholar
  31. Carpenter, R. L., G. J. Hagan, and G. L. Donovan (1977) Are microwave cataracts thermally caused? In: Biological Effects and Measurement of Radiofrequency/ Microwaves, D. G. Hazzard (ed.). HEW Publ. (FDA) 77–8026, pp. 352–379.Google Scholar
  32. Cogan, D. (1950) Lesions of the eye from radiant energy. J. Am. Med. Assoc. 142: 145.CrossRefGoogle Scholar
  33. Cogan, D. (1959) Radiation cataracts in man. In: Symposium on the Delayed Effects of Whole-Body Radiation, B. B. Watson (ed.). Johns Hopkins Press, Baltimore, pp. 59–66.Google Scholar
  34. Cogan, D., D. D. Donaldson, and A. B. Reese (1952) Clinical and pathological characteristics of radiation cataract. Arch. Ophthalmol. 47: 55.CrossRefGoogle Scholar
  35. Cogan, D. G., S. I. Fricker, M. Lubin, D. D. Donaldson, and H. Hardy (1958) Cataracts and ultra-high frequency radiation. AMA Arch. Ind. Health 18: 299.Google Scholar
  36. Coren, S., and J. S. Girgus (1972) Density of human lens pigmentation: In vivo measures over an extended age range. Vision Res. 12: 343.CrossRefGoogle Scholar
  37. Collier, E., and B. Becker (1965) Topical corticosteroids and galactose cataracts. Invest. Ophthalmol. 4: 806.Google Scholar
  38. Cremer-Bartel, G., O. Hockwin, K. Ganter, and H. Werry (1968) Additionskatarakt nach Corticosteroid-applikation bei Galactose-gefutterten ratten. Ber. Dtsch. Ophthalmol. Ges. 69: 436.Google Scholar
  39. Daily, L., K. G. Wakim, J. F. Herrick, E. M. Parkhill, and W. L. Benedict (1950) The effects of microwave diathermy of the eye: An experimental study. Am. J. Ophthalmol. 23: 1241.Google Scholar
  40. Dawson, W. W. (1963) The thermal excitation of afferent neurones in the mammalian cornea and iris. In: Temperature—Its Measurement and Control in Science and Industry, Vol. 3, J. D. Hardy (ed.). Reinhold, New York, p. 199.Google Scholar
  41. Dickson, D. H., and G. W. Crock (1972) Interlocking patterns on primate lens fibers. Invest. Ophthalmol. 11: 809.Google Scholar
  42. Duke-Elder, S. (ed.) (1972) System of Ophthalmology Series, Vol. 11. Mosby, St. Louis, p. 63.Google Scholar
  43. Dunn, K. L. (1950) Cataract from IR rays. “Glassworkers cataract”—A preliminary study on exposures. Arch. Ind. Hyg. Occup. Med. 1: 166.Google Scholar
  44. Durney, C. H., C. C. Johnson, C. W. Barber, H. Massoudi, M. F. Iskander, J. L. Lords, D. K. Ryser, S. J. Allen, and J. C. Mitchell (1978) Radiofrequency Radiation Dosimetry Handbook, 2nd edition. Tech. Rep. SAM-TR-78–22, USAF School of Aerospace Medicine, Brooks AFB, Texas.Google Scholar
  45. Ely, T. S., D. E. Goldman, J. Hearon, R. B. Williams, and H. M. Carpenter (1957) Heating Characteristics of Laboratory Animals Exposed to Ten-Centimeter Microwaves. U.S. Nay. Med. Res. Inst. (Res. Rep. Proj. NM 001–056.13.02). IEEE Trans. Biomed. Eng. BME-11: 123 (1964).Google Scholar
  46. Ferri, E. S., and G. J. Hagan (1976) Chronic low-level exposure of rabbits to microwaves. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 129–142.Google Scholar
  47. Fischer, F. P. (1948) Senescence of the eye. In: Modern Trends in Ophthalmology, Second Series, A. Sorsby (ed.). Butterworths, London, p. 54.Google Scholar
  48. Fisher, R. F. (1971) The elastic constants of the human lens. J. Physiol. (London) 212: 147.Google Scholar
  49. Fisher, R. F. (1973) Human lens fibre transparency and mechanical stress. Exp. Eye Res. 16: 41.CrossRefGoogle Scholar
  50. Frey, T., D. Friendly, and D. Wyatt (1973) Re-evaluation of monocular cataracts in children. Am. J. Ophthalmol. 76: 381.Google Scholar
  51. Geeraets, W. J. (1970) Radiation effects on the eye. Ind. Med. 39: 441.Google Scholar
  52. Geeraets, W. J., and E. R. Berry (1968) Ocular spectral characteristics as related to hazards from lasers and other light sources. Am. J. Ophthalmol. 66: 15.Google Scholar
  53. Goldmann, H. (1935) The genesis of the cataract of the glass blower. Ann. Ocul. 172:13; Am. J. Ophthalmol. 18: 590.Google Scholar
  54. Goldmann, H., H. Koenig, and F. Maeder (1950) The permeability of the eye lens to infrared. Ophthalmologica 120: 198.CrossRefGoogle Scholar
  55. Guy, A. W., J. C. Lin, P. O. Kramar, and A. F. Emery (1974) Quantitation of Microwave Radiation Effects on the Eyes of Rabbits at 2450 MHz and 918 MHz. Scientific Report No. 2 (January).Google Scholar
  56. Guy, A. W., J. C. Lin, P. O. Kramar, and A. F. Emery (1975) Effect of 2450 MHz radiation on the rabbit eye. IEEE Trans. Microwave Theory Tech. MIT-23:492.Google Scholar
  57. Hagan, H. J., and R. L. Carpenter (1976) Relative cataractogenic potencies of two microwave frequencies (2.45 and 10 GHz). In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 143–155.Google Scholar
  58. Harding, J. J. (1969) Nature and origin of the insoluble protein of rat lens. Exp. Eye Res. 8: 147.CrossRefGoogle Scholar
  59. Harding, J. J. (1972a) Conformational changes in human lens proteins in cataract. Biochem. J. 129: 97.Google Scholar
  60. Harding, J. J. (1972b) The nature and origin of the urea-insoluble protein of human lens. Exp. Eye Res. 13: 33.CrossRefGoogle Scholar
  61. Hirsch, S. E. (1975) Comment. Ann N.Y. Acad. Sci. 247: 133.Google Scholar
  62. Hockwin, O., H. K. Muller, and U. Blaser (1964) Nachweis von Philocarpin im Kammer-wasser von Kaninchenaugen mit Hilfe der Polarographie. Albrecht von Graefes Arch. Ophthalmol. 167: 459.Google Scholar
  63. Hockwin, O., T. Okamoto, H. D. Bergeder, W. Klein, L. Ferrari, and W. Streit (1969/1970) Genesis of cataracts: Cumulative effects of subliminal noxious influences. Ann. Ophthalmol. 1: 321.Google Scholar
  64. Homer, W. D. (1942) Dinitrophenol and its relation to formation of cataract. Arch. Ophthalmol. 27: 1097.CrossRefGoogle Scholar
  65. Howland, J. W., and S. M. Michaelson (1959) Studies on the biological effects of microwave irradiation of the dog and rabbit. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley, p. 191.Google Scholar
  66. Kalant, H. (1959) Physiologic hazards of microwave radiation, survey of published literature. Can. Med. Assoc. J. 81: 575.Google Scholar
  67. Keatinge, G. F., J. Pearson, J. P. Simons, and E. E. White (1955) Radiation cataract in industry: Review of the literature, discussion of the pathogenesis, and description of environmental conditions in an iron rolling mill. Arch. Ind. Health 11: 305, 12: 538.Google Scholar
  68. Kenshalo, D. R. (1960) Comparison of thermal sensitivity of the forehead, lip, conjunctiva and cornea. J. Appl. Physiol. 15: 987.Google Scholar
  69. Kikkawa, Y., and T. Sato (1963) Elastic properties of the lens. Exp. Eye Res. 2:210. Kinoshita, J. H., L. O. Merola, and E. Dikmak (1962) Osmotic changes in experimental galactose cataracts. Exp. Eye Res. 1: 405.Google Scholar
  70. Kinoshita, J. H., L. O. Merola, E. D. Dikmak, and R. L. Carpenter (1966) Biochemical changes in microwave cataracts. Doc. Ophthalmol. 20: 91.Google Scholar
  71. Koch, H., O. Hockwin, and E. Weigelin (1972) New aspects of cataractogenesis. Isr. J. Med. Sci. 8: 1562.Google Scholar
  72. Kramar, P., A. F. Emery, A. W. Guy and J. C. Lin (1973) Theoretical and experimental studies of microwave induced cataracts in rabbits. In: 1973 IEEE G-MTT International Microwave Symposium Digest of Technical Papers. IEEE, New York, p. 265.Google Scholar
  73. Kramar, P., A. Emery, A. W. Guy, and J. C. Lin (1975) The ocular effects of microwaves on hypothermic rabbits: A study of microwave cataractogenic mechanisms. Ann. N.Y. Acad. Sci. 247: 155.CrossRefGoogle Scholar
  74. Kramar, P. O., C. Harris, A. W. Guy, and A. F. Emery (1976) Mechanism of microwave cataractogenesis in rabbits. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 49–60.Google Scholar
  75. Langley, R. K., C. B. Mortimer, and C. McCulloch (1960) The experimental production of cataracts by exposure to heat and light. Arch. Ophthalmol. 63: 473.CrossRefGoogle Scholar
  76. Leeson, T. S. (1971) Lens of the rat eye: An electron microscope and freeze-etch study. Exp. Eye Res. 11: 78.CrossRefGoogle Scholar
  77. Lele, P. P., and W. Weddell (1956) The relationship between neurohistology and corneal sensibility. Brain 79: 119.CrossRefGoogle Scholar
  78. Lerman, S. (1962) Radiation cataractogenesis. N.Y. State J. Med. 62: 3075.Google Scholar
  79. Liesmaa, M. (1972) Congenital cataract and Ectopia lentis. Acta Ophthalmol. Suppl. 112: 3.Google Scholar
  80. Lubin, M., G. W. Curtis, H. R. Dudley, L. E. Bird, P. F. Daley, D. G. Cogan, and S. J. Fricker (1960) Effects of ultrahigh frequency radiation on animals. Arch. Ind. Health 21: 555.Google Scholar
  81. Mantel, N., and W. R. Bryan (1961) “Safety” testing of carcinogenic agents. J. Nat. Cancer Inst. 27:455.Google Scholar
  82. McAfee, A. D., A. Longacre, Jr., R. R. Bishop, S. T. Elder, J. G. May, and M. G. Holland (1979) Absence of ocular pathology after repeated exposure of unanesthetized monkeys to 9.3 GHz microwaves. J. Microwave Power 14: 41.Google Scholar
  83. McGuiness, R. (1967) Association of diabetes and cataract. Br. Med. J. 2: 416.CrossRefGoogle Scholar
  84. Matelsky, I. (1968) Non-ionizing radiation. In: Industrial Hygiene Highlights, Vol. 1, L. V. Cralley and G. D. Clayton (eds.). Industrial Hygiene Foundation of America, Pittsburgh, pp. 147–178.Google Scholar
  85. Mellerio, J. (1971) Light absorption and scatter in the human lens. Vision Res. 11: 129.CrossRefGoogle Scholar
  86. Merola, L. O., and J. H. Kinoshita (1961) Changes in the ascorbic acid content in lenses of rabbit eyes exposed to microwave radiation. In: Biological Effects of Microwave Radiation, Vol. 1. M. F. Peyton (ed.). Plenum Press, New York, p. 285.Google Scholar
  87. Michaelson, S. M. (1972) Human exposure to non-ionizing radiant energy—Potential hazards and safety standards. Proc. IEEE 60: 389.CrossRefGoogle Scholar
  88. Michaelson, S. M. (1978) Relevance of experimental studies of microwave-induced cataracts to man. In: Current Concepts in Ergophthalmology, B. Tengroth and D. Epstein (eds.). Soc. Ergophthalmologica Internationalis, pp. 105–124.Google Scholar
  89. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1961) Physiologic aspects of microwave irradiation of mammals. Am. J. Physiol. 201: 351.Google Scholar
  90. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67–461, Griffiss AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  91. Michaelson, S. M., J. W. Howland, and W. B. Deichmann (1971) Response of the dog to 24,000 and 1285 MHz microwave exposure. Ind. Med. Surg. 40: 18.Google Scholar
  92. Muller, H. K., O. Kleifeld, O. Hockwin, and U. Dardenne (1956) Der Einfluss von Pilocarpin and Mintacol auf der Stoffwechsel der Linse. Ber. Dtsch. Ophthalmol. Ges. 60: 115.Google Scholar
  93. Neidlinger, R. W. (1971) Microwave cataract. IEEE Trans. Microwave Theory Tech. MTT-19: 250.Google Scholar
  94. Newell, F. N., and J. T. Ernest (1974) Ophthalmology: Principles and Concepts, 3rd edition. Mosby, St. Louis, pp. 75, 317.Google Scholar
  95. Ogino, S., and K. Yasukara (1957) Biochemical studies on cataract. VI. Production of cataracts in guinea pigs with dinitrophenol. Am. J. Ophthalmol. 43: 936.Google Scholar
  96. Pirie, A. (1968) Color and solubility of the proteins of human cataracts. Invest. Ophthalmol. 7: 634.Google Scholar
  97. Pirie, A. (1972) Cataract: An introduction. Isr. J. Med. Sci. 8: 1550.Google Scholar
  98. Pirie, A., and R. van Heyningen (1964) The effect of diabetes on the content of sorbitol, glucose, fructose and inositol in the human lens. Exp. Eye Res. 3: 124.CrossRefGoogle Scholar
  99. Richardson, A. W., T. D. Duane, and H. M. Hines (1948) Experimental lenticular opacities produced by microwave irradiation. Arch. Phys. Med. 29: 765.Google Scholar
  100. Richardson, A. W., T. D. Duane, and H. M. Hines (1951) Experimental cataracts produced by 3-centimeter pulsed microwave irradiation. Arch. Ophthalmol. 45: 382.CrossRefGoogle Scholar
  101. Rosenthal, S. W., L. Birenbaum, I. T. Kaplan, W. Metlay, W. Z. Snyder, and M. M. Zaret (1976) Effects of 35 and 107 GHz CW microwaves on the rabbit eye. In: Biological Effects of Electromagnetic Waves, Vol. I, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 110–128.Google Scholar
  102. Salit, P. W. (1936) Phospholipid content of cataractous and sclerosed human lenses; biochemical studies of lenticular changes. Arch. Ophthalmol. 16: 271.CrossRefGoogle Scholar
  103. Satoh, K. (1972) Age-related changes in the structural proteins of human lens. Exp. Eye Res. 14: 53.CrossRefGoogle Scholar
  104. Seth, H. S., and S. M. Michaelson (1965) Microwave cataractogenesis. J. Occup. Med. 7: 439.Google Scholar
  105. Shilyayev, V. G. (1970) Effects of microwave radiation on the visual organ. In: Influence of Microwave Radiation on the Organism of Man and Animals, I. R. Petrov (ed.). Meditsina Press, Leningrad (NASA TT F-708), pp. 142–146.Google Scholar
  106. Sliney, D. H., and B. C. Freasier (1973) Evaluation of optical radiation hazards. Appl. Opt. 12: 1.CrossRefGoogle Scholar
  107. Sorsby, A. (1962) Cataract: Some statistical and genetic aspects. Exp. Eye Res. 1: 296.CrossRefGoogle Scholar
  108. Sorsby, A. (1972) Modern Ophthalmology, 2nd edition, Vol. 1. Lippincott, Philadelphia, p. 649.Google Scholar
  109. Stokinger, H. E. (1972) Concepts of threshold in standards setting: An analysis of the concept and its application to industrial air limits (TLV’s). Arch. Environ. Health 25: 153.Google Scholar
  110. Tarkkanen, A., and K. Karjakainen (1966) Kataraktbildung während einer Mioticabehandlung des chronischen Glaukoms mit offenem Winkel. Acta Ophthalmol. 44: 932.Google Scholar
  111. van Heyningen, R. (1959) Formation of polyols by the lens of the rat with `sugar’ cataract. Nature (London) 184: 194.CrossRefGoogle Scholar
  112. van Heyningen, R. (1962) The sorbitol pathway in the lens. Exp. Eye Res. 1: 396.CrossRefGoogle Scholar
  113. van Heyningen, R. (1972) The human lens. III. Some observations on the post-mortem lens. Exp. Eye Res. 13: 155.CrossRefGoogle Scholar
  114. van Pelt, W. F., W. R. Payne, and R. W. Peterson (1973) A Review of Selected Bioeffects Thresholds for Various Spectral Ranges of Light. HEW Publ. ( FDA ) 74–8010.Google Scholar
  115. van Ummersen, C. A., and F. G. Cogan (1965) Age as a factor in induction of cataract in the rabbit. Arch. Environ. Health 11: 177.Google Scholar
  116. Vogt, A. (1932) Fundamental investigation of the biology of infrared. Klin. Monatsbl. Augenheilkd. 89: 256.Google Scholar
  117. von Frey, M. (1895) Beitrage zur Sinnesphysiologie der Haut. Ver. Sachs. Ges. Wiss. Math. Phys. Kl. 47: 166.Google Scholar
  118. Vos, J. J. (1966) Some Considerations on Eye Hazards with Lasers. TDCK-46027, National Defense Research Council, T.N.O., Medical Biological Lab., Rijswijk, Netherlands. Waley, S. G. (1969) The lens: Function and macromolecular composition. In: The Eye, Vol. 1, H. Dayson (ed.). Academic Press, New York, p. 299.Google Scholar
  119. Wanko, T., and M. A. Gavin (1961) Cell surfaces in the crystalline lens. In: The Structure of the Eye, G. K. Smelser (ed.). Academic Press, New York, p. 221.Google Scholar
  120. Weiter, J. J., E. D. Finch, W. Schultz, and V. Frattali (1975) Ascorbic acid changes in cultured rabbit lenses after microwave irradiation. Ann. N.Y. Acad. Sci. 247: 175.CrossRefGoogle Scholar
  121. WHO (1966) WHO Epidemiol. Vital Stat. Rep. 19: 433.Google Scholar
  122. Williams, D. B., J. P. Monahan, W. J. Nicholson, and J. J. Aldrich (1955) Biological effects studies on microwave radiation time and power threshold for the production of lens opacities by 12.3 cm microwaves. Arch. Ophthalmol. 54: 863.CrossRefGoogle Scholar
  123. Zaret, M. M. (1959) Comments on papers delivered at Third Tri-Service Conference on Biological Effects of Microwave Radiation. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Süsskind (ed.). University of California, Berkeley, p. 334.Google Scholar
  124. Zaret, M. (1964) An experimental study of the cataractogenic effects of microwave radiation. Tech. Doc. Rep. RADC-TDR-64–273, Griffiss AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  125. Zeller, E. A., K. G. Wakim, J. F. Herrick, W. L. Benedict, and L. Daily, Jr. (1951) Influence of microwaves on certain enzyme systems in the lens of the eye. Am. J. Ophthalmol. 34: 1301.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations