Skip to main content

Neuroendocrine Effects

  • Chapter
  • 168 Accesses

Abstract

To maintain homeostasis, a mammal possesses two control mechanisms that react to changes in internal and external environments (stimuli or stress). These two control mechanisms are the neural and endocrine systems. Separation of endocrine from neural control is not always possible as neural signals are integrated at the hypothalamus to react to deviations in the internal or external environment. Hypothalamichypophysial-adrenocortical (HHA), hypothalamic-hypophysial-hyroidal (HHT), and hypothalamic-hypophysial-somatotropic (HHS) are three endocrine systems that participate in the “stress” response. Generally, they operate through a negative feedback mechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, M. A., and L. W. Chapman (1977) Rapid brain cooling in exercising dogs. Science 195: 781.

    Article  Google Scholar 

  • Baranski, S, and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  • Baranski, S., K. Ostrowski, and W. Stodolnik-Baranska (1972) Functional and morphological studies of the thyroid gland in animals exposed to microwave irradiation. Acta Physiol. Pol. 23: 1029.

    Google Scholar 

  • Bereznitskaya, A. N. (1968) The effect of 10-centimeter and ultrashort waves on the reproductive function of female mice. Gig. Tr. Prof Zabol. 9: 33.

    Google Scholar 

  • Brown, G. M., and S. Reichlin (1972) Psychologic and neural regulation of growth hormone secretion. Psychosom. Med. 34: 45.

    Google Scholar 

  • Brown-Grant, K., C. Von Euler, G. W. Harris, and S. Reichlin (1954) The measurement and experimental modification of thyroid activity in the rabbit. J. Physiol. (London) 126: 1.

    Google Scholar 

  • Cleary, S. F. (1977) Biological effects of microwaves and radiofrequency radiation. In: CRC Critical Reviews in Environmental Control, Vol. 7, C. Straub (ed.). Chemical Rubber Company, Cleveland, pp. 121-165.

    Google Scholar 

  • Collins, K. J., and J. S. Weiner (1968) Endocrinological aspects of exposure to high environmental temperatures. Physiol. Rev. 48: 785.

    Google Scholar 

  • Currier, D. P., and R. M. Nelson (1969) Changes in motor conduction velocity induced by exercise and diathermy. Phys. Ther. 49:146.

    Google Scholar 

  • Curtis, G. C. (1972) Psychosomatics and chronobiology: Possible implications of neuroendocrine rhythms Psychosom. Med. 34: 235.

    Google Scholar 

  • Delado, J. M. R., and T. Hanai (1966) Intracerebral temperature in freely moving cats. Am. J. Physiol. 211: 755.

    Google Scholar 

  • de Lorge, J. (1978) Disruption of behavior in mammals of three different sizes exposed to microwaves: Extrapolation to larger mammals. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 215–228.

    Google Scholar 

  • Demokidova, N. K. (1974) The effects of radiowaves on the growth of animals. In: Biological Effects of Radiofrequency Electromagnetic Fields, Z. V. Gordon (ed.). JPRS 63321.

    Google Scholar 

  • Dempsey, E. W., and E. B. Astwood (1943) Determination of the rate of thyroid hormone secretion at various environmental temperatures. Endocrinology 32: 509.

    Article  Google Scholar 

  • Denisiewicz, R., E. Dziuk, and M. Siekierzynski (1970) Evaluation of thyroid function in persons occupationally exposed to microwave radiation. Pol. Arch. Med. Wewn. 45: 19.

    Google Scholar 

  • Dumansky, Y. D. and M. G. Shandala (1974) The biological action and hygienic significance of electromagnetic fields of superhigh and ultrahigh frequencies in densely populated areas. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 289–293.

    Google Scholar 

  • Dumansky, Y. D., A. M. Serdyuk, C. I. Litvinova, L. A. Tomashevskaya, and V. M. Popovich (1972) Experimental research on the biological effects of 12-centimeter low-intensity waves. In: Health in Inhabited Localities, Ed. II, Kiev, p. 29.

    Google Scholar 

  • D’Yachenko, N. A. (1970) Changes in thyroid function with chronic exposure to microwave radiation. Gig. Tr. Prof. Zabol. 14: 51.

    Google Scholar 

  • Fischer, E., and S. Solomon (1958) Physiological responses to heat and cold. In: Therapeutic Heat and Cold, S. H. Licht (ed.). E. Licht, New Haven, Conn., p. 116.

    Google Scholar 

  • Gandhi, O. P. (1975) Conditions of strongest electromagnetic power deposition in man and animals. IEEE Trans. Microwave Theory Tech. MIT-23: 1021.

    Google Scholar 

  • Grant, L., P. Hopkinson, G. Jennings, and F. A. Jennre (1971) Period of adjustment of rats used for experimental studies. Nature (London) 232: 135.

    Article  Google Scholar 

  • Guillet, R., and S. M. Michaelson (1977) The effect of repeated microwave exposure on neonatal rats. Radio Sci. 12 (6S): 125.

    Article  Google Scholar 

  • Guillet, R., W. G. Lotz, and S. M. Michaelson (1975) Time-course of adrenal response in microwave-exposed rats. In: Proceedings of the 1975 Annual Meeting of USNCI URSI, p. 316.

    Google Scholar 

  • Hardy, J. D. (1973) Posterior hypothalamus and the regulation of body temperature. Fed. Proc. 32: 1564.

    Google Scholar 

  • Ho, H. S., and W. P. Edwards (1977a) Oxygen-consumption rate of mice under differing dose rates of microwave radiation. Radio Sci. 12 (6S): 131.

    Article  Google Scholar 

  • Ho, H. S., and W. P. Edwards (1977b) Dose rate and oxygen consumption rate in mice confined in a small animal holder during exposure to 2450 MHz. Radiat. Environ. Biophys. 14: 251.

    Article  Google Scholar 

  • Houk, W. M., S. M. Michaelson, and D. E. Beischer (1975) The effects of environmental temperature on thermoregulatory, serum lipid, carbohydrate, and growth hormone responses of rats exposed to microwaves. In: Proceedings of the 1975 Annual Meeting of USNC/URSI, p. 309.

    Google Scholar 

  • Johnson, C. C., and A. W. Guy (1972) Non-ionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.

    Article  Google Scholar 

  • Johnson, H. D., M. W. Ward, and H. H. Kibler (1966) Heat and aging effects on thyroid function of male rats. J. Appl. Physiol. 21: 689.

    Google Scholar 

  • Kirchev, K., P. Eftinova, and S. Sichev (1959) Some experimental data on the effects of a UHF electric field on the adrenals. In: Problems of Physiotherapy and Health Reports, Moscow, pp. 81–88.

    Google Scholar 

  • Kritikos, H. N., and H. P. Schwan (1972) Hot spots generated in conducting spheres by

    Google Scholar 

  • electromagnetic waves and biological implications. IEEE Trans. Biomed. Eng. BME-19:53.

    Google Scholar 

  • Kvetnansky, R., V. Weise, and I. Kopin (1970) Elevation of adrenal tyrosine hydroxylase and phenylethanolamine-N-methyl transferase by repeated immobilization of rats. Endocrinology 87: 744.

    Article  Google Scholar 

  • Larsen, L. E., R. A. Moore, and J. Acevedo (1973) An rf decoupled electrode for measurement of brain temperature during microwave exposure. In: Proceedings of the 1973 IEEE G—MTT International Microwave Symposium, Boulder, p. 262.

    Google Scholar 

  • Leduc, F. (1961) Catecholamine production and release in exposure and acclimatization to cold. Acta Physiol. Scand. 53 (Suppl. 183): 1.

    Google Scholar 

  • Lenko, J., A. Dolatowski, L. Gruszecki, S. Klajman, and L. Januszkiewicz (1966) Effect of 10-cm radar waves on the level of 17-ketosteroids and 17-hydroxycorticosteroids in the urine of rabbits. Przegl. Lek. 22: 296.

    Google Scholar 

  • Leytes, F. L., and L. A. Skurikina (1961) The effect of microwaves on the hormonal activity of the adrenal cortex. Byull. Eksp. Biol. Med. 52: 47.

    Google Scholar 

  • Lin, J. C., A. W. Guy, and G. H. Kraft (1973) Microwave selective brain heating. J. Microwave Power 8: 275.

    Google Scholar 

  • Lotz, W. G. (1979a) Adrenocortical response in rats exposed to 1.29 GHz microwaves. Presented at Bioelectromagnetics Symposium, Seattle.

    Google Scholar 

  • Lotz, W. G. (1979b) Thermal and endocrinological effects of microwave exposures on rhesus monkeys. Presented at Bioelectromagnetics Symposium, Seattle.

    Google Scholar 

  • Lotz, W. G., and S. M. Michaelson (1976) Temperature and corticosterone relationship in microwave exposed rats. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 44: 438.

    Google Scholar 

  • Lotz, W. G., and S. M. Michaelson (1979) Effects of hypophysectomy and dexamethasone on the rat’s adrenal response to microwave irradiation. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 47: 1284.

    Google Scholar 

  • Lotz, W. G., S. M. Michaelson, and N. J. Lebda (1977) Growth hormone levels of rats exposed to 2450-MHz (CW) microwaves. In: International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va., p. 39 (Abstr.).

    Google Scholar 

  • Lotz, W. G., and R. P. Podgorski (1982) Temperature and adrenocortical response in rhesus monkeys exposed to microwaves. J. Appl. Physiol. 53: 1565.

    Google Scholar 

  • Lu, S.-T., N. J. Ledba, and S. M. Michaelson (1977a) Effects of microwave radiation on the rat’s pituitary—thyroid axis. In: International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va., p. 37 (Abstr.).

    Google Scholar 

  • Lu, S.-T., N. J. Lebda, S. M. Michaelson, S. Pettit, and D. Rivera (1977b) Thermal and endocrinological effects of protracted irradiation of rats by 2450 MHz microwaves. Radio Sci. 12 (6S): 147.

    Article  Google Scholar 

  • Lu, S.-T., N. J. Lebda, S. Pettit, and S. M. Michaelson (1979a) Modification of microwave biological end-points by increased resting metabolic heat load in rats. Presented at Bioelectromagnetics Symposium, Seattle.

    Google Scholar 

  • Lu, S.-T., S. Pettit, and S. M. Michaelson (1979b) Dual action of microwaves on serum

    Google Scholar 

  • corticosterone in rats. Presented at Bioelectromagnetics Symposium,Seattle.

    Google Scholar 

  • Lu, S.-T., W. G. Lotz, and S. M. Michaelson (1980) Advances in microwave-induced neuroendocrine effects: The concept of stress. Proc. IEEE 68: 73.

    Article  Google Scholar 

  • Lu, S.-T., N. J. Lebda, S. Pettit, and S. M. Michaelson (1981) Microwave-induced temperature corticosterone, and thyrotropin interrelationships. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 50: 399.

    Google Scholar 

  • McLees, B. D., and E. D. Finch (1971) Analysis of the Physiologic Effects of Microwave Radiation. U.S. Nay. Med. Res. Inst., Bethesda (Project MF12.524:015–0001B, Rep. No. 3 ).

    Google Scholar 

  • Magin, R. L., S.-T. Lu, and S. M. Michaelson (1977a) Stimulation of dog thyroid by local application of high intensity microwaves. Am. J. Physiol. 233: E363.

    Google Scholar 

  • Magin, R. L., S.-T. Lu, and S. M. Michaelson (1977b) Microwave heating effect on the dog thyroid. IEEE Trans. Biomed. Eng. BME-24: 522.

    Google Scholar 

  • Magoun, H. W., F. Harrison, J. R. Brobeck, and S. W. Ranson (1938) Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1: 101.

    Google Scholar 

  • Martin, J. B. (1973) Neural regulation of growth hormone secretion. N. Engl. J. Med. 288: 1384.

    Article  Google Scholar 

  • Mason, J. W. (1968) Overall hormonal balance as a key to endocrine organization. Psychosom. Med. 30 (Part II): 791.

    Google Scholar 

  • Matsuyama, H., A. Ruhmann-Wemhold, and D. H. Nelson (1971) Radio immunoassay of plasma ACTH in intact rats. Endocrinology 88: 692.

    Article  Google Scholar 

  • Michaelson, S. M. (1977) Endocrine and biochemical effects. In: Microwave and Radiofrequency Radiation, M. Suess (ed.). World Health Organization, Regional Office for Europe, Section 7, pp. 18-23.

    Google Scholar 

  • Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1961) Physiologic aspects of microwave irradiation of mammals. Am. J. Physiol. 201: 351.

    Google Scholar 

  • Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67–461, Griffiss AFB, Rome Air Development Center, Rome, N.Y.

    Google Scholar 

  • Michaelson, S. M., W. M. Houk, N. J. Lebda, S.-T. Lu, and R. Magin (1975) Biochemical and neuroendocrine aspects of exposure to microwaves. Ann. N.Y. Acad. Sci. 247: 21.

    Article  Google Scholar 

  • Mikolajczyk, H. (1972) Hormone reactions and changes in endocrine glands under influence of microwaves. Med. Lotn. 39: 39.

    Google Scholar 

  • Mikolajczyk, H. (1974) Microwave irradiation and endocrine functions. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 46–51.

    Google Scholar 

  • Mikolajczyk, H. (1977) Microwave-induced shifts of gonadotropic activity in anterior

    Google Scholar 

  • pituitary glands of rats. In: Biologic Effects of Electromagnetic Waves,Vol. I, C. C.

    Google Scholar 

  • Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 377–383.

    Google Scholar 

  • Milroy, W. C., and S. M. Michaelson (1972) Thyroid pathophysiology of microwave

    Google Scholar 

  • radiation. Aerosp. Med. 43:1126.

    Google Scholar 

  • Nakayama, T., H. T. Hammel, J. D. Hardy, and J. S. Eisenman (1963) Thermal stimulation of electrical activity of single units of the preoptic region. Am. J. Physiol. 204: 1122.

    Google Scholar 

  • Neill, J. D. (1970) Effect of “stress” on serum prolactin and luteinizing hormone levels during the estrus cycle of the rat. Endocrinology 87: 1192.

    Article  Google Scholar 

  • Novitskii, A. A., B. F. Murashov, P. E. Krasnobaev, and N. F. Markozova (1977) The functional condition of the system hypothalamus—hypophysis—adrenal cortex as a criterion in establishing the permissible levels of superhigh frequency electromagnetic emissions. Voen. Med. Zh. 8: 53.

    Google Scholar 

  • Parker, L. N. (1973) Thyroid suppression and adrenomedullary activation by low-intensity microwave radiation. Am. J. Physiol. 224: 1388.

    Google Scholar 

  • Petrov, I. R., and V. A. Syngayevskaya (1970) Endocrine glands. In: Influence of Microwave Radiation on the Organism of Man and Animals, I. R. Petrov (ed.). Meditsina Press, Leningrad (NASA TT F-708, 1971, pp. 31–41 ).

    Google Scholar 

  • Phillips, R. D., E. L. Hunt, R. D. Castro, and N. W. King (1975) Thermoregulatory, metabolic and cardiovascular response of rats to microwaves. J. Appl. Physiol. 38: 630.

    Google Scholar 

  • Roberts, N. J., Jr., S. M. Michaelson, and S. T. Lu (1986) The biological effects of radiofrequency radiation: A critical review and recommendation. Int. J. Radiat. Biol. 50: 379.

    Article  Google Scholar 

  • Rosenthal, S. H. (1973) Alterations in serum thyroxine with cerebral electrotherapy (CET). Arch. Gen. Psychiatry 28: 28.

    Article  Google Scholar 

  • Schally, A. V., A. Akimura, and A. J. Kastin (1973) Hypothalamic regulatory hormones. Science 179:341.

    Google Scholar 

  • Schliephake, E. (1960) Endocrine influence on bleeding and coagulation time. Zentralbi. Chir. 85:1063.

    Google Scholar 

  • Selye, H. (1946) The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 6:117.

    Google Scholar 

  • Selye, H. (1950) Stress. Acta. Inc., Montreal.

    Google Scholar 

  • Shapiro, A. R., R. F. Lutomirski, and H. T. Yura (1970) Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave. P-4458–1, Rand Corp., Santa Monica, Calif. IEEE Trans. Microwave Theory Tech. MIT-19: 187, 1971.

    Google Scholar 

  • Shizume, K., and S. Okinaka (1964) Control of thyroid function by the nervous system. In: Major Problems in Neuroendocrinology, E. Bajusz and G. Jasmin (eds.). Karger, Basel pp. 286–306.

    Google Scholar 

  • Shutenko, O. I., and I. I. Shvayko (1972) Impact of low-intensity SHF radiation on the functional condition of the thyroid gland. In: Industrial Health and the Biological Effect of Radio Frequency Electromagnetic Waves. Material of the Fourth All-Union Symposium, Moscow, p. 52.

    Google Scholar 

  • Smirnova, M. I., and M. S. Sadchikova (1960) Determination of the functional activity of the thyroid gland by means of radioactive iodine in workers with UHF generators. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, pp. 47–49.

    Google Scholar 

  • Stefanovskaya, N. V., and G. M. Klochkova (1969) Effect of hyperthermia on the reaction of the adrenal cortex of heat-conditioned animals. Izv. Akad. Nauk Turkm. SSR Ser. Biol. Nauk 4: 74.

    Google Scholar 

  • Ström, G. (1961) Central nervous regulation of body temperature. In: Handbook of Physiology, Sect. I, Vol. II, J. Field, H. W. Magoun, and V. E. Hall (eds.). American Physiological Society, Washington, D.C., pp. 1173–1196.

    Google Scholar 

  • Swenson, M. J. (ed.) (1970) Duke’s Physiology of Domestic Animals, 8th edition. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  • Tolgskaya, M. S., Z. V. Gordon, V. V. Markov, and R. S. Varonlov (1972) The influence of intermittent and continuous microwave irradiation on the hypothalamic neurosecretory function. In: Gig. Tr. Biol. Deist. Elektromag. Radio Symp., Moscow, p. 34.

    Google Scholar 

  • Travers, W. D., and R. J. Vetter (1976) Low intensity microwave effects on the synthesis of thyroid hormones and serum proteins. In: Proceedings of the 1976 Annual Meeting of USNC/URSI, pp. 91–92.

    Google Scholar 

  • Vetter, R. J. (1975) Neuroendocrine response to microwave irradiation. Proc. Natl. Electron. Conf. 30: 237.

    Google Scholar 

  • Von Euler, C. (1950) Slow temperature potentials in the hypothalamus. J. Cell. Comp. Physiol. 36: 333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelson, S.M., Lin, J.C. (1987). Neuroendocrine Effects. In: Biological Effects and Health Implications of Radiofrequency Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4614-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4614-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3202-0

  • Online ISBN: 978-1-4757-4614-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics