Advertisement

Neuroendocrine Effects

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

To maintain homeostasis, a mammal possesses two control mechanisms that react to changes in internal and external environments (stimuli or stress). These two control mechanisms are the neural and endocrine systems. Separation of endocrine from neural control is not always possible as neural signals are integrated at the hypothalamus to react to deviations in the internal or external environment. Hypothalamichypophysial-adrenocortical (HHA), hypothalamic-hypophysial-hyroidal (HHT), and hypothalamic-hypophysial-somatotropic (HHS) are three endocrine systems that participate in the “stress” response. Generally, they operate through a negative feedback mechanism.

Keywords

Growth Hormone Thyroid Hormone Adrenal Cortex Neuroendocrine System Endocrine Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M. A., and L. W. Chapman (1977) Rapid brain cooling in exercising dogs. Science 195: 781.CrossRefGoogle Scholar
  2. Baranski, S, and P. Czerski (1976) Biological Effects of Microwaves. Dowden, Hutchinson & Ross, Stroudsburg, Pa.Google Scholar
  3. Baranski, S., K. Ostrowski, and W. Stodolnik-Baranska (1972) Functional and morphological studies of the thyroid gland in animals exposed to microwave irradiation. Acta Physiol. Pol. 23: 1029.Google Scholar
  4. Bereznitskaya, A. N. (1968) The effect of 10-centimeter and ultrashort waves on the reproductive function of female mice. Gig. Tr. Prof Zabol. 9: 33.Google Scholar
  5. Brown, G. M., and S. Reichlin (1972) Psychologic and neural regulation of growth hormone secretion. Psychosom. Med. 34: 45.Google Scholar
  6. Brown-Grant, K., C. Von Euler, G. W. Harris, and S. Reichlin (1954) The measurement and experimental modification of thyroid activity in the rabbit. J. Physiol. (London) 126: 1.Google Scholar
  7. Cleary, S. F. (1977) Biological effects of microwaves and radiofrequency radiation. In: CRC Critical Reviews in Environmental Control, Vol. 7, C. Straub (ed.). Chemical Rubber Company, Cleveland, pp. 121-165.Google Scholar
  8. Collins, K. J., and J. S. Weiner (1968) Endocrinological aspects of exposure to high environmental temperatures. Physiol. Rev. 48: 785.Google Scholar
  9. Currier, D. P., and R. M. Nelson (1969) Changes in motor conduction velocity induced by exercise and diathermy. Phys. Ther. 49:146.Google Scholar
  10. Curtis, G. C. (1972) Psychosomatics and chronobiology: Possible implications of neuroendocrine rhythms Psychosom. Med. 34: 235.Google Scholar
  11. Delado, J. M. R., and T. Hanai (1966) Intracerebral temperature in freely moving cats. Am. J. Physiol. 211: 755.Google Scholar
  12. de Lorge, J. (1978) Disruption of behavior in mammals of three different sizes exposed to microwaves: Extrapolation to larger mammals. In: Electromagnetic Fields in Biological Systems, S. S. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 215–228.Google Scholar
  13. Demokidova, N. K. (1974) The effects of radiowaves on the growth of animals. In: Biological Effects of Radiofrequency Electromagnetic Fields, Z. V. Gordon (ed.). JPRS 63321.Google Scholar
  14. Dempsey, E. W., and E. B. Astwood (1943) Determination of the rate of thyroid hormone secretion at various environmental temperatures. Endocrinology 32: 509.CrossRefGoogle Scholar
  15. Denisiewicz, R., E. Dziuk, and M. Siekierzynski (1970) Evaluation of thyroid function in persons occupationally exposed to microwave radiation. Pol. Arch. Med. Wewn. 45: 19.Google Scholar
  16. Dumansky, Y. D. and M. G. Shandala (1974) The biological action and hygienic significance of electromagnetic fields of superhigh and ultrahigh frequencies in densely populated areas. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 289–293.Google Scholar
  17. Dumansky, Y. D., A. M. Serdyuk, C. I. Litvinova, L. A. Tomashevskaya, and V. M. Popovich (1972) Experimental research on the biological effects of 12-centimeter low-intensity waves. In: Health in Inhabited Localities, Ed. II, Kiev, p. 29.Google Scholar
  18. D’Yachenko, N. A. (1970) Changes in thyroid function with chronic exposure to microwave radiation. Gig. Tr. Prof. Zabol. 14: 51.Google Scholar
  19. Fischer, E., and S. Solomon (1958) Physiological responses to heat and cold. In: Therapeutic Heat and Cold, S. H. Licht (ed.). E. Licht, New Haven, Conn., p. 116.Google Scholar
  20. Gandhi, O. P. (1975) Conditions of strongest electromagnetic power deposition in man and animals. IEEE Trans. Microwave Theory Tech. MIT-23: 1021.Google Scholar
  21. Grant, L., P. Hopkinson, G. Jennings, and F. A. Jennre (1971) Period of adjustment of rats used for experimental studies. Nature (London) 232: 135.CrossRefGoogle Scholar
  22. Guillet, R., and S. M. Michaelson (1977) The effect of repeated microwave exposure on neonatal rats. Radio Sci. 12 (6S): 125.CrossRefGoogle Scholar
  23. Guillet, R., W. G. Lotz, and S. M. Michaelson (1975) Time-course of adrenal response in microwave-exposed rats. In: Proceedings of the 1975 Annual Meeting of USNCI URSI, p. 316.Google Scholar
  24. Hardy, J. D. (1973) Posterior hypothalamus and the regulation of body temperature. Fed. Proc. 32: 1564.Google Scholar
  25. Ho, H. S., and W. P. Edwards (1977a) Oxygen-consumption rate of mice under differing dose rates of microwave radiation. Radio Sci. 12 (6S): 131.CrossRefGoogle Scholar
  26. Ho, H. S., and W. P. Edwards (1977b) Dose rate and oxygen consumption rate in mice confined in a small animal holder during exposure to 2450 MHz. Radiat. Environ. Biophys. 14: 251.CrossRefGoogle Scholar
  27. Houk, W. M., S. M. Michaelson, and D. E. Beischer (1975) The effects of environmental temperature on thermoregulatory, serum lipid, carbohydrate, and growth hormone responses of rats exposed to microwaves. In: Proceedings of the 1975 Annual Meeting of USNC/URSI, p. 309.Google Scholar
  28. Johnson, C. C., and A. W. Guy (1972) Non-ionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.CrossRefGoogle Scholar
  29. Johnson, H. D., M. W. Ward, and H. H. Kibler (1966) Heat and aging effects on thyroid function of male rats. J. Appl. Physiol. 21: 689.Google Scholar
  30. Kirchev, K., P. Eftinova, and S. Sichev (1959) Some experimental data on the effects of a UHF electric field on the adrenals. In: Problems of Physiotherapy and Health Reports, Moscow, pp. 81–88.Google Scholar
  31. Kritikos, H. N., and H. P. Schwan (1972) Hot spots generated in conducting spheres byGoogle Scholar
  32. electromagnetic waves and biological implications. IEEE Trans. Biomed. Eng. BME-19:53.Google Scholar
  33. Kvetnansky, R., V. Weise, and I. Kopin (1970) Elevation of adrenal tyrosine hydroxylase and phenylethanolamine-N-methyl transferase by repeated immobilization of rats. Endocrinology 87: 744.CrossRefGoogle Scholar
  34. Larsen, L. E., R. A. Moore, and J. Acevedo (1973) An rf decoupled electrode for measurement of brain temperature during microwave exposure. In: Proceedings of the 1973 IEEE G—MTT International Microwave Symposium, Boulder, p. 262.Google Scholar
  35. Leduc, F. (1961) Catecholamine production and release in exposure and acclimatization to cold. Acta Physiol. Scand. 53 (Suppl. 183): 1.Google Scholar
  36. Lenko, J., A. Dolatowski, L. Gruszecki, S. Klajman, and L. Januszkiewicz (1966) Effect of 10-cm radar waves on the level of 17-ketosteroids and 17-hydroxycorticosteroids in the urine of rabbits. Przegl. Lek. 22: 296.Google Scholar
  37. Leytes, F. L., and L. A. Skurikina (1961) The effect of microwaves on the hormonal activity of the adrenal cortex. Byull. Eksp. Biol. Med. 52: 47.Google Scholar
  38. Lin, J. C., A. W. Guy, and G. H. Kraft (1973) Microwave selective brain heating. J. Microwave Power 8: 275.Google Scholar
  39. Lotz, W. G. (1979a) Adrenocortical response in rats exposed to 1.29 GHz microwaves. Presented at Bioelectromagnetics Symposium, Seattle.Google Scholar
  40. Lotz, W. G. (1979b) Thermal and endocrinological effects of microwave exposures on rhesus monkeys. Presented at Bioelectromagnetics Symposium, Seattle.Google Scholar
  41. Lotz, W. G., and S. M. Michaelson (1976) Temperature and corticosterone relationship in microwave exposed rats. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 44: 438.Google Scholar
  42. Lotz, W. G., and S. M. Michaelson (1979) Effects of hypophysectomy and dexamethasone on the rat’s adrenal response to microwave irradiation. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 47: 1284.Google Scholar
  43. Lotz, W. G., S. M. Michaelson, and N. J. Lebda (1977) Growth hormone levels of rats exposed to 2450-MHz (CW) microwaves. In: International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va., p. 39 (Abstr.).Google Scholar
  44. Lotz, W. G., and R. P. Podgorski (1982) Temperature and adrenocortical response in rhesus monkeys exposed to microwaves. J. Appl. Physiol. 53: 1565.Google Scholar
  45. Lu, S.-T., N. J. Ledba, and S. M. Michaelson (1977a) Effects of microwave radiation on the rat’s pituitary—thyroid axis. In: International Symposium on the Biological Effects of Electromagnetic Waves, Airlie, Va., p. 37 (Abstr.).Google Scholar
  46. Lu, S.-T., N. J. Lebda, S. M. Michaelson, S. Pettit, and D. Rivera (1977b) Thermal and endocrinological effects of protracted irradiation of rats by 2450 MHz microwaves. Radio Sci. 12 (6S): 147.CrossRefGoogle Scholar
  47. Lu, S.-T., N. J. Lebda, S. Pettit, and S. M. Michaelson (1979a) Modification of microwave biological end-points by increased resting metabolic heat load in rats. Presented at Bioelectromagnetics Symposium, Seattle.Google Scholar
  48. Lu, S.-T., S. Pettit, and S. M. Michaelson (1979b) Dual action of microwaves on serumGoogle Scholar
  49. corticosterone in rats. Presented at Bioelectromagnetics Symposium,Seattle.Google Scholar
  50. Lu, S.-T., W. G. Lotz, and S. M. Michaelson (1980) Advances in microwave-induced neuroendocrine effects: The concept of stress. Proc. IEEE 68: 73.CrossRefGoogle Scholar
  51. Lu, S.-T., N. J. Lebda, S. Pettit, and S. M. Michaelson (1981) Microwave-induced temperature corticosterone, and thyrotropin interrelationships. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 50: 399.Google Scholar
  52. McLees, B. D., and E. D. Finch (1971) Analysis of the Physiologic Effects of Microwave Radiation. U.S. Nay. Med. Res. Inst., Bethesda (Project MF12.524:015–0001B, Rep. No. 3 ).Google Scholar
  53. Magin, R. L., S.-T. Lu, and S. M. Michaelson (1977a) Stimulation of dog thyroid by local application of high intensity microwaves. Am. J. Physiol. 233: E363.Google Scholar
  54. Magin, R. L., S.-T. Lu, and S. M. Michaelson (1977b) Microwave heating effect on the dog thyroid. IEEE Trans. Biomed. Eng. BME-24: 522.Google Scholar
  55. Magoun, H. W., F. Harrison, J. R. Brobeck, and S. W. Ranson (1938) Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1: 101.Google Scholar
  56. Martin, J. B. (1973) Neural regulation of growth hormone secretion. N. Engl. J. Med. 288: 1384.CrossRefGoogle Scholar
  57. Mason, J. W. (1968) Overall hormonal balance as a key to endocrine organization. Psychosom. Med. 30 (Part II): 791.Google Scholar
  58. Matsuyama, H., A. Ruhmann-Wemhold, and D. H. Nelson (1971) Radio immunoassay of plasma ACTH in intact rats. Endocrinology 88: 692.CrossRefGoogle Scholar
  59. Michaelson, S. M. (1977) Endocrine and biochemical effects. In: Microwave and Radiofrequency Radiation, M. Suess (ed.). World Health Organization, Regional Office for Europe, Section 7, pp. 18-23.Google Scholar
  60. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1961) Physiologic aspects of microwave irradiation of mammals. Am. J. Physiol. 201: 351.Google Scholar
  61. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67–461, Griffiss AFB, Rome Air Development Center, Rome, N.Y.Google Scholar
  62. Michaelson, S. M., W. M. Houk, N. J. Lebda, S.-T. Lu, and R. Magin (1975) Biochemical and neuroendocrine aspects of exposure to microwaves. Ann. N.Y. Acad. Sci. 247: 21.CrossRefGoogle Scholar
  63. Mikolajczyk, H. (1972) Hormone reactions and changes in endocrine glands under influence of microwaves. Med. Lotn. 39: 39.Google Scholar
  64. Mikolajczyk, H. (1974) Microwave irradiation and endocrine functions. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski, K. Ostrowski, M. L. Shore, C. Silverman, M. J. Suess, and B. Waldeskog (eds.). Polish Medical Publishers, Warsaw, pp. 46–51.Google Scholar
  65. Mikolajczyk, H. (1977) Microwave-induced shifts of gonadotropic activity in anteriorGoogle Scholar
  66. pituitary glands of rats. In: Biologic Effects of Electromagnetic Waves,Vol. I, C. C.Google Scholar
  67. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8010, pp. 377–383.Google Scholar
  68. Milroy, W. C., and S. M. Michaelson (1972) Thyroid pathophysiology of microwaveGoogle Scholar
  69. radiation. Aerosp. Med. 43:1126.Google Scholar
  70. Nakayama, T., H. T. Hammel, J. D. Hardy, and J. S. Eisenman (1963) Thermal stimulation of electrical activity of single units of the preoptic region. Am. J. Physiol. 204: 1122.Google Scholar
  71. Neill, J. D. (1970) Effect of “stress” on serum prolactin and luteinizing hormone levels during the estrus cycle of the rat. Endocrinology 87: 1192.CrossRefGoogle Scholar
  72. Novitskii, A. A., B. F. Murashov, P. E. Krasnobaev, and N. F. Markozova (1977) The functional condition of the system hypothalamus—hypophysis—adrenal cortex as a criterion in establishing the permissible levels of superhigh frequency electromagnetic emissions. Voen. Med. Zh. 8: 53.Google Scholar
  73. Parker, L. N. (1973) Thyroid suppression and adrenomedullary activation by low-intensity microwave radiation. Am. J. Physiol. 224: 1388.Google Scholar
  74. Petrov, I. R., and V. A. Syngayevskaya (1970) Endocrine glands. In: Influence of Microwave Radiation on the Organism of Man and Animals, I. R. Petrov (ed.). Meditsina Press, Leningrad (NASA TT F-708, 1971, pp. 31–41 ).Google Scholar
  75. Phillips, R. D., E. L. Hunt, R. D. Castro, and N. W. King (1975) Thermoregulatory, metabolic and cardiovascular response of rats to microwaves. J. Appl. Physiol. 38: 630.Google Scholar
  76. Roberts, N. J., Jr., S. M. Michaelson, and S. T. Lu (1986) The biological effects of radiofrequency radiation: A critical review and recommendation. Int. J. Radiat. Biol. 50: 379.CrossRefGoogle Scholar
  77. Rosenthal, S. H. (1973) Alterations in serum thyroxine with cerebral electrotherapy (CET). Arch. Gen. Psychiatry 28: 28.CrossRefGoogle Scholar
  78. Schally, A. V., A. Akimura, and A. J. Kastin (1973) Hypothalamic regulatory hormones. Science 179:341.Google Scholar
  79. Schliephake, E. (1960) Endocrine influence on bleeding and coagulation time. Zentralbi. Chir. 85:1063.Google Scholar
  80. Selye, H. (1946) The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 6:117.Google Scholar
  81. Selye, H. (1950) Stress. Acta. Inc., Montreal.Google Scholar
  82. Shapiro, A. R., R. F. Lutomirski, and H. T. Yura (1970) Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave. P-4458–1, Rand Corp., Santa Monica, Calif. IEEE Trans. Microwave Theory Tech. MIT-19: 187, 1971.Google Scholar
  83. Shizume, K., and S. Okinaka (1964) Control of thyroid function by the nervous system. In: Major Problems in Neuroendocrinology, E. Bajusz and G. Jasmin (eds.). Karger, Basel pp. 286–306.Google Scholar
  84. Shutenko, O. I., and I. I. Shvayko (1972) Impact of low-intensity SHF radiation on the functional condition of the thyroid gland. In: Industrial Health and the Biological Effect of Radio Frequency Electromagnetic Waves. Material of the Fourth All-Union Symposium, Moscow, p. 52.Google Scholar
  85. Smirnova, M. I., and M. S. Sadchikova (1960) Determination of the functional activity of the thyroid gland by means of radioactive iodine in workers with UHF generators. In: The Biological Action of Ultrahigh Frequencies, A. A. Letavet and Z. V. Gordon (eds.). Acad. Med. Sci., Moscow, pp. 47–49.Google Scholar
  86. Stefanovskaya, N. V., and G. M. Klochkova (1969) Effect of hyperthermia on the reaction of the adrenal cortex of heat-conditioned animals. Izv. Akad. Nauk Turkm. SSR Ser. Biol. Nauk 4: 74.Google Scholar
  87. Ström, G. (1961) Central nervous regulation of body temperature. In: Handbook of Physiology, Sect. I, Vol. II, J. Field, H. W. Magoun, and V. E. Hall (eds.). American Physiological Society, Washington, D.C., pp. 1173–1196.Google Scholar
  88. Swenson, M. J. (ed.) (1970) Duke’s Physiology of Domestic Animals, 8th edition. Cornell University Press, Ithaca, N.Y.Google Scholar
  89. Tolgskaya, M. S., Z. V. Gordon, V. V. Markov, and R. S. Varonlov (1972) The influence of intermittent and continuous microwave irradiation on the hypothalamic neurosecretory function. In: Gig. Tr. Biol. Deist. Elektromag. Radio Symp., Moscow, p. 34.Google Scholar
  90. Travers, W. D., and R. J. Vetter (1976) Low intensity microwave effects on the synthesis of thyroid hormones and serum proteins. In: Proceedings of the 1976 Annual Meeting of USNC/URSI, pp. 91–92.Google Scholar
  91. Vetter, R. J. (1975) Neuroendocrine response to microwave irradiation. Proc. Natl. Electron. Conf. 30: 237.Google Scholar
  92. Von Euler, C. (1950) Slow temperature potentials in the hypothalamus. J. Cell. Comp. Physiol. 36: 333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations