Advertisement

Historical Perspective

  • Sol M. Michaelson
  • James C. Lin
Chapter

Abstract

Life on earth has developed in a natural radiation environment. Man is continually exposed to electromagnetic radiation from the sun, to radioactivity inside and outside the body, and to cosmic rays. Within our planetary system the sun is the largest source of natural radiant energy.

Keywords

American National Standard Institute Microwave Exposure Extremely High Frequency Radiofrequency Radiation High Frequency Electrical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American National Standards Institute (1966) Safety Level of Electromagnetic Radiation with Respect to Personnel. United States of America Standards Institute (USASI), New York, USASI-C 95. 1.Google Scholar
  2. Anne, A. (1963) Scattering and Absorption of Microwaves by Dissipative Dielectric Objects: The Biological Significance and Hazard to Mankind Ph.D. thesis, University of Pennsylvania, Philadelphia.Google Scholar
  3. Cole, K. S. (1928) Electric impedance of suspensions of Arbacia eggs. J. Gen. Physiol. 12: 37.CrossRefGoogle Scholar
  4. Cole, K. S., and R. H. Cole (1941) Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9: 341.CrossRefGoogle Scholar
  5. Cole, K.S., and R. H. Cole (1942) Dispersion and absorption in dielectrics. II. Direct current characteristics. J. Chem. Phys. 10: 98.CrossRefGoogle Scholar
  6. Cole, K.S., and H. J. Curtis (1936) Electric impedance of nerve and muscle. Cold Spring Harbor Symp. Quant. Biol. 4: 73.CrossRefGoogle Scholar
  7. Cole, K. S., and H. J. Curtis (1941) Membrane potential of squid axon during current flow. J. Gen. Physiol. 24: 551.CrossRefGoogle Scholar
  8. Cole, K. S., and H. J. Curtis (1960) Bioelectricity: Electric physiology. In: Medical Physics, Vol. II, O. Glasser (ed.). Year Book Medical, Chicago, p. 82.Google Scholar
  9. Curtis, H. J., and K. S. Cole (1938) Electric impedance of single marine eggs. J. Gen. Physiol. 21: 583.CrossRefGoogle Scholar
  10. D’Arsonval, M. A. (1893) The generation of high-frequency and high-intensity currents and their physiological effects. C. R. Soc. Biol. 45: 122.Google Scholar
  11. Department of Defense (1965) Control of Hazards to Health from Microwave Radiation. TB MED 270/AFM 161–7, Departments of the Army and Air Force.Google Scholar
  12. Ely, T. S., and D. E. Goldman (1957) Heating characteristics of laboratory animals exposed to ten centimeter microwaves—Summary. In: Proceedings of the Tri-Service Conference on Biological Hazards of Microwave Radiation, E. G. Pattishall (ed.). George Washington University, Washington, D.C., p. 64.Google Scholar
  13. Fricke, H. (1933) Electric impedance of suspensions of biological cells. Cold Spring Harbor Symp. Quant. Biol. 1: 117.CrossRefGoogle Scholar
  14. Fricke, H., and H. J. Curtis (1934) Specific resistance of interior of red blood corpuscle. Nature (London) 133: 651.CrossRefGoogle Scholar
  15. Fricke, H., H. P. Schwan, K. Li, and V. Bryson (1956) Dielectric study of the low-conductance surface membrane in E. coli. Nature (London) 177: 134.CrossRefGoogle Scholar
  16. Glaser, Z. R. ( 1971, et seq.) Bibliography of Reported Biological Phenomena (“Effects”) and Clinical Manifestations Attributed to Microwave and Radio-Frequency Radiation. U.S. Nay. Med. Res. Inst., Bethesda.Google Scholar
  17. Herrick, J. F. (1958) Pearl-chain formation. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 88.Google Scholar
  18. Herrick, J. F., and F. H. Krusen (1953) Certain physiologic and pathologic effects of microwaves. Electrical Eng. 72: 239.Google Scholar
  19. Herrick, J., and F. Krusen (1956) Problems which are challenging investigators in medicine. IRE Trans. Med. Electron. PGME-4: 10.Google Scholar
  20. Höber, R. (1912) Ein zweites Verfahren, die Leitfahigkeit im Innern von Zellen zu messen. I. Arch. Ges. Physiol. 148: 189.CrossRefGoogle Scholar
  21. Höber, R. (1913) Ein zweites Verfahren, die Leitfahigkeit im Innern von Zellen zu messen. II. Arch. Ges. Physiol. 150: 15.CrossRefGoogle Scholar
  22. Hodgkin, A. L. (1947) Membrane resistance of non-medullated nerve fibre. J. Physiol. (London) 106: 305.Google Scholar
  23. Hodgkin, A. L., and A. F. Huxley (1952) Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117: 500.Google Scholar
  24. Imig, C. J., J. D. Thomson, and H. M. Hines (1948) Testicular degeneration as a result of microwave irradiation. Proc. Soc. Exp. Biol. Med. 69: 382.Google Scholar
  25. Krusen, F. H. (1950) Medical applications of microwave diathermy: Laboratory and clinical studies. Proc. R. Soc. Med. 43: 641.Google Scholar
  26. Krusen, F. H. (1951) New microwave diathermy director for heating large regions of the human body. Arch. Phys. Med. 32: 695.Google Scholar
  27. Krusen, F.H., J. F. Herrick, U. Leden, and K. G. Wakim (1947) Microkymatotherapy: Preliminary report of experimental studies of the heating effect of microwaves (radar) in living tissues. Proc. Mayo Clin. 22: 209.Google Scholar
  28. Liebesny, P. (1935) Short and Ultrashort Waves in Biology. Urban & Schwarzenberg, Munich.Google Scholar
  29. Liebesny, P. (1938) Athermic short wave therapy. Arch. Phys. Ther. (Chicago) 19: 736.Google Scholar
  30. McAfee, R. D. (1959) Neurophysiological effects of microwave irradiation. In: Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments, C. Susskind (ed.). University of California, Berkeley, p. 314.Google Scholar
  31. Michaelson, S. M. (1971) The tri-service program—A tribute to George M. Knauf, USAF (MC). IEEE Trans. M.crowave Theory Tech. MTT-19: 131.Google Scholar
  32. Michaelson, S. M., R. A. E. Thomson, and J. W. Howland (1967) Biologic Effects of Microwave Exposure. Tech. Rep. RADC-TR-67–461, Griffiss AFB, Rome Air Development Center, Rome, N.Y. Also: U.S. Senate, 90th Congress, Second Session on S2067, S3211, and HR 10790, 1968; Radiation Control for Health and Safety Act of 1967, pp. 1443–1570.Google Scholar
  33. Oncley, J. L. (1942) Investigation of proteins by dielectric measurements. Chem. Rev. 30: 433.CrossRefGoogle Scholar
  34. Oncley, J. L. (1943) The electric moments and relaxation times of proteins as measured from their influence upon the dielectric constants of solutions. In: Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions, E. J. Cohn and J. T. Edsall (eds.). Reinhold, New York, pp. 543–568.Google Scholar
  35. Osswald, K. (1937) High frequency conductivity and dielectric constants of biological tissues and fluids. Hochfrequenztech. Elektroakust. 49: 40.Google Scholar
  36. Pattishall, E. G. (ed.) (1957) Proceedings of the Tri-Service Conference on Biological Hazards of Microwave Radiation. George Washington University, Washington, D.C.Google Scholar
  37. Pattishall, E. G., and F. W. Banghart (eds.) (1958) Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy. University of Virginia, Charlottesville.Google Scholar
  38. Pätzold, J., and H. Schaefer (1948) Biophysical foundations of the therapeutic aspects of high frequency electrical fields. In: Natural Sciences and Medicine in Germany, 1934–1946, Vol. 22, B. Rajewsky (ed.). Biophysics II, Wiesbaden, pp. 17–19.Google Scholar
  39. Peyton, M. F. (ed.) (1961) Biological Effects of Microwave Radiation: Proceedings of the Fourth Annual Tri-Service Conference. Plenum Press, New York.Google Scholar
  40. Rajewsky, B. (ed.) (1938) Ergebnisse der Biophysikalischen Forschung in Einzeldarstellungen, Vol. I. Thieme, Stuttgart.Google Scholar
  41. Richardson, A. W. (1958) Review of the work conducted at the University of St. Louis (USN sponsored). In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 169.Google Scholar
  42. Richardson, A. W., T. D. Duane, and H. M. Hines (1948) Experimental lenticular opacities produced by microwave irradiation. Arch. Phys. Med. 29: 765.Google Scholar
  43. Schaefer, H., and H. Schwan (1943) Concerning the question of selective heating of small particles in the ultrashort wave condenser field. Ann. Phys. (Leipzig) 43: 99.Google Scholar
  44. Schaefer, H., and H. Schwan (1947) Concerning the question of selective overheating of single cells in biological tissue by means of ultrashort wave currents. Strahlentherapie 77: 123.Google Scholar
  45. Schereschewsky, J. W. (1926) The physiological effects of currents of very high frequency (135,000,000 to 8,300,000 cps). Public Health Rep. 41: 1939.Google Scholar
  46. Schliephake, E. (1935) Short Wave Therapy—The Medical Use of Electrical High Frequencies. Actinic Press, London.Google Scholar
  47. Schwan, H. P. (1948) Temperature dependence of the dielectric constant of blood at low frequencies. Z. Naturforsch. 3b: 361.Google Scholar
  48. Schwan, H. P. (1953) Electrical properties of blood at ultrahigh frequencies. Am. J. Phys. Med. 32: 144.Google Scholar
  49. Schwan, H. P. (1955) Applications of UHF impedance measuring techniques in biophysics. IRE Trans. Med. Electron. PGME-4: 75.Google Scholar
  50. Schwan, H. P. (1957a) Influence of Electromagnetic Radiation on Biological Material. Final report from the University of Pennsylvania on ONR Contract (1 July 1954 to 30 June 1957), AD 149535.Google Scholar
  51. Schwan, H. P. (1957b) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 5: 147.Google Scholar
  52. Schwan, H. P. (1958a) Biophysics of diathermy. In: Therapeutic Heat, S. H. Licht (ed.). E. Licht, New Haven, Conn., p. 55.Google Scholar
  53. Schwan, H. P. (1958b) Molecular response characteristics to ultra-high frequency fields. In: Proceedings of the Second Annual Tri-Service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 33.Google Scholar
  54. Schwan, H. P. (1964) Non-Thermal Effects of Alternating Electrical Fields on Biological Structures. Final report from the University of Pennsylvania on ONR Contract, AD 600263.Google Scholar
  55. Schwan, H. P. (1970) Non-Thermal Effects of Alternating Electrical Fields on Biological Structures. Final report from the University of Pennsylvania on ONR Contract (March 1964 to December 1969 ).Google Scholar
  56. Schwan, H. P. (1975) Dielectric properties of biological materials and interaction of microwave fields at the cellular and molecular level. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, p. 3.CrossRefGoogle Scholar
  57. Schwan, H. P., and K. S. Cole (1960) Bioelectricity: Alternating current admittance of cells and tissues. In: Medical Physics, Vol. III, 0. Glasser (ed.). Year book Medical, Chicago, p. 52.Google Scholar
  58. Schwan, H. P., and K. Li (1956) Hazards due to total body irradiation by radar. Proc. IRE 44: 1572.CrossRefGoogle Scholar
  59. Schwan, H. P., and G. M. Piersol (1954) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part I. Biophysical aspects. Am. J. Phys. Med. 33: 371.Google Scholar
  60. Schwan, H. P., and G. M. Piersol (1955) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part II. Physiological and clinical aspects. Am. J. Phys. Med. 34: 425.Google Scholar
  61. Schwan, H. P., and L. D. Sher (1967) Non-Thermal Effects of Alternating Electric Fields on Biological Structures. University of Pennsylvania Progress Report to ONR (AD 656736 ).Google Scholar
  62. Susskind, C. (ed.) (1959) Proceedings of the Third Annual Tri-Service Conference on Biological Effects of Microwave Radiating Equipments. University of California, Berkeley.Google Scholar
  63. Takashima, S. (1962) Dielectric properties of water of absorption on protein crystals. J. Polym. Sci. 62: 233.CrossRefGoogle Scholar
  64. Wakim, K. G., J. W. Gersten, J. F. Herrick, E C Elkins, and F. H. Krusen (1948a) The effects of diathermy on the flow of blood in the extremities. Arch. Phys. Med. 29: 583.Google Scholar
  65. Wakim, K., J. Herrick, E. Parkhill, and W. Benedict (1948b) Effects of microwav diathermy on the eye. Am. J. Physiol. 155: 432.Google Scholar
  66. Worden, R. E., J. F. Herrick, K. G. Wakim, and F. H. Krusen (1948) The heating effects of microwaves with and without ischemia. Arch. Phys. Med. 29: 751.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Sol M. Michaelson
    • 1
  • James C. Lin
    • 2
  1. 1.University of Rochester School of Medicine and DentistryRochesterUSA
  2. 2.University of IllinoisChicagoUSA

Personalised recommendations