Skip to main content

In Vitro Fluid Dynamics of St. Jude, Ionescu-Shiley and Carpentier-Edwards Aortic Heart Valve Prostheses

  • Chapter
  • 176 Accesses

Abstract

In the study reported here the in vitro fluid dynamic characteristics of the St. Jude (mechanical bi-leaflet), Carpentier-Edwards (porcine) and Ionescu-Shiley (calf peri­cardial) aortic valve prostheses were investigated. The experiments conducted were (a) pressure drop measurements, (b) preliminary photography of the opening of the tissue valve leaflets, and (c)velocity and shear stress measurements. The pressure drop, velocity and shear stress measurements were conducted under steady flow conditions, while the preliminary photography studies were conducted under steady and pulsatile flow conditions. The pressure drop results indicated that the St. Jude and Hall-Kaster valves have the lowest pressure drops compared to any of the other valves used clinically at present. The two bioprostheses had larger pressure drops than would be expected for their basic designs. The smaller sizes of the Carpentier-Edwards valve had excessively large pressure-drops. The photographs of the opening of the valve leaflets indicated that the two bioprostheses do not open as ideally as the natural aortic valve. It was also observed that the Ionescu-Shiley aortic valves opened more symmetrically and with reproducability than the corresponding Carpentier-Edwards valves.

Detailed velocity and shear stress measurements were made with a laser-Doppler anemometer system. These measure­ments indicated that the flow that emerged from the leaflets of both types of tissue valves was jet-like and could lead to turbulent shear stresses on the order of 1000–3000 dynes /cm2. Such turbulent shear stresses could be harmful to blood components. The jet type flow could also damage the the wall of the ascending aorta. Velocity measurements in the immediate downstream vicinity of the St. Jude valve showed that the flow field which emerged from the valve was centralized. The velocity measurements also indicated that there was a region of flow separation adjacent to the vessel wall and immediately downstream from the sewing ring. Such a region of flow separation could lead to excessive tissue overgrowth along the aortic side of the sewing ring. All three types of valve designs, however, created relatively low wall shear stresses on the order of 100–600 dynes/cm2. This result is definitely a positive aspect of these valves when you consider that most of the rigid aortic prostheses we have studied created wall shears on the order of 1000–3000 dynes/cm2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, G. H., Hellums, J. D., Moake, J., and Alfrey, C.P. (1978) Platelet response to shear stress: changes in serotonin release, and ADP induced aggregation, Thrombosis Res. 13, 1039–1047.

    Google Scholar 

  • Broom, N. D. (1978) Fatigue induced damage in glutaraldehydepreserved heart valve tissue, J. Thorac. Cardiovasc. Surg. 76, 202–211.

    Google Scholar 

  • Dellsperger, K. C., and Wieting, D. W. (1979) Presented at the 14th Annual AAMI Meeting, Las Vegas.

    Google Scholar 

  • Ferrans, V. J., Spray, T. L., Billingham, M. E., and Roberts, W. C. (1978) Structural changes in gluteraldehyde-treated porcine hetrografts used as substitute cardiac vlaves, Am. J. Cardiol. 41, 1159–1184.

    Google Scholar 

  • Gabbay, S., McQueen, D. M., Yellin, E. L., and Frater, R. W. M. (1979) In vitro hydrodynamic comparison of mitral valve bioprostheses. To be published in Supplement to Circulation, Cardiovascular Surgery.

    Google Scholar 

  • Hellums,J. D., and Brown III, C. H. (1977) Blood cell damage by mechanical forces. Cardiovascular Flow Dynamics (Edited by N. H. C. Hwang and N. A. Norman) University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Ionescu, M. I., Tanden, A. P., Mary, D. A. S., Abid, A. (1977) Heart valve replacement with the Ionescu-Shiley pericardial xenografts.J. Thorac. Cardiovasc. Surg. 73, 31–42.

    Google Scholar 

  • Ramstack, J. M., Zuckerman, L., and Mockros, L. F. (1979)

    Google Scholar 

  • Shear induced activation of platelets, J. Biomech. 12, 113–125.

    Google Scholar 

  • Spray, T. L., and Roberts, W. C. (1977) Structural changes in porcine xenografts used as substitute cardiac valves, Am. J. Cardiol. 40, 319–330.

    Google Scholar 

  • Stinson, E. B., Griepp, R. B., Oyer, P. E., and Shumway, N.E. (1977) Long-term experience with porcine aortic valve xeno-grafts, J. Thorac. Cardiovasc. Surg. 73,54–63.

    Google Scholar 

  • Yoganathan, A. P., (1978) Cardiovascular fluid mechanics, Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C. (1978) Wall shear stress measurements in the near vicinity of prosthetic aortic heart valves, J. Bioeng. 2, 369–379.

    Google Scholar 

  • Yoganathan, A. P., Corcoran, W. H., and Harrison, E.C. (1979a) In vitro velocity measurements in the vicinity of aortic prostheses. J. Biomech. 12, 135–152.

    Article  Google Scholar 

  • Yoganathan, A. P., Reamer, H. H., Corcoran, W.H., and Harrison, E. C. (1979b) A laser-Doppler anemometer to study velocity fields in the vicinity of prosthetic heart valves, Med. Biol. Eng. Comput. 17, 38–44.

    Google Scholar 

  • Yoganathan, A. P., Corcoran, W. H., and Harrison, E. C. (1979c) Pressure drops across prosthetic aortic heart valves under steady and pulsatile flow–in vitro measurements, J. Biomech 12, 153–164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoganathan, A.P., Corcoran, W.H., Harrison, E.C., Chaux, A. (1980). In Vitro Fluid Dynamics of St. Jude, Ionescu-Shiley and Carpentier-Edwards Aortic Heart Valve Prostheses. In: Schneck, D.J. (eds) Biofluid Mechanics · 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4610-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4610-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4612-9

  • Online ISBN: 978-1-4757-4610-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics