Skip to main content

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

  • 111 Accesses

Abstract

Halogenated carbohydrates received early attention as tools for the study of glycolysis, glyconeogenesis, and sugar transport [for reviews, see Barnett (1972), Taylor (1972), and Taylor et al. (1976)]. This research has been extended to many areas wherein halogenated carbohydrates have been used effectively as mechanistic probes and as leads for chemotherapeutic agents. For example, the successes realized in the use of halogenated sugars as components of nucleosides, nucleotides, and nucleic acids in the development of antitumor and antiviral agents have been discussed at length in the preceding chapter. Cell-surface glycoproteins are involved in immune response and other cellular recognition phenomena, and strategies to alter glycoprotein biosynthesis based on use of carbohydrate analogues have received much recent attention as a basis for chemotherapeutic drug design. Fluorine-18-labeled sugars are now clinically important positron emission tomography (PET) scanning agents. Halogenated sugars have also been used to study the mechanism of “sweetness.” These are among the topics that will be reviewed in this chapter. A recent concise overview of several of these topics related to fluorinated carbohydrates has been given by Kent (1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agbanyo, M., and Taylor, N. F., 1986. Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria, Biosci. Rep. 6: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, J. E. G., 1972. Fluorine as a substituent for oxygen in biological systems: Examples in mammalian membrane transport and glycosidase action, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 95–115.

    Google Scholar 

  • Barnett, J. E. G., Holman, G. D., and Munday, K. A., 1973. Structural requirements for bind- ing to the sugar-transport system of the human erythrocyte, Biochem. J. 131: 211–221.

    PubMed  CAS  Google Scholar 

  • Barnett, J. E. G., Holman, G D, Chalkley, R. A., and Munday, K. A., 1975. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system, Biochem. J. 145: 417–429.

    PubMed  CAS  Google Scholar 

  • Bernacki, R. J., and Korytnyk, W., 1982. Development of membrane sugar and nucleotide sugar analogues as potential inhibitors or modifiers of cellular glycoproteins, in The Glycoproteins, Vol. IV, Glycoproteins, Glycolipids, and Proteoglycans, Part B ( M. I. Horowitz, ed.), Academic Press, New York, pp. 245–263.

    Google Scholar 

  • Bessel, E. M., and Thomas, P., 1973a. The effect of substitution at C-2 of D-glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver), Biochem. J. 131: 83–89.

    Google Scholar 

  • Bessel, E. M., and Thomas, P., 1973b. The deoxyfluoro-D-glucopyranose 6-phosphates and their effect on yeast glucose phosphate isomerase, Biochem. J. 131: 77–82.

    Google Scholar 

  • Bessel, E. M., Foster, A. B., and Westwood, J. H., 1972. The use of deoxyfluoro-Dglucopyranoses and related compounds in a study of yeast hexokinase specificity, Biochem. J. 128: 199–204.

    Google Scholar 

  • Bigham, E. C., Gragg, C. E., Hall, W. R., Kelsey, J. E., Mallory, W. R., Richardson, D. C., Benedict, C., and Ray, P. H., 1984. Inhibition of arabinose 5-phosphate isomerase. An approach to the inhibition of bacterial lipopolysaccharide biosynthesis, J. Med. Chem. 27: 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Briley, P. A., Eisenthal, R., and Harrison, R., 1975. Fluorine as a hydroxy analogue, Biochem. J. 145: 501–507.

    PubMed  CAS  Google Scholar 

  • Card, P. J., 1985. Synthesis of fluorinated carbohydrates, J. Carbohydr. Res. 4: 451–487.

    Article  CAS  Google Scholar 

  • Card, P. J., and Hitz, W. D., 1984. Synthesis of l’-deoxy-l’-fluorosucrose via sucrose synthetase mediated coupling of 1-deoxy-i-fluorofructose with uridine diphosphate glucose, J. Am. Chem. Soc. 106: 5348–5350.

    Article  CAS  Google Scholar 

  • Card, P. J., Hitz, W. D., and Ripp, K. G., 1986. Chemoenzymatic syntheses of fructose-modified sucroses via multienzyme systems. Some topographical aspects of the binding of sucrose to a sucrose carrier protein. J. Am. Chem. Soc. 108: 158–161.

    Google Scholar 

  • Chapman, A., Fujimoto, K., and Kornfeld, S., 1980. The primary glycosylation defect in class E thy-l-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-Pmannose, J. Biol. Chem. 255: 4441–1146.

    CAS  Google Scholar 

  • Chiba, S., Brewer, C. F., Okada, G., Matsui, H., and Hehre, E. J., 1988. Stereochemical studies of D-glucal hydration by a-glucosidases and exo-a-glucanases: Indications of plastic and conserved phases in catalysis by glycosylases, Biochemistry 27: 1564–1569.

    Google Scholar 

  • Datema, R., Schwarz, R. T., and Jankowski, A. W., 1980a. Fluoroglucose-inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides, Eur. J. Biochem. 109: 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Datema, R., Schwarz, R. T., and Winkler, J., 1980b. Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway, Eur. J. Biochem. 110: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Datema, R., Romero, P. A., Legler, G., and Schwarz, R. T., 1982. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol, Proc. Natl. Acad. Sci. USA 79: 6787–6791.

    Article  PubMed  CAS  Google Scholar 

  • Dick, A. P., and Harik, S. I., 1986. Distribution of the glucose transporter in the mammalian brain, J. Neurochem. 46: 1406–1411.

    Article  PubMed  CAS  Google Scholar 

  • Eager, R. G., Jr., Bachovchin, W. W., and Richards, J. H., 1975. Mechanism of action of adenosylcobolamin• 3-Fluoro-1,2-propanediol as substrate for propanediol dehydrase-mechanistic implications, Biochemistry 14: 5523–5528.

    Article  Google Scholar 

  • Eisenthal, R., Harrison, R., Lloyd, W. J., and Taylor, N. F., 1972. Activity of fluoro and deoxy analogues of glycerol as substrates and inhibitors of glycerol kinase, Biochem. J. 130: 199–205.

    PubMed  CAS  Google Scholar 

  • Fondy, T. P., and Emlich, C. A., 1981. Haloacetamido analogues of 2-amino-2-deoxy-D-mannose. Syntheses and effects on tumor-bearing mice, J. Med. Chem. 24: 848–852.

    Article  PubMed  CAS  Google Scholar 

  • Fondy, T. P., Changes, G. S., and Reza, M. J., 1970. Synthesis of 1-halo analogues of DL-glycerol 3-phosphate and their effects on glycerol phosphate dehydrogenase, Biochemistry 9: 3272–3280.

    Article  PubMed  CAS  Google Scholar 

  • Fondy, T. P., Roberts, S. B., Tsiftsoglou, A. S., and Sartorelli, A. C., 1978. Haloacetamido analogues of 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose. Syntheses and effects on the Friend murine erythroleukemia, J. Med. Chem. 21: 1222–1225.

    Article  PubMed  CAS  Google Scholar 

  • Fondy, T. P., Pero, R. W., Karker, K. L., Ghanges, G. S., and Batzold, F. H., 1974. Synthesis of L-1-deoxyfluoroglycerol and its 3-phosphate ester. Effects of the L and D enantiomers in BDF1 mice, J. Med. Chem. 17: 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, J. S., and Wolf, A. P., 1986. 2-Deoxy-2-[18F]fluoro-D-glucose for metabolic studies: Current status, Appl. Radial. Isot. 37: 663–668.

    Google Scholar 

  • Genghof, D. S., Brewer, C. F., and Hehre, E. J., 1978. Preparation and use of a-maltosyl fluoride as a substrate by beta amylase, Carbohydr. Res. 61: 291–299.

    Article  CAS  Google Scholar 

  • Glaudemans, C. P. J., 1987. Seven structurally different murine monoclonal galactan-specific antibodies show identity in their galactosyl-binding subsite arrangements, Mol. Immunol. 24: 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Glaudemans, C. P. J., and Kovac, P., 1988. Deoxyfluoro carbohydrates as probes of binding sites of monoclonal antisaccharide antibodies, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 78–108.

    Google Scholar 

  • Glaudemans, C. P. J., Kovac, P., and Rasmussen, K., 1984. Mapping of subsites in the combining area of monoclonal anti-galactan immunoglobulin A J539, Biochemistry 23: 6732–6736.

    Article  PubMed  CAS  Google Scholar 

  • Glaudemans, C. P. J., Kovac, P., and Rao, A. S., 1989. The subsites of monoclonal antidextran W3129, Carbohydr. Res. 190: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Grier, T. J., and Rasmussen, J. R., 1984. 4-Deoxy-4-fluoro-D-mannose inhibits the glycosylation of the G protein of vesicular stomatitis virus, J. Biol. Chem. 259: 1027–1030.

    Google Scholar 

  • Halama, J. R., Gatley, J. S., DeGrado, T. R., Bernstein, D. R., Ng, C. K., and Holden, J. E., 1984. Validation of 3-deoxy-3-fluoro-D-glucose as a glucose transport analogue in rat heart, Am. J. Physiol. 247: H754 - H759.

    PubMed  CAS  Google Scholar 

  • Halton, D. M., Taylor, N. F., and Lopes, D. P., 1980. The uptake of 3-deoxy-3-fluoro-Dglucose by synaptosomes from rat brain cortex, J. Neurosci. Res. 5: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, F. C., 1970. Haloacetol phosphates. Potential active-site reagents for aldolase, triose phosphate isomerase, and glycerol phosphate dehydrogenase. II. Inactivation of aldolase, Biochemistry 9: 1783–1791.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, F. C., 1971. Haloacetol phosphates. Characterization of the active site of rabbit muscle triosphosphate isomerase, Biochemistry 10: 146–154.

    Article  PubMed  CAS  Google Scholar 

  • Hehre, E. J., Okada, G., and Genghof, D. S., 1969. Configurational specificity: Unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis. 1. Reversal of hydrolysis by a, ß, and glucoamylases with donors of correct anomeric form, Arch. Biochem. Biophys. 135: 75–89.

    Article  CAS  Google Scholar 

  • Hehre, E. J., Brewer, C. F., and Genghof, D. S., 1979. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of ß-amylase on a-and ß-maltosyl fluoride, J. Biol. Chem. 254: 5942–5950.

    PubMed  CAS  Google Scholar 

  • Hehre, E. J., Sawai, T., Brewer, C. F., Nakano, M., and Kanda, T., 1982. Trehalase: Stereocomplementary hydrolytic and glucosyl transfer reactions with a-and ß-D-glucosyl fluoride, Biochemistry 21: 3090–3097.

    Article  PubMed  CAS  Google Scholar 

  • Hitz, W. D., 1988. Sucrose transport in plants using monofluorinated sucroses and glucosides, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 138–155.

    Google Scholar 

  • Hitz, W. D., Card, P. J., and Ripp, K. G., 1986. Substrate recognition by a sucrose transporting protein, J. Biol. Chem. 261: 11986–11991.

    PubMed  CAS  Google Scholar 

  • Hough, L., and Khan, R, 1978. Intensification of sweetness, Trends Biochem. Sci. 3:61–63. Hough, L., and Phadnis, S. P., 1976. Enhancement in the sweetness of sucrose, Nature 263: 800.

    Article  Google Scholar 

  • Jeffery, J., and Jömvall, H., 1983. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism, Proc. Natl. Acad. Sci. USA 80: 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, Y., Momozono, Y., Ishikawa, M., Yamada, T., Yamane, H., Haradahira, T., Maeda, M., and Kojima, M., 1986. Metabolic pathway of 2-deoxy-2-fluoro-D-glucose studied by F-19 NMR, Life Sci. 39: 737–742.

    Article  PubMed  CAS  Google Scholar 

  • Kasumi, T., Brewer, C. F., Reese, E. T., and Hehre, E. J., 1986. Catalytic versatility of trehalase: Synthesis of a-o-glucopyranosyl a-D-glucopyranoside from ß-D-glucosyl fluoride and a-o-xylose, Carbohydr. Res. 146: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Kasumi, T., Tsumuraya, Y., Brewer, C. F., Kersters-Hilderson, H., Claeyssens, M., and Hehre, E. J., 1987. Catalytic versatility of Bacillus pumilus ß-xylosidase: Glycosyl transfer and hydrolysis promoted with a-and ß-D-xylosyl fluoride, Biochemistry 26: 3010–3016.

    Article  PubMed  CAS  Google Scholar 

  • Kent, P. W., 1972. Synthesis and reactivity of fluorocarbohydrates, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 169–213.

    Google Scholar 

  • Kent, P. W., 1988. Retrospect and prospect, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 1–12.

    Google Scholar 

  • Kier, L. B., 1972. A molecular theory of sweet taste, J. Pharm. Sei. 61: 1394–1397.

    Article  CAS  Google Scholar 

  • Kitahata, S., Brewer, C. F., Genghof, D. S., Sawai, T., and Hehre, E. J., 1981. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with a-and ß-D-glucosyl fluoride, J. Biol. Chem. 256: 6017–6026.

    PubMed  CAS  Google Scholar 

  • Kornfeld, S., 1982. Oligosaccharide processing during glycoprotein biosynthesis, in The Glycoproteins, Vol. III, Glycoproteins, Glycolipids, and Proteoglycans, Part A ( M. I. Horowitz, ed.), Academic Press, New York, pp. 3–23.

    Google Scholar 

  • Kornfeld, R., and Kornfeld, S., 1985. Assembly of asparagine-linked oligosaccharide, Annu. Rev. Biochem. 54: 631–664.

    Article  PubMed  CAS  Google Scholar 

  • Kwee, I. L., Nakada, T., and Card, P. J., 1987. Noninvasive demonstration of in vivo 3-fluoro3-deoxy-o-glucose metabolism in rat brain by 19F nuclear magnetic resonance spectroscopy: Suitable probe for monitoring cerebral aldose reductase activity, J. Neurochem. 49: 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.-K., 1987a. Chemistry and biochemistry of sweetness, in Advances in Carbohydrates Chemistry and Biochemistry, Vol. 45 ( R. S. Tipson and D. Horton, eds.), Academic Press, San Diego, pp. 199–351.

    Google Scholar 

  • Lee, C.-K., 1987b. Synthesis of an intensely sweet chlorodeoxysucrose. Mechanism of 4’-chlorination of sucrose by sulfuryl chloride, Carbohydr. Res. 162: 53–63.

    Article  CAS  Google Scholar 

  • Madiyalakan, R., Jain, R. K., and Matta, K. L., 1987. Phosphorylation of the a1,2-linked mannosylsaccharide by N-acetylglucosamine-l-phosphotransferase from fibroblasts occurs at the terminal mannose, Biochem. Biophys. Res. Commun. 142: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Mathlouthi, M., Seuvre, A.-M., and Birch, G. G., 1986. Relationship between the structure and the properties of carbohydrates in aqueous solutions: Sweetness of chlorinated sugars, Carbohydr. Res. 152: 47–61.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, W., Datema, R., Romero, P. A., and Schwarz, R. T., 1985. Mechanism of inhibition of protein glycosylation by the antiviral sugar analogue 2-deoxy-2-fluoro-o-mannose: Inhibition of synthesis of Man(G1cNAc)2- PP-Dol by the guanosine diphosphate ester, Biochemistry 24: 8145–8152.

    Article  PubMed  CAS  Google Scholar 

  • McDowell, W., Grier, T. J., Rasmussen, J. R., and Schwarz, R. T., 1987. The role of C-4-substituted mannose analogues in protein glycosylation, Biochem. J. 248: 523–531.

    PubMed  CAS  Google Scholar 

  • Miles, R. J., and Pirit, S. J., 1973. Inhibition by 3-deoxy-3-fluoro-n-glucose of the utilization of lactose and other carbon sources by Escherichia coli, J. Gen. Microbiol. 76: 305–318.

    PubMed  CAS  Google Scholar 

  • Morin, M. J., Porter, C. W., Petrie, C. R., III, Korytnyk, W., and Bernacki, R. J., 1983. Effects of a membrane sugar analogue, 6-deoxy-6-fluoro-o-galactose, on the L1210 leukemic cell ectosialyltransferase system, Biochem. Pharmacol. 32: 553–561.

    Google Scholar 

  • Moyer, J. D., Reizes, 0., Malinowski, N., Jiang, C., and Baker, D., 1988. Fluorinated analogues of myo-inositols as biological probes of phosphatidylinositol metabolism, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 43–58.

    Google Scholar 

  • Nakada, T., and Kwee, I. L., 1986. In vivo metabolism of 2-fluoro-2-deoxy-o-glucose in the aldose reductase pathway in rat brain demonstrated by 19F NMR spectroscopy, Biochem. Arch. 2: 52–61.

    Google Scholar 

  • Nakada, T., Kwee, I. L., and Conboy, C. B., 1986. Noninvasive in vivo demonstration of 2-fluoro-2-deoxy-n-glucose metabolism beyond the hexokinase reaction in rat brain by 19F nuclear magnetic resonance spectroscopy, J. Neurochem. 46: 198–201.

    Article  PubMed  CAS  Google Scholar 

  • Olofsson, S., Lundstroem, M., and Datema, R., 1985. The antiherpes drug (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) interferes with formation of N-linked and 0-linked oligosaccharides of the herpes simplex virus type I glycoprotein C, Virology 147: 201–205.

    Article  PubMed  CAS  Google Scholar 

  • Paul, B., Bernacki, R. J., and Korytnyk, W., 1980. Synthesis and biological activity of some 1-N-substituted 2-acetamido-2-deoxy-ß-n-glycopyranosylamine derivatives and related analogues, Carbohydr. Res. 80: 99–115.

    Article  PubMed  CAS  Google Scholar 

  • Penglis, A. A. E., 1981. Fluorinated carbohydrates, Adv. Carbohydr. Res. 38: 195–285.

    CAS  Google Scholar 

  • Pero, R. W., Babiarz-Tracy, P., and Fondy, T. P., 1977. 3-Fluoro-l-hydroxypropan-2-one (fluorohydroxyacetone) and some esters. Syntheses and effects in BDF1 mice, J. Med. Chem. 20: 641–647.

    Google Scholar 

  • Phelps, M. E., and Mazziotta, J. C., 1985. Positron emission tomography- Human brain function and biochemistry, Science 228: 799–809.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., 1979. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-n-glucose: Validation of method, Ann. Neurol. 6: 371–388.

    Google Scholar 

  • Rees, W. D., and Holman, G. D., 1981. Hydrogen bonding requirements for the insulinsensitive sugar transport system of rat adipocytes, Biochim. Biophys. Acta 646: 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Riley, G. J., and Taylor, N. F., 1973. The interaction of 3-deoxy-3-fluoro-D-glucose with the hexose-transport system of human erythrocytes, Biochem. J. 135: 773–777.

    PubMed  CAS  Google Scholar 

  • Romaschin, A., and Taylor, N. F., 1981. The in vivo effects of 3-deoxy-3-fluoro-D-glucose metabolism on respiration in Locusta migratoria, Can. J. Biochem. 59: 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Romaschin, A., Taylor, N. F., Smith, D. A., and Lopes, D., 1977. The metabolism of 3-deoxy3-fluoro-D-glucose by Locusta migratoria and Schistocerca gregaria, Can. J. Biochem. 55: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Schelbert, H. R., and Phelps, M. E., 1984. Positron computer tomography for the in vivo assessment of regional myocardial function, J. Mol. Cell. Cardiol. 16: 683–693.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. F. G., Biely, P., Krâtkyz, and Schwarz, R. T., 1978. Metabolism of 2-deoxy2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-[3H]mannose in yeast and chick-embryo cells, Eur. J. Biochem. 87: 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, R. T., and Datema, R., 1980. Inhibitors of protein glycosylation, Trends Biochem. Sei. 5: 65–67.

    Article  CAS  Google Scholar 

  • Schwarz, R. T., and Datema, R., 1982a. The lipid pathway of protein glycosylation and its inhibitors: The biological significance of protein-bound carbohydrates, Adv. Carbohydr. Chem. Biochem. 40: 287–379.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, R. T., and Datema, R., 1982b. Inhibition of lipid-dependent glycosylation, in The Glycoproteins, Vol. III, Glycoproteins, Glycolipids, and Proteoglycans, Part A ( M. I. Horowitz, ed.), Academic Press, New York, pp. 47–79.

    Google Scholar 

  • Semenza, G., Kessler, M., Hosang, M., Weber, J., and Schmidt, U., 1984. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brushborder membrane. The state of the art in 1984, Biochim. Biophys. Acta 779: 343–379.

    Google Scholar 

  • Shallenberger, R. S., and Acree, T. E., 1967. Molecular theory of sweet taste, Nature 216: 480–482.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, M., Potti, G. G., Simmons, O. D., and Korytnyk, W., 1987. Fluorinated carbohydrates as potential plasma membrane modifiers and inhibitors. Synthesis of 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose, Carbohydr. Res. 163: 41–51.

    Article  Google Scholar 

  • Sharma, M., Bernacki, R. J., and Korytnyk, W., 1988. Fluorinated derivatives of cell-surface carbohydrates as potential chemotherapeutic agents, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 191–206.

    Google Scholar 

  • Silverman, J. B., Babiarz, P. S., Mahajan, K. P., Buschek, J., and Fondy, T. P., 1975. 1-Halo analogues of dihydroxyacetone 3-phosphate. The effects of the fluoro analogue on cytosolic glycerol-3-phosphate dehydrogenase and triosephosphate isomerase, Biochemistry 14: 2252–2258.

    Google Scholar 

  • Simon, P., Burlingham, W. J., Conklin, R., and Fondy, T. P., 1979. N-Bromoacetyl-ß-Dglucosamine tetra-O-acetate and N-bromoacetyl-ß-D-galactosamine tetra-O-acetate as chemotherapeutic agents with immunopotentiating effects in Ehrlich ascites tumor-bearing mice, Cancer Res. 39: 3897–3902.

    Google Scholar 

  • Sly, W. S., and Fischer, H. D., 1982. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes, J. Cell. Biochem. 18: 67–85.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H., Anderson, J. D., Keppie, J., Kent, P. W., and Timmis, G. M., 1965. The inhibition of growth of brucellas in vitro and in vivo by analogues of erythritol, J. Gen. Microbial. 38: 101–108.

    CAS  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. D., 1986. Transport and Diffusion across Cell Membranes, Academic Press, Orlando, Florida, pp. 231–361.

    Google Scholar 

  • Street, I. P., Armstrong, C. R., and Withers, S. G., 1986. Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylaseglucose complex, Biochemistry 25: 6021–6027.

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Company, New York, pp. 890–920.

    Google Scholar 

  • Sufrin, J. R., Bernacki, R. J., Morin, M. J., and Korytnyk, W., 1980. Halogenated L-fucose and o-galactose analogues: Synthesis and metabolic effects, J. Med. Chem. 23: 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, N. F., 1972. The metabolism and enzymology of fluorocarbohydrates and related compounds, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 215–238.

    Google Scholar 

  • Taylor, N. F. (ed.), 1988. Fluorinated Carbohydrates, Chemical and Biological Aspects, ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Taylor, N. F., and Louie, L.-Y., 1977. Some biochemical effects of 4-deoxy-4-fluoro-D-glucose on Escherichia coli, Can. J. Biochem. 55: 911–915.

    PubMed  CAS  Google Scholar 

  • Taylor, N. F., Romaschin, A., and Smith, D., 1976. Metabolic and transport studies with deoxyfluoro-monosaccharides, in Biochemistry Involving Carbon-Fluorine Bonds ( R. Filler, ed.), American Chemical Society, Washington, D.C., pp. 99–116.

    Chapter  Google Scholar 

  • Taylor, N. F., Sbrissa, C., Squire, S. T., D’Amore, T., and McIntosh, J. M., 1988. Metabolic and enzymatic studies with deoxyfluoro carbohydrates, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 109–137.

    Google Scholar 

  • Tong, M. K., and Ganem, B., 1988. A potent new class of active-site-directed glycosidase inactivators, J. Am. Chem. Soc. 110: 312–313.

    Article  CAS  Google Scholar 

  • West, C. M., 1986. Current ideas on the significance of protein glycosylation, Mol. Cell. Biochem. 72: 3–20.

    PubMed  CAS  Google Scholar 

  • Wheeler, T. J., and Hinkle, P. C., 1985. The glucose transporter of mammalian cells, Annu. Rev. Physiol. 47: 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. J., and Whelan, J. D., 1988. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport, Biochemistry 27: 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourne, D. J., Butchard, C. G., and Kent, P. W., 1979. 2-Deoxy-2-fluoro-L-fucose and its effect on L-[1–14C]fucose utilization in mammalian cells, Biochem. Biophys. Res. Commun. 87: 989–992.

    Google Scholar 

  • Withers, S. G., Street, I. P., Bird, P., and Dolphin, D. H., 1987. 2-Deoxy-2-fluoroglucosides: A novel class of mechanism-based glucosidase inhibitors, J. Am. Chem. Soc. 109: 7530–7531.

    Google Scholar 

  • Withers, S. G., Street, I. P., and Percival, M. D., 1988. Fluorinated carbohydrates as probes of enzyme specificity and mechanism, Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 59–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biochemistry of Halogenated Carbohydrates. In: Biochemistry of Halogenated Organic Compounds. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4605-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4605-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4607-5

  • Online ISBN: 978-1-4757-4605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics