Biochemistry of Halogenated Carbohydrates

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


Halogenated carbohydrates received early attention as tools for the study of glycolysis, glyconeogenesis, and sugar transport [for reviews, see Barnett (1972), Taylor (1972), and Taylor et al. (1976)]. This research has been extended to many areas wherein halogenated carbohydrates have been used effectively as mechanistic probes and as leads for chemotherapeutic agents. For example, the successes realized in the use of halogenated sugars as components of nucleosides, nucleotides, and nucleic acids in the development of antitumor and antiviral agents have been discussed at length in the preceding chapter. Cell-surface glycoproteins are involved in immune response and other cellular recognition phenomena, and strategies to alter glycoprotein biosynthesis based on use of carbohydrate analogues have received much recent attention as a basis for chemotherapeutic drug design. Fluorine-18-labeled sugars are now clinically important positron emission tomography (PET) scanning agents. Halogenated sugars have also been used to study the mechanism of “sweetness.” These are among the topics that will be reviewed in this chapter. A recent concise overview of several of these topics related to fluorinated carbohydrates has been given by Kent (1988).


Sialic Acid Glycosidic Bond Aldose Reductase Protein Glycosylation Triosephosphate Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agbanyo, M., and Taylor, N. F., 1986. Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria, Biosci. Rep. 6: 309–316.PubMedCrossRefGoogle Scholar
  2. Barnett, J. E. G., 1972. Fluorine as a substituent for oxygen in biological systems: Examples in mammalian membrane transport and glycosidase action, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 95–115.Google Scholar
  3. Barnett, J. E. G., Holman, G. D., and Munday, K. A., 1973. Structural requirements for bind- ing to the sugar-transport system of the human erythrocyte, Biochem. J. 131: 211–221.PubMedGoogle Scholar
  4. Barnett, J. E. G., Holman, G D, Chalkley, R. A., and Munday, K. A., 1975. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system, Biochem. J. 145: 417–429.PubMedGoogle Scholar
  5. Bernacki, R. J., and Korytnyk, W., 1982. Development of membrane sugar and nucleotide sugar analogues as potential inhibitors or modifiers of cellular glycoproteins, in The Glycoproteins, Vol. IV, Glycoproteins, Glycolipids, and Proteoglycans, Part B ( M. I. Horowitz, ed.), Academic Press, New York, pp. 245–263.Google Scholar
  6. Bessel, E. M., and Thomas, P., 1973a. The effect of substitution at C-2 of D-glucose 6-phosphate on the rate of dehydrogenation by glucose 6-phosphate dehydrogenation by glucose 6-phosphate dehydrogenase (from yeast and from rat liver), Biochem. J. 131: 83–89.Google Scholar
  7. Bessel, E. M., and Thomas, P., 1973b. The deoxyfluoro-D-glucopyranose 6-phosphates and their effect on yeast glucose phosphate isomerase, Biochem. J. 131: 77–82.Google Scholar
  8. Bessel, E. M., Foster, A. B., and Westwood, J. H., 1972. The use of deoxyfluoro-Dglucopyranoses and related compounds in a study of yeast hexokinase specificity, Biochem. J. 128: 199–204.Google Scholar
  9. Bigham, E. C., Gragg, C. E., Hall, W. R., Kelsey, J. E., Mallory, W. R., Richardson, D. C., Benedict, C., and Ray, P. H., 1984. Inhibition of arabinose 5-phosphate isomerase. An approach to the inhibition of bacterial lipopolysaccharide biosynthesis, J. Med. Chem. 27: 717–726.PubMedCrossRefGoogle Scholar
  10. Briley, P. A., Eisenthal, R., and Harrison, R., 1975. Fluorine as a hydroxy analogue, Biochem. J. 145: 501–507.PubMedGoogle Scholar
  11. Card, P. J., 1985. Synthesis of fluorinated carbohydrates, J. Carbohydr. Res. 4: 451–487.CrossRefGoogle Scholar
  12. Card, P. J., and Hitz, W. D., 1984. Synthesis of l’-deoxy-l’-fluorosucrose via sucrose synthetase mediated coupling of 1-deoxy-i-fluorofructose with uridine diphosphate glucose, J. Am. Chem. Soc. 106: 5348–5350.CrossRefGoogle Scholar
  13. Card, P. J., Hitz, W. D., and Ripp, K. G., 1986. Chemoenzymatic syntheses of fructose-modified sucroses via multienzyme systems. Some topographical aspects of the binding of sucrose to a sucrose carrier protein. J. Am. Chem. Soc. 108: 158–161.Google Scholar
  14. Chapman, A., Fujimoto, K., and Kornfeld, S., 1980. The primary glycosylation defect in class E thy-l-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-Pmannose, J. Biol. Chem. 255: 4441–1146.Google Scholar
  15. Chiba, S., Brewer, C. F., Okada, G., Matsui, H., and Hehre, E. J., 1988. Stereochemical studies of D-glucal hydration by a-glucosidases and exo-a-glucanases: Indications of plastic and conserved phases in catalysis by glycosylases, Biochemistry 27: 1564–1569.Google Scholar
  16. Datema, R., Schwarz, R. T., and Jankowski, A. W., 1980a. Fluoroglucose-inhibition of protein glycosylation in vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides, Eur. J. Biochem. 109: 331–341.PubMedCrossRefGoogle Scholar
  17. Datema, R., Schwarz, R. T., and Winkler, J., 1980b. Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway, Eur. J. Biochem. 110: 355–361.PubMedCrossRefGoogle Scholar
  18. Datema, R., Romero, P. A., Legler, G., and Schwarz, R. T., 1982. Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol, Proc. Natl. Acad. Sci. USA 79: 6787–6791.PubMedCrossRefGoogle Scholar
  19. Dick, A. P., and Harik, S. I., 1986. Distribution of the glucose transporter in the mammalian brain, J. Neurochem. 46: 1406–1411.PubMedCrossRefGoogle Scholar
  20. Eager, R. G., Jr., Bachovchin, W. W., and Richards, J. H., 1975. Mechanism of action of adenosylcobolamin• 3-Fluoro-1,2-propanediol as substrate for propanediol dehydrase-mechanistic implications, Biochemistry 14: 5523–5528.CrossRefGoogle Scholar
  21. Eisenthal, R., Harrison, R., Lloyd, W. J., and Taylor, N. F., 1972. Activity of fluoro and deoxy analogues of glycerol as substrates and inhibitors of glycerol kinase, Biochem. J. 130: 199–205.PubMedGoogle Scholar
  22. Fondy, T. P., and Emlich, C. A., 1981. Haloacetamido analogues of 2-amino-2-deoxy-D-mannose. Syntheses and effects on tumor-bearing mice, J. Med. Chem. 24: 848–852.PubMedCrossRefGoogle Scholar
  23. Fondy, T. P., Changes, G. S., and Reza, M. J., 1970. Synthesis of 1-halo analogues of DL-glycerol 3-phosphate and their effects on glycerol phosphate dehydrogenase, Biochemistry 9: 3272–3280.PubMedCrossRefGoogle Scholar
  24. Fondy, T. P., Roberts, S. B., Tsiftsoglou, A. S., and Sartorelli, A. C., 1978. Haloacetamido analogues of 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose. Syntheses and effects on the Friend murine erythroleukemia, J. Med. Chem. 21: 1222–1225.PubMedCrossRefGoogle Scholar
  25. Fondy, T. P., Pero, R. W., Karker, K. L., Ghanges, G. S., and Batzold, F. H., 1974. Synthesis of L-1-deoxyfluoroglycerol and its 3-phosphate ester. Effects of the L and D enantiomers in BDF1 mice, J. Med. Chem. 17: 697–702.PubMedCrossRefGoogle Scholar
  26. Fowler, J. S., and Wolf, A. P., 1986. 2-Deoxy-2-[18F]fluoro-D-glucose for metabolic studies: Current status, Appl. Radial. Isot. 37: 663–668.Google Scholar
  27. Genghof, D. S., Brewer, C. F., and Hehre, E. J., 1978. Preparation and use of a-maltosyl fluoride as a substrate by beta amylase, Carbohydr. Res. 61: 291–299.CrossRefGoogle Scholar
  28. Glaudemans, C. P. J., 1987. Seven structurally different murine monoclonal galactan-specific antibodies show identity in their galactosyl-binding subsite arrangements, Mol. Immunol. 24: 371–377.PubMedCrossRefGoogle Scholar
  29. Glaudemans, C. P. J., and Kovac, P., 1988. Deoxyfluoro carbohydrates as probes of binding sites of monoclonal antisaccharide antibodies, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 78–108.Google Scholar
  30. Glaudemans, C. P. J., Kovac, P., and Rasmussen, K., 1984. Mapping of subsites in the combining area of monoclonal anti-galactan immunoglobulin A J539, Biochemistry 23: 6732–6736.PubMedCrossRefGoogle Scholar
  31. Glaudemans, C. P. J., Kovac, P., and Rao, A. S., 1989. The subsites of monoclonal antidextran W3129, Carbohydr. Res. 190: 267–277.PubMedCrossRefGoogle Scholar
  32. Grier, T. J., and Rasmussen, J. R., 1984. 4-Deoxy-4-fluoro-D-mannose inhibits the glycosylation of the G protein of vesicular stomatitis virus, J. Biol. Chem. 259: 1027–1030.Google Scholar
  33. Halama, J. R., Gatley, J. S., DeGrado, T. R., Bernstein, D. R., Ng, C. K., and Holden, J. E., 1984. Validation of 3-deoxy-3-fluoro-D-glucose as a glucose transport analogue in rat heart, Am. J. Physiol. 247: H754 - H759.PubMedGoogle Scholar
  34. Halton, D. M., Taylor, N. F., and Lopes, D. P., 1980. The uptake of 3-deoxy-3-fluoro-Dglucose by synaptosomes from rat brain cortex, J. Neurosci. Res. 5: 241–252.PubMedCrossRefGoogle Scholar
  35. Hartman, F. C., 1970. Haloacetol phosphates. Potential active-site reagents for aldolase, triose phosphate isomerase, and glycerol phosphate dehydrogenase. II. Inactivation of aldolase, Biochemistry 9: 1783–1791.PubMedCrossRefGoogle Scholar
  36. Hartman, F. C., 1971. Haloacetol phosphates. Characterization of the active site of rabbit muscle triosphosphate isomerase, Biochemistry 10: 146–154.PubMedCrossRefGoogle Scholar
  37. Hehre, E. J., Okada, G., and Genghof, D. S., 1969. Configurational specificity: Unappreciated key to understanding enzymic reversions and de novo glycosidic bond synthesis. 1. Reversal of hydrolysis by a, ß, and glucoamylases with donors of correct anomeric form, Arch. Biochem. Biophys. 135: 75–89.CrossRefGoogle Scholar
  38. Hehre, E. J., Brewer, C. F., and Genghof, D. S., 1979. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of ß-amylase on a-and ß-maltosyl fluoride, J. Biol. Chem. 254: 5942–5950.PubMedGoogle Scholar
  39. Hehre, E. J., Sawai, T., Brewer, C. F., Nakano, M., and Kanda, T., 1982. Trehalase: Stereocomplementary hydrolytic and glucosyl transfer reactions with a-and ß-D-glucosyl fluoride, Biochemistry 21: 3090–3097.PubMedCrossRefGoogle Scholar
  40. Hitz, W. D., 1988. Sucrose transport in plants using monofluorinated sucroses and glucosides, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 138–155.Google Scholar
  41. Hitz, W. D., Card, P. J., and Ripp, K. G., 1986. Substrate recognition by a sucrose transporting protein, J. Biol. Chem. 261: 11986–11991.PubMedGoogle Scholar
  42. Hough, L., and Khan, R, 1978. Intensification of sweetness, Trends Biochem. Sci. 3:61–63. Hough, L., and Phadnis, S. P., 1976. Enhancement in the sweetness of sucrose, Nature 263: 800.CrossRefGoogle Scholar
  43. Jeffery, J., and Jömvall, H., 1983. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism, Proc. Natl. Acad. Sci. USA 80: 901–905.PubMedCrossRefGoogle Scholar
  44. Kanazawa, Y., Momozono, Y., Ishikawa, M., Yamada, T., Yamane, H., Haradahira, T., Maeda, M., and Kojima, M., 1986. Metabolic pathway of 2-deoxy-2-fluoro-D-glucose studied by F-19 NMR, Life Sci. 39: 737–742.PubMedCrossRefGoogle Scholar
  45. Kasumi, T., Brewer, C. F., Reese, E. T., and Hehre, E. J., 1986. Catalytic versatility of trehalase: Synthesis of a-o-glucopyranosyl a-D-glucopyranoside from ß-D-glucosyl fluoride and a-o-xylose, Carbohydr. Res. 146: 39–49.PubMedCrossRefGoogle Scholar
  46. Kasumi, T., Tsumuraya, Y., Brewer, C. F., Kersters-Hilderson, H., Claeyssens, M., and Hehre, E. J., 1987. Catalytic versatility of Bacillus pumilus ß-xylosidase: Glycosyl transfer and hydrolysis promoted with a-and ß-D-xylosyl fluoride, Biochemistry 26: 3010–3016.PubMedCrossRefGoogle Scholar
  47. Kent, P. W., 1972. Synthesis and reactivity of fluorocarbohydrates, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 169–213.Google Scholar
  48. Kent, P. W., 1988. Retrospect and prospect, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 1–12.Google Scholar
  49. Kier, L. B., 1972. A molecular theory of sweet taste, J. Pharm. Sei. 61: 1394–1397.CrossRefGoogle Scholar
  50. Kitahata, S., Brewer, C. F., Genghof, D. S., Sawai, T., and Hehre, E. J., 1981. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with a-and ß-D-glucosyl fluoride, J. Biol. Chem. 256: 6017–6026.PubMedGoogle Scholar
  51. Kornfeld, S., 1982. Oligosaccharide processing during glycoprotein biosynthesis, in The Glycoproteins, Vol. III, Glycoproteins, Glycolipids, and Proteoglycans, Part A ( M. I. Horowitz, ed.), Academic Press, New York, pp. 3–23.Google Scholar
  52. Kornfeld, R., and Kornfeld, S., 1985. Assembly of asparagine-linked oligosaccharide, Annu. Rev. Biochem. 54: 631–664.PubMedCrossRefGoogle Scholar
  53. Kwee, I. L., Nakada, T., and Card, P. J., 1987. Noninvasive demonstration of in vivo 3-fluoro3-deoxy-o-glucose metabolism in rat brain by 19F nuclear magnetic resonance spectroscopy: Suitable probe for monitoring cerebral aldose reductase activity, J. Neurochem. 49: 428–433.PubMedCrossRefGoogle Scholar
  54. Lee, C.-K., 1987a. Chemistry and biochemistry of sweetness, in Advances in Carbohydrates Chemistry and Biochemistry, Vol. 45 ( R. S. Tipson and D. Horton, eds.), Academic Press, San Diego, pp. 199–351.Google Scholar
  55. Lee, C.-K., 1987b. Synthesis of an intensely sweet chlorodeoxysucrose. Mechanism of 4’-chlorination of sucrose by sulfuryl chloride, Carbohydr. Res. 162: 53–63.CrossRefGoogle Scholar
  56. Madiyalakan, R., Jain, R. K., and Matta, K. L., 1987. Phosphorylation of the a1,2-linked mannosylsaccharide by N-acetylglucosamine-l-phosphotransferase from fibroblasts occurs at the terminal mannose, Biochem. Biophys. Res. Commun. 142: 354–358.PubMedCrossRefGoogle Scholar
  57. Mathlouthi, M., Seuvre, A.-M., and Birch, G. G., 1986. Relationship between the structure and the properties of carbohydrates in aqueous solutions: Sweetness of chlorinated sugars, Carbohydr. Res. 152: 47–61.PubMedCrossRefGoogle Scholar
  58. McDowell, W., Datema, R., Romero, P. A., and Schwarz, R. T., 1985. Mechanism of inhibition of protein glycosylation by the antiviral sugar analogue 2-deoxy-2-fluoro-o-mannose: Inhibition of synthesis of Man(G1cNAc)2- PP-Dol by the guanosine diphosphate ester, Biochemistry 24: 8145–8152.PubMedCrossRefGoogle Scholar
  59. McDowell, W., Grier, T. J., Rasmussen, J. R., and Schwarz, R. T., 1987. The role of C-4-substituted mannose analogues in protein glycosylation, Biochem. J. 248: 523–531.PubMedGoogle Scholar
  60. Miles, R. J., and Pirit, S. J., 1973. Inhibition by 3-deoxy-3-fluoro-n-glucose of the utilization of lactose and other carbon sources by Escherichia coli, J. Gen. Microbiol. 76: 305–318.PubMedGoogle Scholar
  61. Morin, M. J., Porter, C. W., Petrie, C. R., III, Korytnyk, W., and Bernacki, R. J., 1983. Effects of a membrane sugar analogue, 6-deoxy-6-fluoro-o-galactose, on the L1210 leukemic cell ectosialyltransferase system, Biochem. Pharmacol. 32: 553–561.Google Scholar
  62. Moyer, J. D., Reizes, 0., Malinowski, N., Jiang, C., and Baker, D., 1988. Fluorinated analogues of myo-inositols as biological probes of phosphatidylinositol metabolism, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 43–58.Google Scholar
  63. Nakada, T., and Kwee, I. L., 1986. In vivo metabolism of 2-fluoro-2-deoxy-o-glucose in the aldose reductase pathway in rat brain demonstrated by 19F NMR spectroscopy, Biochem. Arch. 2: 52–61.Google Scholar
  64. Nakada, T., Kwee, I. L., and Conboy, C. B., 1986. Noninvasive in vivo demonstration of 2-fluoro-2-deoxy-n-glucose metabolism beyond the hexokinase reaction in rat brain by 19F nuclear magnetic resonance spectroscopy, J. Neurochem. 46: 198–201.PubMedCrossRefGoogle Scholar
  65. Olofsson, S., Lundstroem, M., and Datema, R., 1985. The antiherpes drug (E)-5-(2-bromovinyl)-2’-deoxyuridine (BVDU) interferes with formation of N-linked and 0-linked oligosaccharides of the herpes simplex virus type I glycoprotein C, Virology 147: 201–205.PubMedCrossRefGoogle Scholar
  66. Paul, B., Bernacki, R. J., and Korytnyk, W., 1980. Synthesis and biological activity of some 1-N-substituted 2-acetamido-2-deoxy-ß-n-glycopyranosylamine derivatives and related analogues, Carbohydr. Res. 80: 99–115.PubMedCrossRefGoogle Scholar
  67. Penglis, A. A. E., 1981. Fluorinated carbohydrates, Adv. Carbohydr. Res. 38: 195–285.Google Scholar
  68. Pero, R. W., Babiarz-Tracy, P., and Fondy, T. P., 1977. 3-Fluoro-l-hydroxypropan-2-one (fluorohydroxyacetone) and some esters. Syntheses and effects in BDF1 mice, J. Med. Chem. 20: 641–647.Google Scholar
  69. Phelps, M. E., and Mazziotta, J. C., 1985. Positron emission tomography- Human brain function and biochemistry, Science 228: 799–809.PubMedCrossRefGoogle Scholar
  70. Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., 1979. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-n-glucose: Validation of method, Ann. Neurol. 6: 371–388.Google Scholar
  71. Rees, W. D., and Holman, G. D., 1981. Hydrogen bonding requirements for the insulinsensitive sugar transport system of rat adipocytes, Biochim. Biophys. Acta 646: 251–260.PubMedCrossRefGoogle Scholar
  72. Riley, G. J., and Taylor, N. F., 1973. The interaction of 3-deoxy-3-fluoro-D-glucose with the hexose-transport system of human erythrocytes, Biochem. J. 135: 773–777.PubMedGoogle Scholar
  73. Romaschin, A., and Taylor, N. F., 1981. The in vivo effects of 3-deoxy-3-fluoro-D-glucose metabolism on respiration in Locusta migratoria, Can. J. Biochem. 59: 262–268.PubMedCrossRefGoogle Scholar
  74. Romaschin, A., Taylor, N. F., Smith, D. A., and Lopes, D., 1977. The metabolism of 3-deoxy3-fluoro-D-glucose by Locusta migratoria and Schistocerca gregaria, Can. J. Biochem. 55: 369–375.PubMedCrossRefGoogle Scholar
  75. Schelbert, H. R., and Phelps, M. E., 1984. Positron computer tomography for the in vivo assessment of regional myocardial function, J. Mol. Cell. Cardiol. 16: 683–693.PubMedCrossRefGoogle Scholar
  76. Schmidt, M. F. G., Biely, P., Krâtkyz, and Schwarz, R. T., 1978. Metabolism of 2-deoxy2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-[3H]mannose in yeast and chick-embryo cells, Eur. J. Biochem. 87: 55–68.PubMedCrossRefGoogle Scholar
  77. Schwarz, R. T., and Datema, R., 1980. Inhibitors of protein glycosylation, Trends Biochem. Sei. 5: 65–67.CrossRefGoogle Scholar
  78. Schwarz, R. T., and Datema, R., 1982a. The lipid pathway of protein glycosylation and its inhibitors: The biological significance of protein-bound carbohydrates, Adv. Carbohydr. Chem. Biochem. 40: 287–379.PubMedCrossRefGoogle Scholar
  79. Schwarz, R. T., and Datema, R., 1982b. Inhibition of lipid-dependent glycosylation, in The Glycoproteins, Vol. III, Glycoproteins, Glycolipids, and Proteoglycans, Part A ( M. I. Horowitz, ed.), Academic Press, New York, pp. 47–79.Google Scholar
  80. Semenza, G., Kessler, M., Hosang, M., Weber, J., and Schmidt, U., 1984. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brushborder membrane. The state of the art in 1984, Biochim. Biophys. Acta 779: 343–379.Google Scholar
  81. Shallenberger, R. S., and Acree, T. E., 1967. Molecular theory of sweet taste, Nature 216: 480–482.PubMedCrossRefGoogle Scholar
  82. Sharma, M., Potti, G. G., Simmons, O. D., and Korytnyk, W., 1987. Fluorinated carbohydrates as potential plasma membrane modifiers and inhibitors. Synthesis of 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose, Carbohydr. Res. 163: 41–51.CrossRefGoogle Scholar
  83. Sharma, M., Bernacki, R. J., and Korytnyk, W., 1988. Fluorinated derivatives of cell-surface carbohydrates as potential chemotherapeutic agents, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 191–206.Google Scholar
  84. Silverman, J. B., Babiarz, P. S., Mahajan, K. P., Buschek, J., and Fondy, T. P., 1975. 1-Halo analogues of dihydroxyacetone 3-phosphate. The effects of the fluoro analogue on cytosolic glycerol-3-phosphate dehydrogenase and triosephosphate isomerase, Biochemistry 14: 2252–2258.Google Scholar
  85. Simon, P., Burlingham, W. J., Conklin, R., and Fondy, T. P., 1979. N-Bromoacetyl-ß-Dglucosamine tetra-O-acetate and N-bromoacetyl-ß-D-galactosamine tetra-O-acetate as chemotherapeutic agents with immunopotentiating effects in Ehrlich ascites tumor-bearing mice, Cancer Res. 39: 3897–3902.Google Scholar
  86. Sly, W. S., and Fischer, H. D., 1982. The phosphomannosyl recognition system for intracellular and intercellular transport of lysosomal enzymes, J. Cell. Biochem. 18: 67–85.PubMedCrossRefGoogle Scholar
  87. Smith, H., Anderson, J. D., Keppie, J., Kent, P. W., and Timmis, G. M., 1965. The inhibition of growth of brucellas in vitro and in vivo by analogues of erythritol, J. Gen. Microbial. 38: 101–108.Google Scholar
  88. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem. 28: 897–916.PubMedCrossRefGoogle Scholar
  89. Stein, W. D., 1986. Transport and Diffusion across Cell Membranes, Academic Press, Orlando, Florida, pp. 231–361.Google Scholar
  90. Street, I. P., Armstrong, C. R., and Withers, S. G., 1986. Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylaseglucose complex, Biochemistry 25: 6021–6027.PubMedCrossRefGoogle Scholar
  91. Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Company, New York, pp. 890–920.Google Scholar
  92. Sufrin, J. R., Bernacki, R. J., Morin, M. J., and Korytnyk, W., 1980. Halogenated L-fucose and o-galactose analogues: Synthesis and metabolic effects, J. Med. Chem. 23: 143–149.PubMedCrossRefGoogle Scholar
  93. Taylor, N. F., 1972. The metabolism and enzymology of fluorocarbohydrates and related compounds, in Ciba Foundation Symposium: Carbon-Fluorine Compounds: Chemistry, Biochemistry, and Biological Activities, Associated Scientific Publishers, New York, pp. 215–238.Google Scholar
  94. Taylor, N. F. (ed.), 1988. Fluorinated Carbohydrates, Chemical and Biological Aspects, ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C.Google Scholar
  95. Taylor, N. F., and Louie, L.-Y., 1977. Some biochemical effects of 4-deoxy-4-fluoro-D-glucose on Escherichia coli, Can. J. Biochem. 55: 911–915.PubMedGoogle Scholar
  96. Taylor, N. F., Romaschin, A., and Smith, D., 1976. Metabolic and transport studies with deoxyfluoro-monosaccharides, in Biochemistry Involving Carbon-Fluorine Bonds ( R. Filler, ed.), American Chemical Society, Washington, D.C., pp. 99–116.CrossRefGoogle Scholar
  97. Taylor, N. F., Sbrissa, C., Squire, S. T., D’Amore, T., and McIntosh, J. M., 1988. Metabolic and enzymatic studies with deoxyfluoro carbohydrates, in Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 109–137.Google Scholar
  98. Tong, M. K., and Ganem, B., 1988. A potent new class of active-site-directed glycosidase inactivators, J. Am. Chem. Soc. 110: 312–313.CrossRefGoogle Scholar
  99. West, C. M., 1986. Current ideas on the significance of protein glycosylation, Mol. Cell. Biochem. 72: 3–20.PubMedGoogle Scholar
  100. Wheeler, T. J., and Hinkle, P. C., 1985. The glucose transporter of mammalian cells, Annu. Rev. Physiol. 47: 503–517.PubMedCrossRefGoogle Scholar
  101. Wheeler, T. J., and Whelan, J. D., 1988. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport, Biochemistry 27: 1441–1450.PubMedCrossRefGoogle Scholar
  102. Winterbourne, D. J., Butchard, C. G., and Kent, P. W., 1979. 2-Deoxy-2-fluoro-L-fucose and its effect on L-[1–14C]fucose utilization in mammalian cells, Biochem. Biophys. Res. Commun. 87: 989–992.Google Scholar
  103. Withers, S. G., Street, I. P., Bird, P., and Dolphin, D. H., 1987. 2-Deoxy-2-fluoroglucosides: A novel class of mechanism-based glucosidase inhibitors, J. Am. Chem. Soc. 109: 7530–7531.Google Scholar
  104. Withers, S. G., Street, I. P., and Percival, M. D., 1988. Fluorinated carbohydrates as probes of enzyme specificity and mechanism, Fluorinated Carbohydrates, Chemical and Biological Aspects (N. F. Taylor, ed.), ACS Symposium Series, No. 374, American Chemical Society, Washington, D.C., pp. 59–77.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations