Advertisement

Biochemistry of Halogenated Aldehydes and Ketones

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

The susceptibility of a halogen situated at the α position of an aldehyde or ketone to nucleophilic displacement plays a central role in much of the biochemical behavior of these compounds. Examples to be reviewed in this chapter include the reaction of α-chloro- and α-bromoaldehydes with nucleic acid components and the use of α-halocarbonyl compounds as affinity labels. The presence of halogen also affects the chemistry of the neighboring carbonyl group, making the carbonyl carbon more electrophilic, an effect especially pronounced with α-fluorine substitution. This has been used to advantage in the design of several transition state analogue enzyme inhibitors, based on the ready formation of tetrahedral intermediates from such halogen-substituted analogues.

Keywords

Juvenile Hormone Chloral Hydrate Renin Inhibitor Cytosine Residue Methyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, W. R., Gillam, I. C., and Tener, G. M., 1982. The nucleotide sequence of tRNA;’ of Drosophila melanogaster. Chloroacetaldehyde modification as an aid to RNA sequencing, J. Biol. Chem. 257: 674–677.PubMedGoogle Scholar
  2. Barrio, J. R., Secrist, J. A., III, and Leonard, N. J., 1972a. Fluorescent adenosine and cytidine derivatives, Biochem. Biophys. Res. Commun. 46: 597–604.PubMedCrossRefGoogle Scholar
  3. Barrio, J. R., Secrist, J. A., III, and Leonard, N. J., 1972b. A fluorescent analog of nicotinamide adenine dinucleotide, Proc. Natl. Acad Sci. USA 69: 2039–2042.PubMedCrossRefGoogle Scholar
  4. Bode, J., Pucher, H.-J., and Maass, K., 1986. Chromatin structure and induction-dependent conformational changes of human interferon-ß genes in a mouse host cell, Eur. J. Biochem. 158: 393–401.PubMedCrossRefGoogle Scholar
  5. Breimer, D. D., 1977. Clinical pharmacokinetics of hypnotics, Clin. Pharmacokinet. 2: 93–109.PubMedCrossRefGoogle Scholar
  6. Brodbeck, U., Schweikert, K., Gentinetta, R., and Rottenberg, M., 1979. Fluorinated aldehydes and ketones acting as quasi-substrate inhibitors of acetylcholinesterase, Biochim. Biophys. Acta 567: 357–369.PubMedCrossRefGoogle Scholar
  7. Chirikjian, J. G., and Papas, T. S., 1974. Inhibition of AMV DNA polymerase by polyriboadenylic acid containing a-adenosine residues, Biochem. Biophys. Res. Commun. 59: 489–495.PubMedCrossRefGoogle Scholar
  8. Collier, D. A., Griffin, J. A., and Wells, R. D., 1988. Non-B right-handed DNA conformations of homopurine homopyridine sequences in the murine immunoglobulin C, switch region, J. Biol. Chem. 263: 7397–7405.PubMedGoogle Scholar
  9. Docherty, K., Carroll, R. J., and Steiner, D. F., 1982. Conversion of proinsulin to insulin: Involvement of a 31,500 molecular weight thiol protease, Proc. Natl. Acad Sci. USA 79: 4613–4617.PubMedCrossRefGoogle Scholar
  10. Fearon, K., Spaltenstein, A., Hopkins, P. B., and Gelb, M. H., 1987. Fluoro ketone containing peptides as inhibitors of human renin, J. Med. Chem. 30: 1617–1622.PubMedCrossRefGoogle Scholar
  11. Foucaud, B., and Biellmann, J.-F., 1983. Properties of horse-liver alcohol dehydrogenase modified by the affinity label 3-chloroacetylpyridine-adenine dinucleotide, Biochim. Biophys. Acta 748: 362–366.PubMedCrossRefGoogle Scholar
  12. Furlong, J. C., Sullivan, K. M., Murchie, A. I. H., Gough, G. W., and Lilley, D. M. J., 1989. Localized chemical hyperreactivity in supercoiled DNA: Evidence for base unpairing in sequences that induce low-salt cruciform extrusion, Biochemistry 28: 2009–2017.PubMedCrossRefGoogle Scholar
  13. Galardy, R. E., and Kortylewicz, Z. P., 1984. Inhibition of carboxypeptidase A by aldehyde and ketone substrate analogues, Biochemistry 23: 2083–2087.PubMedCrossRefGoogle Scholar
  14. Gelb, M. H., 1986. Fluoro ketone phospholipid analogues: New inhibitors of phospholipase A2, J. Am. Chem. Soc. 108: 3146–3147.CrossRefGoogle Scholar
  15. Gelb, M. H., Svaren, J. P., and Abeles, R. H., 1985. Fluoro ketone inhibitors of hydrolytic enzymes, Biochemistry 24: 1813–1817.PubMedCrossRefGoogle Scholar
  16. Goldstein, J. A., Cheung, Y.-F., Marietta, M. A., and Walsh, C., 1978. Fluorinated substrate analogues as stereochemical probes of enzymatic reaction mechanisms, Biochemistry 17: 5567–5575.PubMedCrossRefGoogle Scholar
  17. Hammock, B. D., Abdel-aal, Y. A. I., Mullin, C. A., Hanzlik, T. N., and Roe, R. M., 1984. Substituted thiotrifluoropropanones as potent selective inhibitors of juvenile hormone esterase, Pest. Biochem. Physiol. 22: 209–223.CrossRefGoogle Scholar
  18. Harvey, S. C., 1985. Hypnotics and sedatives, in The Pharmacological Basis of Therapeutics, 7th ed. ( A. G. Gilman, L. S. Goodman, T W. Rail, and F. Murad, eds.), Macmillan, New York, pp. 339–371.Google Scholar
  19. Kimura, K., Nakanishi, M., Yamamoto, T., and Tsuboi, M., 1977. A correlation between the secondary structure of DNA and the reactivity of adenine residues with chloroacetaldehyde, Biochem. J. 81: 1699–1703.Google Scholar
  20. Kochetkov, N. K., Shibaev, V. N., and Kost, A. A., 1971. New reaction of adenine and cytosine derivatives, potentially useful for nucleic acid modification, Tetrahedron Lett. 1971: 1993–1996.CrossRefGoogle Scholar
  21. Kohwi-Shigematsu, T., Enomoto, T., Yamada, M.-A., Nakanishi, M., and Tsuboi, M., 1978. Exposure of DNA bases induced by the interaction of DNA and calf thymus DNA helix-destabilizing protein, Proc. Natl. Acad Sci. USA 75: 4689–4693.PubMedCrossRefGoogle Scholar
  22. Kohwi-Shigematsu, T., Gelinas, R., and Weintraub, H., 1983. Detection of an altered DNA conformation at specific sites in chromatin and supercoiled DNA, Proc. Natl. Acad. Sci. USA 80: 4389–4393.PubMedCrossRefGoogle Scholar
  23. Kohwi-Shigematsu, T., Scribner, N., and Kohwi, Y., 1988. An ultimate chemical carcinogen, N-acetoxy-2-acetylaminofluorene, detects non-B DNA structures that are reactive with chloroacetaldehyde in supercoiled plasmid DNA, Carcinogenesis 9: 457–461.PubMedCrossRefGoogle Scholar
  24. Kozarich, J. W., Chari, R. V. J., Wu, J. C., and Lawrence, T. L., 1981. Fluoromethylglyoxal: Synthesis and glyoxalase I catalyzed product partitioning via a presumed enediol intermediate, J. Am. Chem. Soc. 103: 4593–4595.CrossRefGoogle Scholar
  25. Krzyzosiak, W. J., Biernat, J., Ciesiolka, J., Gulewicz, K., and Wiewiorowski, M., 1981. The reactions of adenine and cytosine residues in tRNA with chloroacetaldehyde, Nucleic Acids Res. 9: 2841–2851.PubMedCrossRefGoogle Scholar
  26. Kusmierek, J. T., and Singer, B., 1982. Chloroacetaldehyde-treated ribo-and deoxyribopolynucleotides. 2. Errors in transciption by different polymerases resulting from ethenocytosine and its hydrated intermediate, Biochemistry 21: 5723–5728.PubMedCrossRefGoogle Scholar
  27. Lee, G. M., Diguiseppi, J., Gawdi, G. M., and Herman, B., 1987. Chloral hydrate disrupts mitosis by increasing intracellular free calcium, J. Cell. Sci. 88: 603–612.PubMedGoogle Scholar
  28. Leonard, N. J., 1984. Etheno-substituted nucleotides and coenzymes: Fluorescence and biological activity, CRC Crit. Rev. Biochem. 15: 125–199.PubMedCrossRefGoogle Scholar
  29. Marciniszyn, J., Jr., Hartsuck, J. A., and Tang, J., 1976. Mode of inhibition of acid proteases by pepstatin, J. Biol. Chem. 251: 7088–7094.PubMedGoogle Scholar
  30. McCray, J. W., and Weil, R., 1982. Inactivation of interferons: Halomethyl ketone derivatives of phenylalanine as affinity labels, Proc. Natl. Acad. Sci. USA 79: 4829–4833.PubMedCrossRefGoogle Scholar
  31. McLean, M. J., and Wells, R. D., 1988. The role of DNA sequence in the formation of Z-DNA versus cruciforms in plasmids, J. Biol. Chem. 263: 7370–7377.PubMedGoogle Scholar
  32. McMurray, J. S., and Dyckes, D. F., 1987. Evidence for hemiketals as intermediates in the inactivation of serine proteinases with halomethyl ketones, Biochemistry 25: 2298–2301.CrossRefGoogle Scholar
  33. Meyer, R. B., Shuman, D. A., Robins, R. K., Miller, J. P., and Simon, L. N., 1973. Synthesis and enzymic studies of 5-aminoimidazole and N-1- and N6-substituted adenine ribonucleoside cyclic 3’,5’-phosphates prepared from adenosine-cyclic-3’,5’-phosphate, J. Med. Chem. 16: 1319–1323.PubMedCrossRefGoogle Scholar
  34. Moore, M. L., Bryan, W. M., Fakhoury, S. A., Magaard, V. W., Huffman, W. F., Dayton, B. D., Meek, T. D., Hyland, L., Dreyer, G. B., Metcalf, B. W., Strickler, J. E., Gorniak, J. G., and Debouck, C., 1989. Peptide substrates and inhibitors of the HIV-1 protease, Biochem. Biophys. Res. Commun. 159: 420–425.PubMedCrossRefGoogle Scholar
  35. Powers, J. C., 1977. Reaction of serine proteases with halomethyl ketones, Methods Enzymol. 46: 197–208.PubMedCrossRefGoogle Scholar
  36. Prestwich, G. D., 1986. Fluorinated sterols, hormones and pheromones: Enzyme-targeted disruptants in insects, Pestic. Sci. 37: 430–440.CrossRefGoogle Scholar
  37. Prestwich, G. D., Eng, W.-S., Roe, R. M., and Hammock, B. D., 1984. Synthesis and bioassay of isoprenoid 3-alkylthio-1,1,1-trifluoro-2-propanones: Potent, selective inhibitors of juvenile hormone esterases, Arch. Biochem. Biophys. 228: 639–645.PubMedCrossRefGoogle Scholar
  38. Rich, D. H., Boparai, A. S., and Bernatowicz, M. S., 1982a. Synthesis of a 3-oxo-4(S)-amino acid analog of pepstatin. A new inhibitor of carboxyl (acid) proteases, Biochem. Biophys. Res. Commun. 104: 1127–1133.PubMedCrossRefGoogle Scholar
  39. Rich, D. H., Bernatowicz, M. S., and Schmidt, P. G., 1982b. Direct “C NMR evidence for a tetrahedral intermediate in the binding of a pepstatin analogue to porcine pepsin, J. Am. Chem. Soc. 104: 3535–3536.CrossRefGoogle Scholar
  40. Rich, A., Nordheim, A., and Wang, A. H.-J., 1984. The chemistry and biology of left-handed DNA, Annu. Rev. Biochem. 53: 791–846.PubMedCrossRefGoogle Scholar
  41. Schoellman, G., and Shaw, E., 1963. Direct evidence for the presence of histidine in the active center of chymotrypsin, Biochemistry 2: 252–255.CrossRefGoogle Scholar
  42. Schulman, L. H., and Pelka, H., 1976. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification, Biochemistry 15: 5769–5775.PubMedCrossRefGoogle Scholar
  43. Secrist, J. A., III, Barrio, J. R., Leonard, N. J., and Weber, G., 1972a. Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties, Biochemistry 11: 3499–3506.PubMedCrossRefGoogle Scholar
  44. Secrist, J. A., III, Barrio, J. R., Leonard, N. J., Villar-Palasi, C., and Gilman, A. G., 1972b. Fluorescent modification of adenosine 3’,5’-monophosphate: Spectroscopic properties and activity in enzyme systems, Science 177: 279–280.PubMedCrossRefGoogle Scholar
  45. Shah, D. O., Lai, K., and Gorenstein, D. G., 1984. “C NMR spectroscopy of ”transition-state analogue“ complexes of N-acetyl-L-phenylalinal and a-chymotrypsin, J. Am. Chem. Soc. 106:4272–4273.Google Scholar
  46. Shaw, E., 1970. Chemical modification by active-site-directed reagents, in The Enzymes, Vol. I, 3rd ed. ( P. D. Boyer, ed.), Academic Press, New York, pp. 91–146.Google Scholar
  47. Sugimoto, T., and Kaiser, E. T., 1978. Carboxypeptidase A catalyzed enolization of a ketonic substrate. A new stereochemical probe for an enzyme-bound nucleophile, J. Am. Chem. Soc. 100: 7750–7751.CrossRefGoogle Scholar
  48. Szent-Györgyi, A., Együd, L. G., and McLaughlin, J. A., 1967. Keto-aldehydes and cell division, Science 155: 539–541.PubMedCrossRefGoogle Scholar
  49. Szücs, M., Belcheva, M., Simon, J., Benyhe, S., Toth, G., Hepp, J., Wollemann, M., and Medzihradszky, K., 1987. Covalent labeling of opioid receptors with 3H-D-Ala2-Leu5enkephalin chloromethyl ketone I. Binding characteristics in rat brain membrane, Life Sci. 41: 177–184.PubMedCrossRefGoogle Scholar
  50. Thaisrivongs, S., Pals, D. T., Kati, W. M., Turner, S. R., Thomasco, L. M., and Watt, W., 1986. Design and synthesis of potent and specific renin inhibitors containing difluorostatine, difluorostatone, and related analogues, J. Med. Chem. 29: 2080–2087.PubMedCrossRefGoogle Scholar
  51. Venn, R. F., and Barnard, E. A., 1981. A potent peptide affinity reagent for the opiate receptor, J. Biol. Chem. 256: 1529–1532.PubMedGoogle Scholar
  52. Vogt, N., Marrot, L., Rousseau, N., Malfoy, B., and Leng, M., 1988. Chloroacetaldehyde reacts with Z-DNA, J. Mol. Biol. 201: 773–776.PubMedCrossRefGoogle Scholar
  53. Wells, R. D., 1988. Unusual DNA structures, J. Biol. Chem. 263: 1095–1098.PubMedGoogle Scholar
  54. Wolfenden, R., 1976. Transition state analog inhibitors and enzyme catalysis, Annu. Rev. Biophys. Bioeng. 5: 271–306.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations