Advertisement

Molecular Structure

  • G. N. Ramachandran
  • C. Ramakrishnan

Abstract

It is nowadays well known that the molecular structure of collagen is based on three intertwining helical polypeptide chains. A detailed description of this along with a brief summary of the related structures of polypeptide chains having amino acid residues commonly occurring in collagen, is contained in the chapter by Ramachandran (1967) in the Treatise on Collagen, Volume 1. Therefore, we shall only give a general account of the early evidences which led to the postulation of the triple-chain structure. However, the geometry and properties of the structure will be discussed in some detail, with special reference to the two modifications of the basic three-chain protofibril, namely the so-called one-bonded and two-bonded structures. These two structures differ only in the number of interchain hydrogen bonds (namely one and two, respectively) for a unit composed of three peptide units in the sequence (Gly-X-Y) n where X and Y may be any one of the amino acid residues. In fact, after the appearance of the Treatise on Collagen,the molecular structures of many interesting polymers related to collagen, such as (Gly-Pro-Pro) n have been worked out, which are quite relevant to the postulation of the correct structure for collagen. These, together with an account of the primary structure and of cross-links and fibril structure are contained in a review by Traub and Piez (1971). Because of the two reviews mentioned above, namely Ramachandran (1967) and Traub and Piez (1971), no attempt will be made in this chapter to make the early references complete.

Keywords

Dihedral Angle Triple Helix Collagen Structure Neighboring Chain Peptide Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. M., Rippon, W. B., and Walton, A. G., 1970, Model tripeptides for collagen, Biochem. Biophys. Res. Commun 39: 802.PubMedCrossRefGoogle Scholar
  2. Andreeva, N. S., Esipova, N. G., Millionova, M. I., Rogulenkova, V. N., and Shibnev, V. A., 1967, Polypeptides with regular sequences of amino acids as the models of collagen structure, in: Conformation of Biopolymers (G. N. Ramachandran, ed.), Vol. 2, pp. 469–481, Academic Press, New York.Google Scholar
  3. Andreeva, N. S., Esipova, N. G., Millionova, M. I., Rogulenkova, V. N., Tumanyan, V. G., and Shibnev, V. A., 1970, Synthetic regular polytripeptides and proteins of collagen class, Biofizika 15: 198.PubMedGoogle Scholar
  4. Andries, J. C., and Walton, A. G., 1970, Morphological evidence for antiparallel peptide chains in poly glycyl prolyl proline, J. Mol. Biol 54: 579.PubMedCrossRefGoogle Scholar
  5. Andries, J. C., and Walton, A. G., 1971, The morphology of poly(Gly-Ala-Glu(OEt)), J. Mol. Biol 56: 515.PubMedCrossRefGoogle Scholar
  6. Andries, J. C., Anderson, J. M., and Walton, A. G., 1971, Morphological and structural studies of poly(Gly-Gly-Ala), Biopolymers 10: 1049.PubMedCrossRefGoogle Scholar
  7. Arnott, S., and Dover, S. D., 1968, The structure of poly-L-proline II, Acta Cryst. B24: 599.CrossRefGoogle Scholar
  8. Bamford, C. H., Elliott, A., and Hanby, W. E., 1956, Synthetic Polypeptides, Ch. V II, Academic Press, New York.Google Scholar
  9. Bansal, M., Ramakrishnan, C., and Ramachandran, G. N., 1975a, A triple-helical model for (Gly-Pro-Hyp)n with cis peptide units, Biopolymers 14: 2457.CrossRefGoogle Scholar
  10. Bansal, M., Ramakrishnan, C., and Ramachandran, G. N., 1975b, Stabilization of the collagen structure by hydroxyproline residues, Proc. Ind. Acad. Sci. A 82: 152.Google Scholar
  11. Berendsen, H. J. C., 1972, Interaction of water and proteins, in; Enzymes—Structure and Function (FEBS Proc. 8th Meeting), Vol. 29, pp. 19–27, North-Holland, Amsterdam.Google Scholar
  12. Berg, R. A., and Prockop, D. J., 1973, The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen, Biochem. Biophys. Res. Commun 52: 115.PubMedCrossRefGoogle Scholar
  13. Berg, R. A., Kishida, Y., Kobayashi, Y., Inouye, K., Tonelli, A. E., Sakakibara, S., and Prockop, D. J., 1973, A model for the triple-helical structure of (Pro-Hyp-Gly)10 involving a cis peptide bond and inter-chain hydrogen-bonding to the hydroxyl group of hydroxyproline, Biochim. Biophys. Acta 328: 553.PubMedCrossRefGoogle Scholar
  14. Brown, L., and Trotter, I. F., 1956, X-ray studies of poly-L-alanine, Trans. Faraday Soc 52: 537.CrossRefGoogle Scholar
  15. Brown, F. R., III, diCorato, A., Lorenzi, G. P., and Blout, E. R., 1972, Synthesis and structural studies of two collagen analogues: Poly(L-prolyl-L-seryl-glycyl) and poly(Lprolyl-L-alanyl-glycyl), J. Mol. Biol 63: 85.PubMedCrossRefGoogle Scholar
  16. Cowan, P. M., and McGavin, S., 1955, Structure of poly-L-proline, Nature (London) 176: 501.CrossRefGoogle Scholar
  17. Crick, F. H. C., and Rich, A., 1955, Structure of polyglycine II, Nature (London) 176: 780.CrossRefGoogle Scholar
  18. Doyle, B. B., Traub, W., Lorenzi, G. P., Brown, F. R., III, and Blout, E. R., 1970, Synthesis and structural investigations of poly(L-alanyl-L-alanyl-glycine), J. Mol. Biol 51: 47.PubMedCrossRefGoogle Scholar
  19. Doyle, B. B., Traub, W., Lorenzi, G. P., and Blout, E. R., 1971, Conformational investigations on the polypeptide and oligopeptides with the repeating sequence Lalanyl-L-prolyl glycine, Biochemistry 10: 3052.PubMedCrossRefGoogle Scholar
  20. Eastoe, J. E., 1967, Composition of collagen and allied proteins, in: Treatise on Collagen ( G. N. Ramachandran, ed.), Vol. 1, pp. 1–72, Academic Press, New York.Google Scholar
  21. Engel, J., 1967, Conformational transitions of poly-L-proline and poly(L-prolyl-glycyl-L-proline), in: Conformation of Biopolymers ( G. N. Ramachandran, ed.), Vol. 2, pp. 483–497, Academic Press, New York.Google Scholar
  22. Fraser, R. D. B., MacRae, T. P., Stewart, F. H. C., and Suzuki, E., 1965, Poly-L-alanyl glycine, J. Mol. Biol 11: 706.PubMedCrossRefGoogle Scholar
  23. Harrington, W. F., 1964, On the arrangement of the hydrogen bonds in the structure of collagen, J. Mol. Biol 9: 613.PubMedCrossRefGoogle Scholar
  24. Heidemann, E. R., Harrap, B. S., and Schiele, H. D., 1973, Hybrid formation between collagen and synthetic polypeptides, Biochemistry 12: 2958.PubMedCrossRefGoogle Scholar
  25. Hutton, J. J., Marglin, A., Witkop, B., Kurtz, J., Berger, A., and Udenfriend, S., 1968, Synthetic polypeptides as substrates and inhibitors of collagen proline hydroxylase, Arch. Biochem. Biophys 125: 779.PubMedCrossRefGoogle Scholar
  26. IUPAC-IUB Commission on Biochemical Nomenclature, 1970, J. Mol. Biol 52: 1.CrossRefGoogle Scholar
  27. Jiminez, S., Harsch, M., and Rosenbloom, J., 1973, Hydroxyproline stabilizes the triple helix of chicken tendon collagen, Biochem. Biophys. Res. Commun 52: 106.CrossRefGoogle Scholar
  28. Kikuchi, Y., Fujimoto, D., and Taniya, N., 1969, The enzyme hydroxylation of protocollagen models, Biochem. J 115: 569.PubMedGoogle Scholar
  29. Kitaoka, H., Sakakibara, S., and Tani, H., 1958, Synthesis of poly(L-prolyl-L-leucyl- glycyl). An attempted synthesis of model collagen, Bull. Chem. Soc. Jpn 31: 802.CrossRefGoogle Scholar
  30. Kivirikko, K. I., Prockop, D. J., Lorenzi, G. P., and Blout, E. R., 1969, Oligopeptides with the sequences Ala-Pro-Gly and Gly-Pro-Gly as substrates or inhibitors for protocolla-gen proline hydroxylase, J. Biol. Chem 244: 2755.PubMedGoogle Scholar
  31. Kivirikko, K. I., Kishida, Y., Sakakibara, S., and Prockop, D. J., 1972, Hydroxylation of (X-Pro-Gly)„ by protocollagen proline hydroxylase, Biochim. Biophys. Acta 271: 347.PubMedCrossRefGoogle Scholar
  32. Kobayashi, Y., and Isemura, T., 1972, Polypeptides related to collagen and its triple helical structure, Progr. Polym. Sci. Jpn 3: 315.Google Scholar
  33. Krimm, S., Kuroiwa, K., and Rebane, T., 1967, Infrared studies of C—H ⋯ O=C hydrogen bonding in polyglycine II, in: Conformation of Biopolymers (G. N. Ramachandran, ed.), Vol. 2, pp. 439–447, Academic Press, New York.Google Scholar
  34. McBride, E. W., and Harrington, W. F., 1967, Helix-coil transition in collagen. Evidence for a single-stranded triple helix, Biochemistry 6: 1499.PubMedCrossRefGoogle Scholar
  35. Okuyama, K., Tanaka, N., Ashida, T., Kakudo, M., Sakakibara, S., and Kishida, Y., 1972, An X-ray study of the synthetic polypeptide (Pro-Pro-Gly)10, J. Mol. Biol 72: 571.Google Scholar
  36. Pauling, L., 1952, The planarity of the amide group in polypeptides, J. Am. Chem. Soc 74: 3964.CrossRefGoogle Scholar
  37. Pauling, L., 1960, The Nature of the Chemical Bond, p. 281, Cornell University Press, Ithaca, New York.Google Scholar
  38. Ramachandran, G. N., 1967, Structure of collagen at the molecular level, in: Treatise on Collagen (G. N. Ramachandran, ed.), Vol. 1, pp. 103–183, Academic Press, New York.Google Scholar
  39. Ramachandran, G. N., 1968, Molecular architecture of collagen, J. Am. Leather Chem. Assoc 63: 160.Google Scholar
  40. Ramachandran, G. N., and Chandrasekaran, R., 1968, Interchain hydrogen bonds via bound water molecules in the collagen triple helix, Biopolymers 6: 1649.PubMedCrossRefGoogle Scholar
  41. Ramachandran, G. N., and Kartha, G., 1954, Structure of collagen, Nature (London) 174: 269.CrossRefGoogle Scholar
  42. Ramachandran, G. N., and Kartha, G., 1955, Structure of collagen, Nature (London) 176: 593.CrossRefGoogle Scholar
  43. Ramachandran, G. N., and Sasisekharan, V., 1968, Conformation of polypeptides and proteins, Adv. Protein Chem 23: 283.PubMedCrossRefGoogle Scholar
  44. Ramachandran, G. N., and Venkatachalam, C. M., 1966, The stability of the two-bonded collagen triple helix, Biochim. Biophys. Acta 120: 457.PubMedCrossRefGoogle Scholar
  45. Ramachandran, G. N., Sasisekharan, V., and Thathachari, Y. T., 1962, Structure of collagen at the molecular level, in: Collagen ( N. Ramanathan, ed.), pp. 81–116, Interscience Publishers, New York.Google Scholar
  46. Ramachandran, G. N., Sasisekharan, V., and Ramakrishnan, C., 1966, Molecular structure of polyglycine II, Biochim. Biophys. Acta 112: 168.PubMedCrossRefGoogle Scholar
  47. Ramachandran, G. N., Ramakrishnan, C., and Venkatachalam, C. M., 1967, Structure of polyglycine II with direct and inverted chains, in; Conformation of Biopolymers (G. N. Ramachandran, ed.), Vol. 2, pp. 429 438, Academic Press, New York.Google Scholar
  48. Ramachandran, G. N., Doyle, B. B., and Blout, E. R., 1968, Single-chain triple helical structure, Biopolymers 6: 1771.PubMedCrossRefGoogle Scholar
  49. Ramachandran, G. N., Bansal, M., and Bhatnagar, R. S., 1973, A hypothesis on the role of hydroxyproline in stabilizing collagen structure, Biochim. Biophys. Acta 322: 166.PubMedCrossRefGoogle Scholar
  50. Ramachandran, G. N., Bansal, M., and Ramakrishnan, C., 1975, Hydroxyproline stabilises both intra-fibrillar structure as well as inter-protofibrillar linkages in collagen, Curr. Sci 44: 1.Google Scholar
  51. Rich, A., and Crick, F. H. C., 1955, The structure of collagen, Nature (London) 176: 915.CrossRefGoogle Scholar
  52. Rich, A., and Crick, F. H. C., 1961, The molecular structure of collagen, J. Mol. Biol 3: 483.PubMedCrossRefGoogle Scholar
  53. Rogulenkova, V. N., Millionova, M. I., and Andreeva, N. S., 1964, On the close structural similarity between poly-Gly-L-Pro-L-Hypro and collagen, J. Mol. Biol 9: 253.PubMedCrossRefGoogle Scholar
  54. Sakakibara, S., Kishida, Y., Kikuchi, Y., Sakai, R., and Kakiuchi, K., 1968, Synthesis of poly-(L-prolyl-L-prolyl-glycyl) of defined molecular weights, Bull. Chem. Soc. Jpn 41: 1273.CrossRefGoogle Scholar
  55. Sakakibara, S., Inouye, K. I., Shudo, K., Kishida, Y., Kobayashi, Y., and Prockop, D. J., 1973, Synthesis of (Pro-Hyp-Gly)nof defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxyproline, Biochim. Biophys. Acta 303: 198.PubMedCrossRefGoogle Scholar
  56. Sasisekharan, V., 1959a, Structure of poly-L-proline II, Acta Cryst. 12: 897.CrossRefGoogle Scholar
  57. Sasisekharan, V., 1959b, Structure of poly-I.-hydroxyproline A, Acta Cryst. 12: 903.CrossRefGoogle Scholar
  58. Scheraga, H. A., 1968, Calculations of conformations of polypeptides, Adv. Phys. Org. Chem 6: 103.CrossRefGoogle Scholar
  59. Segal, D. M., Traub, W., and Yonath, A., 1969, Polymers of tripeptides as collagen models. VIII. X-ray studies of four polyhexapeptides, J. Mol. Biol 43: 519.PubMedCrossRefGoogle Scholar
  60. Sutoh, K., and Noda, H., 1974, Conformational change of the triple helical structure. III. Stabilizing forces in the triple helix, Biopolymers 13: 2461.CrossRefGoogle Scholar
  61. Traub, W., and Piez, K. A., 1971, The chemistry and structure of collagen, Adv. Protein Chem 25: 243.PubMedCrossRefGoogle Scholar
  62. Traub, W., and Shmueli, U., 1963, Structure of Poly-L-proline I, in: Aspects of Protein Structure ( G. N. Ramachandran, ed.) pp. 81–92, Academic Press, New York.Google Scholar
  63. Yee, R. Y., Englander, S. W., and von Hippel, P. M., 1974, Native collagen has a two-bonded structure, J. Mol. Biol 83: 1.PubMedCrossRefGoogle Scholar
  64. Yonath, A., and Traub, W., 1969, Polymers of tripeptides as collagen models. IV. Structure analysis of poly(L-prolyl-glycyl-L-proline), J. Mol. Biol 43: 461.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • G. N. Ramachandran
    • 1
  • C. Ramakrishnan
    • 1
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations