Advertisement

Catalytic Antibodies

  • David E. Hansen
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

In December of 1986, groups led by Tramontano and Lerner1 and by Schultz2 independently demonstrated that antibodies can catalyze the hydrolysis of carboxylate esters and carbonates. In the short time since then, antibodies that catalyze a variety of additional reactions, including the sequence-specific hydrolysis of a peptide and a Claisen rearrangement, have been elicited. In this chapter, we will first discuss the key developments in the study of enzymatic catalysis that led to the successful isolation of these antibody catalysts and will comment on some earlier unsuccessful attempts toward this end. Then we will discuss the properties of the antibody catalysts isolated to date and will speculate on the future directions, including those involving protein engineering, that research in this area may follow.

Keywords

Vasoactive Intestinal Peptide Rate Acceleration Triosephosphate Isomerase Ester Substrate Claisen Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Tramontano, K. D. Janda, and R. A. Lerner, Science 234, 1566 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    S. J. Pollack, J. W. Jacobs, and P. G. Schultz, Science 234, 1570 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    P. S. Kim, Protein Engineering 2, 249 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    Nobel Lectures Chemistry 1901–1921, p. 34, Elsevier, New York (1966).Google Scholar
  5. 5.
    G. M. Whitesides and C.-H. Wong, Aldrichimica Acta 16, 27 (1983).Google Scholar
  6. 6.
    E. T. Kaiser and D. S. Lawrence, Science 226, 505 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Pauling, Am. Sci. 36, 51 (1948).PubMedGoogle Scholar
  8. 8.
    A. Fersht, Enzyme Structure and Mechanism, 2nd ed., W. H. Freeman, New York (1985).Google Scholar
  9. 9.
    W. P. Jencks, Symposia on Quantitative Biology 52, 65 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Kraut, Science 242, 533 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    W. P. Jencks, Catalysis in Chemistry and Enzymology, p. 268, McGraw Hill, New York (1969).Google Scholar
  12. 12.
    L. E. Hood, I. L. Weissman, and W. B. Wood, Immunology, p. 206, Benjamin/Cummings, Melno Park, California (1978).Google Scholar
  13. 13.
    S. Tonegawa, Sci. Am. 253, 122 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    L E. Hood, I. L. Weissman, and W. B. Wood, Immunology, p. 158, Benjamin/Cummings, Melno Park, California (1978).Google Scholar
  15. 15.
    W. P. Jencks, in: Current Aspects of Biochemical Energetics ( E. P. Kennedy, ed.), p. 273, Academic Press, New York (1966).Google Scholar
  16. 16.
    R. Wolfenden, Acc. Chem. Res. 5, 10 (1972).CrossRefGoogle Scholar
  17. 17.
    G. E. Lienhard, Science 180, 149 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    G. J. Cardinale and R. H. Abeles, Biochemistry 7, 3970 (1968).PubMedCrossRefGoogle Scholar
  19. 19.
    M. V. Keenan and W. L. Alworth, Biochem. Biophys. Res. Commun. 57, 500 (1974).Google Scholar
  20. 20.
    K. D. Collins, J. Biol. Chem. 249, 136 (1974).PubMedGoogle Scholar
  21. 21.
    R. Wollenden and L. Frick, in: Enzyme Mechanisms ( M. I. Page and A. Williams, eds.), Royal Society of Chemistry Press, London (1987).Google Scholar
  22. 22.
    V. Raso and B. D. Stollar, Biochemistry 14, 584, 591 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Summers, Catalytic Principles of Enzyme Chemistry, Ph.D. Thesis, Harvard University (1983).Google Scholar
  24. 24.
    B. F. Erlanger, Methods Enz. 70, 85 (1980).CrossRefGoogle Scholar
  25. 25.
    G. Kohler and C. Milstein, Nature 256, 495 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Kohen, J. B. Kim, H. R. Lindner, Z. Eshhar, and B. Green, FEBS Lett. 111, 427 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    R. A. Lerner, Adv. Immunology 36, 1 (1984).CrossRefGoogle Scholar
  28. 28.
    A. Tramontano, K. D. Janda, and R. A. Lerner, Proc. Natl. Acad. Sci. USA 83, 6736 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    N. E. Jacobson and P. A. Bartlett, J. Am. Chem. Soc. 103, 654 (1981).CrossRefGoogle Scholar
  30. 30.
    G. C. Rao, Enzyme Models Based on Boronic Acids and on a Monoclonal Antibody, Ph.D. Thesis, City University of New York (1987).Google Scholar
  31. 31.
    S. J. Pollack and P. G. Schultz, Symposia on Quantitative Biology 52, 97 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    A. L. Lehninger, Biochemistry, p. 210, Worth, New York (1982).Google Scholar
  33. 33.
    J. Jacobs, P. G. Schultz, R. Sugasawara, and M. Powell, J. Am. Chem. Soc. 109, 2174 (1987).CrossRefGoogle Scholar
  34. 34.
    A. Tramontano, A. A. Amman, and R. A. Lerner, J. Am. Chem. Soc. 110, 2282 (1988).CrossRefGoogle Scholar
  35. 35.
    C. N. Durfor, R. J. Bolin, R. Sugasawara, R. J. Massey, J. W. Jacobs, and P. G. Schultz, J. Am. Chem. Soc. 110, 8713 (1988).CrossRefGoogle Scholar
  36. 36.
    K. D. Janda, D. Schloeder, S. J. Benkovic, and R. A. Lerner, Science 241, 1188 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    K. D. Janda, S. J. Benkovic, and R. A. Lerner, Science 244, 437 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    S. J. Pollack, P. Hsiun, and P. G. Schultz, J. Am. Chem. Soc. 111, 5961 (1989).CrossRefGoogle Scholar
  39. 39.
    B. L. Iverson and R. A. Lerner, Science 243, 1184 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    H. J. Dyson, R. A. Lerner, and P. E. Wright, Annu. Rev. Biophys. Biophys. Chem. 17, 305 (1988).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Paul, D. J. Volle, C. M. Beach, D. R. Johnson, M. J. Powell, and R. J. Massey, Science 244, 1158 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    A. D. Napper, S. J. Benkovic, A. Tramontano, and R. A. Lerner, Science 237, 1041 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    S. J. Benkovic, A. D. Napper, and R. A. Lerner, Proc. Natl. Acad. Sci. USA 85, 5355 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    K. D. Janda, R. A. Lerner, and A. Tramontano, J. Am. Chem. Soc. 110, 4835 (1988).CrossRefGoogle Scholar
  45. 45.
    D. Y. Jackson, J. W. Jacobs, R. Sugasawara, S. H. Reich, P. A. Bartlett, and P. G. Schultz, J. Am. Chem. Soc. 110, 4841 (1988).CrossRefGoogle Scholar
  46. 46.
    D. Hilvert, S. H. Carpenter, K. D. Nared, and M.-T. M. Auditor, Proc. Natl. Acad. Sci. USA 85, 4953 (1988).CrossRefGoogle Scholar
  47. 47.
    P. A. Bartlett and C. R. Johnson, J. Am. Chem. Soc. 107, 7792 (1985).CrossRefGoogle Scholar
  48. 48.
    D. Hilvert and K. D. Nared, J. Am. Chem. Soc. 110, 5593 (1988).CrossRefGoogle Scholar
  49. 49.
    K. M. Shokat, C. J. Leumann, R. Sugasawara, and P. G. Schultz, Angew. Chem. Int. Ed. Engl. 27, 1172 (1988).Google Scholar
  50. 50.
    A. G. Cochran, R. Sugasawara, and P. G. Schultz, J. Am. Chem. Soc. 110, 7888 (1988).CrossRefGoogle Scholar
  51. 51.
    A. Balan, B. P. Doctor, B. S. Green, M. Torten, and H. Ziffer, J. C. S. Chem. Commun., 106 (1988).Google Scholar
  52. 52.
    K. M. Shokat, C. J. Leumann, R. Sugasawara, and P. G. Schultz, Nature 338, 269 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    S. J. Pollack, G. R. Nakayama, and P. G. Schultz, Science 242, 1038 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    S. J. Pollack and P. G. Schultz, J. Am. Chem. Soc. 111, 1929 (1989).CrossRefGoogle Scholar
  55. 55.
    P. G. Schultz, R. A. Lerner, and D. Hilvert, private communication.Google Scholar
  56. 56.
    J. D. Hermes, S. C. Blacklw, and J. R. Knowles, Symposia on Quantitative Biology 52, 597 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    S. Roberts, J. C. Cheetham, and A. R. Rees, Nature 328, 731 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    S. L. Morrison and V. T. Oi, Adv. Immun!. 44, 65 (1989).CrossRefGoogle Scholar
  59. 59.
    A. Skerra and A. Pluckthun, Science 240, 1038 (1988).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Better, C. P. Chang, R. R. Robinson, and A. H. Horwitz, Science 240, 1041 (1988).PubMedCrossRefGoogle Scholar
  61. 61.
    A. H. Horwitz, C. P. Chang, M. Better, K. E. Hellstrom, and R. R. Robinson, Proc. Natl. Acad. Sci. USA 85, 8678 (1988).PubMedCrossRefGoogle Scholar
  62. 62.
    R. E. Bird, K. D. Hardman, J. W. Jacobson, S. Johnson, B. M. Kaufman, S.-M. Lee, T. Lee, S. H. Pope, G. S. Riordan, and M. Whitlow, Science 242, 423 (1988).PubMedCrossRefGoogle Scholar
  63. 63.
    J. S. Huston, D. Levinson, M. Mudgett-Hunter, M.-S. Tai, J. Novotny, M. N. Margolies, R. J. Ridge, R. E. Bruccoleri, E. Haber, R. Crea, and H. Oppermann, Proc. Natl. Acad. Sci. USA 85, 5879 (1988).PubMedCrossRefGoogle Scholar
  64. 64.
    A. R. Rees and P. de la Paz, TIBS 11, 144 (1986).Google Scholar
  65. 65.
    A. J. Kirby, Adv. Phys. Org . Chem. 17, 183 (1980).Google Scholar
  66. 66.
    F. M. Menger and M. Ladika, J. Am. Chem. Soc. 110, 6794 (1988).CrossRefGoogle Scholar
  67. 67.
    A. Fersht, Enzyme Structure and Mechanism, 2nd ed., pp. 147–152, W. H. Freeman, New York (1985).Google Scholar
  68. 68.
    O. P. Kuipers, M. M. G. M. Thunnissen, P. de Geus, B. W. Dijkstra, J. Drenth, H. M. Verheij, and G. H. de Hass, Science 244, 82 (1989).PubMedCrossRefGoogle Scholar
  69. 69.
    H. M. Wilks, K. W. Hart, R. Feeney, C. D. Dunn, H. Muirhead, W. N. Chia, D. A. Barstow, T. Atkinson, A. R. Clarke, and J. J. Holbrook, Science 242, 1541 (1988).PubMedCrossRefGoogle Scholar
  70. 70.
    D. Hilvert, S. J. Gardell, W. J. Rutter, and E. T. Kaiser, J. Am. Chem. Soc. 108, 5298 (1986).CrossRefGoogle Scholar
  71. 71.
    W. M. Kati and R. Wolfenden, Science 243, 1591 (1989).PubMedCrossRefGoogle Scholar
  72. 72.
    J. A. Gerlt, Chem. Rev. 87, 1079 (1987).Google Scholar
  73. 73.
    P. J. Gearhart, N. D. Johnson, R. Douglas, and L. Hood, Nature 291, 29 (1981).PubMedCrossRefGoogle Scholar
  74. 74.
    Y. Satow, G. H. Cohen, E. A. Padlan, and D. R. Davies, J. Mol. Biol. 190, 593 (1986).PubMedCrossRefGoogle Scholar
  75. 75.
    N. Janjic and A. Tramontano, J. Am. Chem. Soc. 111, 9109 (1989).CrossRefGoogle Scholar
  76. 76.
    D. Hilvert, K. W. Hill, K. D. Nared, and M.-T. M. Auditor, J. Am. Chem. Soc. 111, 9261 (1989).CrossRefGoogle Scholar
  77. 77.
    K. D. Janda, M. I. Weinhouse, D. M. Schloeder, R. A. Lerner, and S. J. Benkovic, J. Am. Chem. Soc. 112, 1274 (1990).CrossRefGoogle Scholar
  78. 78.
    E. Baldwin, and P. G. Schultz, Science 245, 1104 (1989).PubMedCrossRefGoogle Scholar
  79. 79.
    A. Hiatt, R. Cafferkey, and K. Bowdish, Nature 342, 76 (1989).PubMedCrossRefGoogle Scholar
  80. 80.
    E. S. Ward, D. Gussow, A. D. Griffiths, P. T. Jones, and G. Winter, Nature 341, 544 (1989).PubMedCrossRefGoogle Scholar
  81. 81.
    W. D. Huse, L. Sastry, S. A. Iverson, A. S. Kang, M. Alting-Mees, D. R. Burton, S. J. Benkovic, and R. A. Lerner, Science 246, 1275 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David E. Hansen
    • 1
  1. 1.Department of ChemistryAmherst CollegeAmherstUSA

Personalised recommendations