Advertisement

Biocatalysis in Supercritical Fluids

  • Theodore W. Randolph
  • Harvey W. Blanch
  • Douglas S. Clark
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

General industrial application of biocatalysis has long been hindered by the nearly exclusive use of water as a solvent, although it has been known for some time that biocatalysis can occur in nonaqueous environments. Recent interest in nonaqueous systems for biocatalysis has been kindled by the work of Klibanov and co-workers, 1–3 who showed that enzymatic catalysis can take place even in nearly anhydrous organics. Since the appearance of that work, many different solvent systems have been investigated as media for biocatalysis, and general rules for solvent selection have been proposed.4–7

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Activation Volume Supercritical Fluid Supercritical Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Zaks and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 82, 3192 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Zaks and A. M. Klibanov, Science 224, 1249 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Z. Kazandjian and A. M. Klibanov, J. Am. Chem. Soc. 107, 5448 (1985).CrossRefGoogle Scholar
  4. 4.
    C. Laane, S. Boeren, and K. Vos, Trends Biotechnol. 3 (10), 251 (1985).Google Scholar
  5. 5.
    C. Laane, S. Boeren, K. Vos, and C. Veeger, Biotechnol. Bioeng. 30, 81 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Laane, Biocatalysis 1, 17 (1987).CrossRefGoogle Scholar
  7. 7.
    C. Laane, R. Hilhorst, R. Spruijit, and C. Veeger, presented in the European Conference on Biotechnology, September (1984).Google Scholar
  8. 8.
    J. B. Hannay and J. Hogarth, Proc. Roy. Soc. (London) 29, 324 (1979).Google Scholar
  9. 9.
    J. B. Hannay, Proc. Roy. Soc. (London) 30, 484 (1980).Google Scholar
  10. 10.
    K. Zosel, US Patent 3, 597, 464 [C1260, 448A; CO7f] (1971)].Google Scholar
  11. 11.
    K. Zosel, Ger. Offen. 2, 332, 038 [Cl. Cl lb (1974)].Google Scholar
  12. 12.
    K. Zosel, Ger. Offen. 2, 363, 418 [Cl. Cl lb (1974)].Google Scholar
  13. 13.
    K. Zosel, Ger. Offen. 2, 441, 152 [Cl. Cl lc (1975)].Google Scholar
  14. 14.
    O. Vitzthum, P. Hubert, and W. Sirtl, US Patent 4, 104, 409 (1978).Google Scholar
  15. 15.
    W. Roselius, O. Vitzthum, and P. Herbert, Ger. Offen. 2, 043, 537 [Cl. a23f (1975)].Google Scholar
  16. 16.
    O. Vitzthum and P. Herbert, Patentschrift 2, 127, 611 (1974).Google Scholar
  17. 17.
    L. G. Randall, Sep. Sci. Tech. 17 (1), 1 (1982).CrossRefGoogle Scholar
  18. 18.
    M. E. Paulaitis, V. J. Krukonis, R. T. Kurnik, and R. C. Reid, Rev. Chem. Eng. 1, 179 (1982).Google Scholar
  19. 19.
    G. Brunner and S. Peter, Chem. Ing. Tech. 53, 529 (1981).CrossRefGoogle Scholar
  20. 20.
    M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction, Butterworths, Boston (1986).Google Scholar
  21. 21.
    G. Brunner, D. Stuetzer, and S. Peter, AIChE Symp. Ser., in press.Google Scholar
  22. 22.
    P. G. Debenedetti and S. K. Kumar, AIChE Symp. Ser. 34 (4), 646 (1988).Google Scholar
  23. 23.
    R. S. Mohamed, P. G. Debenedetti, and R. K. Prud’homme, AIChE J. 35 (2), 325 (1989).CrossRefGoogle Scholar
  24. 24.
    D. W. Matson, R. C. Petersen, and R. D. Smith, Advanced Ceramic Materials 1, 242 (1986).Google Scholar
  25. 25.
    K. A. Larson and M. L. King, Biotechnol. Progress 2 (2) (1986).Google Scholar
  26. 26.
    B. Subramaniam and M. A. McHugh, Ind. Eng. Process Des. Dey. 25, 1 (1986).CrossRefGoogle Scholar
  27. 27.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  28. 28.
    S. Kim and K. P. Johnston, Chem. Eng. Commun. 63, 49 (1988).CrossRefGoogle Scholar
  29. E. Morild, Adv. in Protein Chem. 34, 93 (1981).Google Scholar
  30. 30.
    M. Fukuda and S. Kunugi, Eur. J. Biochem. 149, 657 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    J. T. Penniston, Arch. Biochem. Biophys. 142, 322 (1971).CrossRefGoogle Scholar
  32. 32.
    T. W. Randolph, D. S. Clark, H. W. Blanch, and J. M. Prausnitz, Science 238, 387 (1988).CrossRefGoogle Scholar
  33. 33.
    V. Kasche, R. Schlothauer, and G. Brunner, Biotechnol. Lett. 10, 569 (1988).CrossRefGoogle Scholar
  34. 34.
    P. W. Hochachka, K. B. Storey, and J. Baldwin, J. Comp. Biochem. Physiol. B 52, 43 (1975).CrossRefGoogle Scholar
  35. 35.
    E. Morild, Biophys. Chem. 6, 351 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    A. L. Curl and E. F. Jansen, J. Biol. Chem. 185, 713 (1950).PubMedGoogle Scholar
  37. 37.
    E. D. Holyoke and F. H. Johnson, Arch. Biochem. Biophys. 31, 41 (1951).PubMedCrossRefGoogle Scholar
  38. 38.
    P. S. Low and G. N. Somero, Comp. Biochem. Physiol. B 52, 67 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    D. Fraser and F. H. Johnson, J. Biol. Chem. 190, 2706 (1951).Google Scholar
  40. 40.
    T. W. Randolph, H. W. Blanch, J. M. Prausnitz, and C. R. Wilke, Biotechnol. Lett. 7, 5, 325 (1985).CrossRefGoogle Scholar
  41. 41.
    T. W. Randolph, Ph.D. Thesis, University of California, Berkeley (1987).Google Scholar
  42. 42.
    V. J. Krukonis and D. A. Hammond, Biotechnol Lett. 10, 11, 837 (1988).CrossRefGoogle Scholar
  43. 43.
    D. A. Hammond, M. Karel, A. M. Klibanov, and V. J. Krukonis, Appl. Biochem. Biotechnol. 11, 393 (1985).CrossRefGoogle Scholar
  44. 44.
    A. G. Smith and C. J. W. Brooks, Biochem. J. 167, 127 (1977).Google Scholar
  45. 45.
    M. F. Haberland and J. A. Reynolds, Proc. Natl. Acad. Sci. USA 70 (8), 2313 (1973).PubMedCrossRefGoogle Scholar
  46. 46.
    J. M. Wong and K. P. Johnston, Biotechnol. Progress 2 (2) (1986).Google Scholar
  47. 47.
    T. W. Randolph, H. W. Blanch, and J. M. Prausnitz, AIChE 34 (8), 1354 (1988).CrossRefGoogle Scholar
  48. 48.
    T. W. Randolph, D. S. Clark, H. W. Blanch, and J. M. Prausnitz, Proc. Natl. Acad. Sci. USA 85, 2979 (1988).PubMedCrossRefGoogle Scholar
  49. 49.
    K. Nakamura and T. Yano, Japanese Patent Application 59 143–138 (1984) and Jpn. Kokai Tokyo 61 21098 (1986).Google Scholar
  50. 50.
    K. Nakamura, Y. J. Chi, Y. Yamada, and T. Yano, Chem. Eng. Commun. 45, 207 (1986).CrossRefGoogle Scholar
  51. 51.
    Y. M. Chi, K. Nakamura, and T. Yano, Agric. Biol. Chem. 52 (6), 1541 (1988).CrossRefGoogle Scholar
  52. 52.
    D. A. Miller, H. W. Blanch, and J. M. Prausnitz, in: Ann. N.Y. Acad. Sci., to appear.Google Scholar
  53. 53.
    A. M. M. van Eijs, J. P. J. de Jong, and H. H. M. Oostrom, poster presentation at the Netherlands Congress on Biotechnology, Amsterdam, October 20–21 (1988).Google Scholar
  54. 54.
    A. M. M. van Eijs, J. P. J. de Jong, H. J. Doddema, and D. R. Lindeboom, Proceedings of the International Symposium on Supercritical Fluids, Nice, October 17–18 (1988).Google Scholar
  55. 55.
    R. P. De Phillipi and J. M. Moses, Biotechnol. Bioeng. Symp. 12, 205 (1982).Google Scholar
  56. 56.
    E. J. Shimshick, Chemtech. 374 (1983); E. J. Shimshick, US Patent 4, 250, 331 (1983).Google Scholar
  57. 57.
    Hitachi, Ltd., Jpn. Kokai Tokyo Koho Japanese Patent 60, 94 089.Google Scholar
  58. 58.
    M. Kamihira, M. Taniguchi, and T. Kobayashi, Agri. Biol. Chem. 51, 407 (1987).CrossRefGoogle Scholar
  59. 59.
    Y. L’Italien, J. Thibault, and A. LeDuy, Biotechnol. Bioeng. 33, 471 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    A. M. M. van Eijs, J. M. P. Wokke, and B. ten Brink, in: Preconcentration and Drying of Food Materials ( S. Bruin, ed.), Elsevier, Amsterdam (1988).Google Scholar
  61. 61.
    A. M. M. van Eijs, J. M. P. Wokke, B. ten Brink, and K. A. Dekker, Proceedings of the International Symposium on Supercritical Fluids, Nice, October 17–18 (1988).Google Scholar
  62. 62.
    M. Gigon, T. W. Randolph, I. W. Manson, and U. von Stockar, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Theodore W. Randolph
    • 1
  • Harvey W. Blanch
    • 2
  • Douglas S. Clark
    • 2
  1. 1.Department of Chemical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Chemical EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations