Advertisement

Lipase Catalysis and Its Applications

  • Vijay T. John
  • George Abraham
Chapter
Part of the Topics in Applied Chemistry book series (TAPP)

Abstract

Lipases have been traditionally defined as enzymes “capable of hydrolyzing esters of oleic acid.”1 The definition of a lipase as a hydrolytic enzyme originated primarily from its physiological function of triglyceride hydrolysis.

Keywords

Lipase Activity Cocoa Butter Pancreatic Lipase Acyl Donor Ester Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Brockerhoff and R. G. Jensen, Lipolytic Enzymes, Academic Press, New York (1974).Google Scholar
  2. 2.
    C. Ratledge, Fette, Seifen, Anstrichm. 86(10), 379 (1984).CrossRefGoogle Scholar
  3. 3.
    A. Kilara, Process Biochem., p. 35, April (1985).Google Scholar
  4. 4.
    E. W. Seitz, JAOCS 51, 12 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Macrae, in Proc. World Conference on Emerging Technologies in the Fats and Oils Industry ( A. R. Baldwin, ed.), p. 7, Amer. Oil Chem. Soc., Champaign, Illinois (1986).Google Scholar
  6. 6.
    T. Nielsen, Fette, Seifen, Anstrichm. 87(1), 15 (1985).CrossRefGoogle Scholar
  7. 7.
    T. Yamane, JAOCS 64(10), 1657 (1987).Google Scholar
  8. 8.
    B. W. Werdelmann and R. D. Schmid, Fette, Seifen, Anstrichm. 84(11), 436 (1982).CrossRefGoogle Scholar
  9. 9.
    A. R. Macrae, in: Microbial Enzymes and Technology (W . M. Fogarty, ed.), p. 225, Elsevier, Amsterdam (1983).Google Scholar
  10. 10.
    S. Ishida, in: Proc. World Conference on Emerging Technologies in the Fats and Oils Industry ( A. R. Baldwin, ed.), p. 359, Amer. Oil Chem. Soc., Champaign, Illinois (1986).Google Scholar
  11. 11.
    R. H. Potts and V. J. Mukerheide, in: Fatty Acids and Their Industrial Applications ( E. S. Pattison, ed.), p. 28, Marcel Dekker, New York (1968).Google Scholar
  12. 12.
    W. M. Linfield, D. J. O’Brien, S. Serota, and R. A. Barauskas JAOCS 61(6), 1067 (1984).CrossRefGoogle Scholar
  13. 13.
    L. H. Posorske, JAOCS 61(11), 1758 (1984).CrossRefGoogle Scholar
  14. 14.
    R. G. Jensen, S. A. Gerrior, M. M. Hagerty, and K. E. McMahon, JAOCS 55, 422 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    Nippon Oil and Fats Co. Ltd., Japanese Patent 59–14793 (1984).Google Scholar
  16. 16.
    H. Brockerhoff, Arch. Biochem. Biophys. 110, 586 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    M. M. Hoq, T. Yamane, S. Shimizu, T. Funada, and S. Ishida, JAOCS 62(6), 1016 (1985).Google Scholar
  18. 18.
    G. Bell, J. R. Todd, J. A. Blain, J. D. E. Patterson, and C. E. L. Shaw, Biotech. Bioeng. 23, 1703 (1981).CrossRefGoogle Scholar
  19. 19.
    M. M. Hoq, M. Koike, T. Yamane, and S. Shimizu, Agric. Biol. Chem. 49(11), 3171 (1985).CrossRefGoogle Scholar
  20. 20.
    L. Sarda and P. Desnuelle, Biochim. Biophys. Acta 30, 513 (1958).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Entressangles and P. Desnuelle, Biochim. Biophys. Acta 159, 285 (1968).PubMedCrossRefGoogle Scholar
  22. 22.
    H. L. Brockman, J. H. Law, and F. J. Kezdy, J. Biol. Chem. 248(14), 4965 (1973).PubMedGoogle Scholar
  23. 23.
    R. Verger, in: Lipases ( B. Borgstrom and H. L. Brockman, eds.), Elsevier, New York (1984).Google Scholar
  24. 24.
    H. Brockerhoff, Chem. Phys. Lipids 10, 215 (1973).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Chapus, M. Semeriva, C. Bovier-Lapierre, and P. Desnuelle, Biochemistry 15(23), 4980 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Iwai, Y. Tsujisaka, and J. Fukumoto, J. Gen. Appl. Microbiol. 10, 87 (1964).CrossRefGoogle Scholar
  27. 27.
    W. E. Momsen and H. L. Brockman, J. Biol. Chem. 25(2), 378 (1976).Google Scholar
  28. 28.
    M. Iwai and Y. Tsujisaka, in: Lipases ( B. Borgstrom and H. L. Brockman, eds.), Elsevier, New York (1984).Google Scholar
  29. 29.
    H. L. Brockman, in: Lipases ( B. Borgstrom and H. L. Brockman, eds.), Elsevier, New York (1984).Google Scholar
  30. 30.
    T. Tsujita and H. L. Brockman, Biochemistry 26, 8423 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Tsujita, J. M. Smaby, and H. L. Brockman, Biochemistry 26, 8430 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    H. L. Brockman, in: Proc. Symp. on the Biology, Biochemistry and Technology of Lipases ( S. Stegink and G. Abraham, eds.), p. 1, Amer. Oil Chem. Soc., Champaign, Illinois (1987).Google Scholar
  33. 33.
    W. E. Ladner and G. M. Whitesides, J. Am. Chem. Soc. 106, 7250 (1984).CrossRefGoogle Scholar
  34. 34.
    A. Akiyama, M. Bednarski, M: J. Kim, E. S. Simon, H. Waldmann, and G. M. Whitesides, Chemistry in Britain, p. 647, July (1987).Google Scholar
  35. 35.
    M. Iwai, Y. Tsujisaka, and J. Fukumoto, J. Gen. Appl. Microbiol. 10, 13 (1964).CrossRefGoogle Scholar
  36. 36.
    S. Okumura, M. Iwai, and Y. Tsujisaka, Biochim. Biophys. Acta 575, 156 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    M. M. Hoq, H. Tagami, T. Yamane, and S. Shimizu, Agric. Biol. Chem. 49(2), 335 (1985).CrossRefGoogle Scholar
  38. 38.
    A. M. Klibanov, in: Protein Engineering. Applications in Science, Medicine, and Industry (M. Inouye and R. Sarma, eds.), p. 341, Academic Press (1986).Google Scholar
  39. 39.
    A. Zaks and A. M. Klibanov, Proc. Natl. Acad. Sci. USA 82, 3192 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    J. Chopineau, F. D. McCafferty, M. Therisod, and A. M. Klibanov, Biotech. Bioeng. 31, 208 (1988).CrossRefGoogle Scholar
  41. 41.
    P. Cesti, A. Zaks, and A. M. Klibanov, Appl. Biochem. Biotech. 11, 401 (1985).CrossRefGoogle Scholar
  42. 42.
    B. Cambou and A. M. Klibanov, J. Am. Chem. Soc. 106, 2687 (1984).CrossRefGoogle Scholar
  43. 43.
    G. Kirchner, M. P. Scollar, and A. M. Klibanov, J. Am. Chem. Soc. 107, 7072 (1985).CrossRefGoogle Scholar
  44. 44.
    A. L. Margolin and A. M. Klibanov, J. Am. Chem. Soc. 109, 3802 (1987).CrossRefGoogle Scholar
  45. 45.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 109, 3977 (1987).CrossRefGoogle Scholar
  46. 46.
    A. L. Margolin, J.-Y. Crenne, and A. M. Klibanov, Tetrahedron Lett. 28(15), 1607 (1987).CrossRefGoogle Scholar
  47. 47.
    S. Koshiro, K. Sonomoto, A. Tanaka, and S. Fukui, J. Biotech. 2, 47 (1985).CrossRefGoogle Scholar
  48. 48.
    M. Kawase and A. Tanaka, Biotech. Lett. 10(6), 393 (1988).CrossRefGoogle Scholar
  49. 49.
    A. Tanaka and S. Fukui, in: Enzymes and Immobilized Cells Biotechnology. Biotech. Ser. 5, 149 (1985).Google Scholar
  50. 50.
    K. Yokozeki, S. Yamanaka, K. Takinami, Y. Hirose, A. Tanaka, and K. Sonomoto, Eur. J. Appl. Microbiol. Biotechnol. 14, 1 (1982).CrossRefGoogle Scholar
  51. 51.
    T. Kawamoto, K. Sonomoto, and A. Tanaka, Biocatalysis 1, 137 (1987).CrossRefGoogle Scholar
  52. 52.
    G. Langrand, J. Baratti, G. Buono, and C. Triantaphylides, Tetrahedron Lett. 27(1), 29 (1986).CrossRefGoogle Scholar
  53. 53.
    J. Baratti, G. Buono, H. Deleuze, G. Langrand, M. Secchi, and C. Triantaphylides, in: Proc. World Conference on Emerging Technologies in the Fats and Oils Industry ( A. R. Baldwin, ed.), p. 355, Am. Oil Chem. Soc., Champaign, Illinois (1985).Google Scholar
  54. 54.
    H. Deleuze, G. Langrand, H. Millet, J. Baratti, G. Buono, and G. Triantaphylides, Biochim. Biophys. Acta 911, 117 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    G. Langrand, C. Triantaphylides, and J. Baratti, Biotech. Lett. 10(8), 549 (1988).CrossRefGoogle Scholar
  56. 56.
    G. Langrand, J. Baratti, G. Buono, and C. Triantaphylides, Biocatalysis 1, 231 (1988).CrossRefGoogle Scholar
  57. 57.
    A. M. Klibanov and B. Cambou, Methods in Enzymology 136, 117 (1987).CrossRefGoogle Scholar
  58. 58.
    T. Sakurai, A. L. Margolin, A. J. Russel, and A. M. Klibanov, J. Am. Chem. Soc. 110, 7236 (1988).CrossRefGoogle Scholar
  59. 59.
    M. Therisod and A. M. Klibanov, J. Am. Chem. Soc. 108, 5638 (1986).CrossRefGoogle Scholar
  60. 60.
    H. Seino, T. Uchibori, T. Nishitani, and S. Inamasu, JAOCS 61(11), 1761 (1984).CrossRefGoogle Scholar
  61. 61.
    A. R. Macrae, JAOCS 60(2), 291 (1983).CrossRefGoogle Scholar
  62. 62.
    H. L. Goderis, G. Ampe, M. P. Feyten, B. L. Fouwe, W. M. Guffens, S. M. Van Cauwenbergh, and P. P. Tobback, Biotech. Bioeng. 30, 258 (1987).CrossRefGoogle Scholar
  63. 63.
    R. Schuch and K. D. Mukherjee, J. Agric. Food Chem. 35, 1005 (1987).CrossRefGoogle Scholar
  64. 64.
    T. T. Hansen and P. Eigtved, Proc. World Conference on Emerging Technologies in the Fats and Oils Industry (A. R. Baldwin, ed.), p. 414, Am. Oil Chem. Soc., Champaign, Illinois (1985).Google Scholar
  65. 65.
    R. W. Stevenson, F. E. Luddy, and H. L. Rothbart, JAOCS 56, 676 (1979).CrossRefGoogle Scholar
  66. 66.
    D. K. Bhattacharya, S. Majumdar, and S. Khatoon, Proc. World Conference on Emerging Technologies in the Fats and Oils Industry (A. R. Baldwin, ed.), p. 414, Am. Oil Chem. Soc., Champaign, Illinois (1985).Google Scholar
  67. 66a.
    T. Tanaka, E. Ono, M. Ishihara, S. Yamanaka, and K. Takinami, Agric. Biol. Chem. 45, 2387 (1981).CrossRefGoogle Scholar
  68. 67.
    G. Abraham, M. A. Murray, and V. T. John, Biotech. Lett. 10(8), 555 (1988).CrossRefGoogle Scholar
  69. 68.
    M. Rao, M. A. Murray, G. Abraham, and V. T. John, in press (1991).Google Scholar
  70. 69.
    C. S. Chen, S.-H. Wu, G. Girdaukas, and C. J. Sih, J. Am. Chem. Soc. 109, 2812 (1987).CrossRefGoogle Scholar
  71. 70.
    A. Nagao and M. Kito, JAOCS 66(5), 710 (1989).CrossRefGoogle Scholar
  72. 71.
    D. A. Abramowicz and C. R. Keese, Biotech. Bioeng. 33, 149 (1989).CrossRefGoogle Scholar
  73. 72.
    Y. Inada, H. Nishimura, K. Takasaki, T. Yoshimoto, A. R. Saha, and Y. Saito, Biochem. Biophys. Res. Commun. 122(2), 845 (1984).PubMedCrossRefGoogle Scholar
  74. 73.
    A. Zaks and A. M. Klibanov, Science 224, 1249 (1984).PubMedCrossRefGoogle Scholar
  75. 74.
    A. M. Klibanov, Chemtech., p. 354, June (1986).Google Scholar
  76. 75.
    J. S. Dordick, Enzyme Microb. Technol. 11, 194 (1989).CrossRefGoogle Scholar
  77. 76.
    C. Laane, S. Boeren, and K. Vos, Trends in Biotech. 3(10), 251 (1985).CrossRefGoogle Scholar
  78. 77.
    C. Laane, S. Boeren, K. Vos, and C. Veeger, Biotechnol. Bioeng. 30, 81 (1987).PubMedCrossRefGoogle Scholar
  79. 78.
    L. E. S. Brink and J. Tramper, Biotechnol. Bioeng. 27, 1258 (1985).PubMedCrossRefGoogle Scholar
  80. 79.
    P. J. Hailing, in: Biocatalysis in Organic Media ( C. Laane, J. Tramper, and M. D. Lilly, eds.), p. 125, Elsevier, Amsterdam (1986).Google Scholar
  81. 80.
    P. J. Hailing, Biocatalysis 1, 109 (1987).CrossRefGoogle Scholar
  82. 81.
    J. Wirz and J. P. Rosenbusch, in: Reverse Micelles ( P. L. Luisi and B. E. Straub, eds.), Plenum Press, New York (1984).Google Scholar
  83. 82.
    M. E. Leser, G. Wei, P. Lüthi, G. Haering, A. Hochkoeppler, E. Blöchliger, and P. L. Luisi, Journal de chimie physique 84(9), 1113 (1987).Google Scholar
  84. 83.
    K. Martinek, I. V. Berezin, Yu. L. Khmelnitski, N. L. Klyachko, and A. V. Levashov, Biocatalysis 1, 9 (1987).CrossRefGoogle Scholar
  85. 84.
    L. Magid, P. Walde, G. Zampieri, E. Battistel, Q. Peng, E. Trotta, M. Maestro, and P. L. Luisi, Colloids and Surfaces 30, 193 (1988).CrossRefGoogle Scholar
  86. 85.
    P. L. Luisi, M. Giomini, M. P. Pileni, and B. H. Robinson, Biochim. Biophys. Acta 947, 204 (1988).Google Scholar
  87. 86.
    J. W. Shield, H. D. Ferguson, A. S. Bommarius, and T. A. Hatton, Ind. Eng. Chem. Fundam. 25(4), 605 (1986).CrossRefGoogle Scholar
  88. 87.
    M. E. Leser, G. Wei, P. L. Luisi, and M. Maestro, Biochem. Biophys. Commun. 135, 629 (1986).CrossRefGoogle Scholar
  89. 88.
    R. S. Rahman, J. Y. Chee, J. M. S. Cabral, and T. A. Hatton, Biotech. Prog. 4, 218 (1988).CrossRefGoogle Scholar
  90. 89.
    D. Han and J. S. Rhee, Biotech. Lett. 7(9), 651 (1985).CrossRefGoogle Scholar
  91. 90.
    D. Han and J. S. Rhee, Biotechnol. Bioeng. 28, 1250 (1986).PubMedCrossRefGoogle Scholar
  92. 91.
    D. Han, J. S. Rhee, and S. B. Lee, Biotechnol. Bioeng. 30, 381 (1987).PubMedCrossRefGoogle Scholar
  93. 92.
    D. Han, D. Y. Kwon, and J. S. Rhee, Agric. Biol. Chem. 51(2), 615 (1987).CrossRefGoogle Scholar
  94. 93.
    P. D. I. Fletcher, B. H. Robinson, R. B. Freedman, and C. Oldfield, J. Chem. Soc., Faraday Trans. 1, 81, 2667 (1985).Google Scholar
  95. 94.
    C. Oldfield, G. D. Rees, B. H. Robinson, and R. B. Freedman, in: Biocatalysis in Organic Media ( C. Laane, J. Tramper, and M. D. Lilly, eds.), p. 119, Elsevier, Amsterdam (1987).Google Scholar
  96. 95.
    P. D. I. Fletcher, R. B. Freedman, B. H. Robinson, G. D. Rees, and R. Schomäcker, Biochim. Biophys. Acta 912, 278 (1987).CrossRefGoogle Scholar
  97. 96.
    S. Morita, H. Narita, T. Matoba, and M. Kito, JAOCS 61(10), 1571 (1984).CrossRefGoogle Scholar
  98. 97.
    A. V. Kabanov, A. V. Levashov, N. L. Klyachko, A. V. Pshezhetesky, and K. Martinek, J. Theor. Biol. 133, 327 (1988).CrossRefGoogle Scholar
  99. 98.
    T. W. Randolph, D. S. Clark, H. W. Blanch, and J. M. Prausnitz, Science 238, 387 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Vijay T. John
    • 1
  • George Abraham
    • 2
  1. 1.Department of Chemical EngineeringTulane UniversityNew OrleansUSA
  2. 2.Southern Regional Research CenterUS Department of AgricultureNew OrleansUSA

Personalised recommendations