Advertisement

Differential forms

  • René Lavendhomme
Part of the Kluwer Texts in the Mathematical Sciences book series (TMS, volume 13)

Abstract

Let M be a microlinear object and E be a microlinear Euclidean R-module. A differential n-form on M with value in E will be a function that associates to every n-microcube on M an element of E and this in an n-linear and alternated way, in a sense that will be specified.

Keywords

Basic Concept Fibre Bundle Differential Form Exterior Product Contravariant Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. [38]
    KOCK, A., REYES, G.E., and VEIT, B., Forms and integratin in synthetic differential geometry,Aarhus Preprint Series, n31 (1979/80).Google Scholar
  2. [29]
    KOCK, A., Differential forms in synthetic differential geometry,Aarhus Preprint Series n28(1978/79), llpp.Google Scholar
  3. [2]
    BELAIR„L., Calcul infinitésimal en géométrie différentielle synthétique, Master Thesis, Montréal, 1981.Google Scholar
  4. [3]
    BELAIR, L., et REYES, G.E., Calcul infinitésimal en géométrie différentielle synthétique, Sydney Category Seminar Reports, 1982, 32 pp.Google Scholar
  5. [31]
    KOCK, A., Synthetic Differential Geometry, London Math. Soc. Lect. Note Series 51, Cambridge Univ. Press, 1981.zbMATHGoogle Scholar
  6. [50]
    I. MOERDIJK and G.E. REYES, Cohomology theories in synthetic differential geometry,in ([26]), 1–67.Google Scholar
  7. [51]
    I. MOERDIJK and G.E. REYES, De Rham’s theorem in a smooth topos, Report 83–20, Amsterdam (1983), 22 pp.Google Scholar
  8. [33]
    KOCK, A., Differential forms with values in groups, Bull. A.stralian Math. Soc. 25 (1982), 357–386.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [47]
    MINGUEZ, M.C., Calculo diferencial sintetico y su interpretacion en modelos de prehaces, PhD. Thesis, 1985.Google Scholar
  10. [48]
    MINGUEZ, M.C., Wedge product of forms in synthetic differential geometry, Cahiers Top. Geom. Diff. Cat. 29 (1988), 59–66.MathSciNetzbMATHGoogle Scholar
  11. [49]
    MINGUEZ, M.C., Some combinatorial calculus on Lie derivative, Cahiers Top. Geom. Diff. Cat. 29 (1988), 241–247.MathSciNetzbMATHGoogle Scholar
  12. [18]
    FELIX, Y., and LAVENDHOMME, R., On De Rham’s theorem in synthetic differential geometry, J. Pure Appl. Algebra 65 (1990), 21–31.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • René Lavendhomme
    • 1
  1. 1.Université Catholique de LouvainBelgium

Personalised recommendations