Weil algebras and infinitesimal linearity

  • René Lavendhomme
Part of the Kluwer Texts in the Mathematical Sciences book series (TMS, volume 13)

Abstract

We encountered in 1.1 various small objects, the most typical and simple one being D. We intend to indicate in this section a more algebraic view of these small objects.

Keywords

Manifold Myopia Prool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Commented bibliography

  1. [56]
    WEIL, A., Théorie des points proches sur les variétés différentiables, in Conference Geom. Diff., Strasbourg, 1953, took up again in “Oeuvres scientifiques, collected papers”, vol. II, Springer 1979, 103–109.Google Scholar
  2. [14]
    DUBUC, E.J., Sur les modèles de la géométrie différentielle synthétique, Cahiers Top. et Géom. diff. 20 (1979), 231–279.MathSciNetMATHGoogle Scholar
  3. [16]
    DUBUC, E.J., and REYES, G.E., Subtoposes of the ring classifier, in ([25]), 101–122.Google Scholar
  4. [31]
    KOCK, A., Synthetic Differential Geometry, London Math. Soc. Lect. Note Series 51, Cambridge Univ. Press, 1981.Google Scholar
  5. [4]
    BERGERON, F., Objet infinitésimalement linéaire dans un modèle bien adapté de G.D.S., in Géométrie Différentielle synthétique, Section 2, Analysis in smooth topos, edited by G.E. REYES, Research report, Montréal, (1980), 67–76.Google Scholar
  6. [35]
    KOCK, A., and LAVENDHOMME, R., Strong infinitesimal linearity, with applications to strong difference and affine connections, Cahiers Top. Geom. diff. 25 (1984), 311–324.MathSciNetMATHGoogle Scholar
  7. [31]
    KOCK, A., Synthetic Differential Geometry, London Math. Soc. Lect. Note Series 51, Cambridge Univ. Press, 1981.Google Scholar
  8. [54]
    REYES, G.E., and WRAITH, G.E., A note on tangent bundle in a category with a ring object, Math. Scand. 42 (1978), 53–63.MathSciNetMATHGoogle Scholar
  9. [30]
    KOCK, A., On the synthetic theory of vector fields,in [25], 139–157.Google Scholar
  10. [21]
    GODBILLON, C., Géométrie différentielle et mécanique analytique, Paris, Hermann, 1969.Google Scholar
  11. [10]
    BUNGE, M., and SAWYER, P., On connections, geodesics and sprays in synthetic differential geometry,Cahier Top. Géom. Diff., 25 (1984), 221–258 (preprinted in ([26])).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • René Lavendhomme
    • 1
  1. 1.Université Catholique de LouvainBelgium

Personalised recommendations