Host Cell Invasion by Pathogenic Neisseriae

  • Christoph Dehio
  • Scott D. Gray-Owen
  • Thomas F. Meyer
Part of the Subcellular Biochemistry book series (SCBI, volume 33)


Neisseria gonorrhoeae and Neisseria meningitidis have become exquisitely adapted to life within humans, their only natural host. Both species possess the ability to colonize human mucosal tissues without generating any detectable clinical manifestations, and this carrier state likely contributes to their maintenance within the population. They are, however, also capable of persisting during the massive inflammatory responses, representing a hallmark of neisserial diseases. Despite their close evolutionary relationship (Tinsley and Nassif, 1996), N. gonorrhoeae primarily infects the uro- or anorectal mucosa following intimate sexual contact, while N. meningitidis colonizes the nasopharynx after the inhalation of infected respiratory droplets. This association is at least partially the result of their respective modes of transmission rather than a tropism restricted to these loci, since gonococcal pharyngitis and meningococcal anogenital infections have both also been described (Janda et al., 1980; Givan et al., 1977). Nasopharyngeal and fallopian tube organ cultures, and ureteral tissue models of infection indicate that both species penetrate to submucosal layers in vitro (Mosleh et al., 1997; McGee et al., 1983), and this is consistent with the detection of sloughed epithelial cells containing intracellular gonococci in urethral exudates obtained from men with symptomatic gonorrhea (Apicella et al., 1996). Complications arising from the spread of gonococci from the primary loci of infection can result in significant morbidity and, potentially, sterility. Similarly, although localized meningococcal infection of the mucosa is typically asymptomatic, dissemination from this site can lead to the rapidly advancing and often fatal meningococcal meningitis and/or meningococcemia.


Outer Membrane Protein CD66 Receptor Neisseria Gonorrhoeae Antigenic Variation Neisseria Meningitidis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtman, M., 1995, Epidemic spread and antigenic variability of Neisseria meningitidis,Trends Microbiol. 3: 186–192.Google Scholar
  2. Achtman, M., Wall, R.A., Bopp, M., Kusecek, B., Morelli, G., Saken, E., and Hassan-King, M., 1991, Variation in class 5 protein expression by serogroup A meningococci during a meningitis epidemic, J. Infect. Dis. 164: 375–382.PubMedCrossRefGoogle Scholar
  3. Apicella, M.A., Ketterer, M., Lee, F.K., Zhou, D., Rice, P.A., and Blake, M.S., 1996, The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae, J. Infect. Dis. 173: 636–646.PubMedCrossRefGoogle Scholar
  4. Bates, P.A., Luo, J., and Sternberg, M.J.E., 1992, A predicted three-dimensional structure for the carcinoembryonic antigen (CEA), FEBS Lett. 301: 207–214.PubMedCrossRefGoogle Scholar
  5. Beauchemin, N., Kunath, T., Robitaille, J., Chow, B., Turbide, C., Daniels, E., and Veillette, A., 1997, Association of biliary glycoprotein with protein tyrosine phosphatase SHP-1 in malignant colon epithelial cells, Oncogene 14: 783–790.PubMedCrossRefGoogle Scholar
  6. Belland, R.J., Chen, T, Swanson, J., and Fischer, S.H., 1992, Human neutrophil response to recombinant neisserial Opa proteins, Mol. Microbiol. 6: 1729–1737.PubMedCrossRefGoogle Scholar
  7. Benchimol, S., Fuks, A., Jothy, S., Beauchemin, N., Shirota, K., and Stanners, C.P., 1989, Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule, Cell 57: 327–334.PubMedCrossRefGoogle Scholar
  8. Benz, R., 1988, Structure and function of porins from gram-negative bacteria. Ann. Rev. Microbiol. 42: 359–393.CrossRefGoogle Scholar
  9. Bergstrom, S., Robbins, K., Koomey, J.M., and Swanson, J.,1986, Filiation control mechanisms in Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 83: 3890–3894.Google Scholar
  10. Berling, B., Kolbinger, F, Grunert, E, Thompson, J.A., Brombacher, F., Buchegger, F., von Kleist, S., and Zimmerman, W, 1990, Cloning of a carcinoembryonic antigen gene family member expressed in leukocyte of chronic myeloid leukemia patients and bone marrow, Cancer Res. 50: 6534–6539.PubMedGoogle Scholar
  11. Bhat, K.S., Gibbs, C.P., Barrera, O., Morrison, S.G., Jahnig, E, Stern, A., Kupsch, E.M., Meyer, T.F, and Swanson, J., 1991, The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes, Mol. Microbiol. 5:1889–1901. Published erratum, 1992, in Mol. Microbiol. 6: 1073–1076.Google Scholar
  12. Binstadt, B.A., Brumbaugh, K.M., Dick, C.J., Scharenberg, A.M., Williams, B.L., Colonna, M., Lanier, L.L., Kinet, J.P., Abraham, R.T., and Leibson, RJ., 1996, Sequential involvement of Lek and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation, Immunity 5: 629–638.PubMedCrossRefGoogle Scholar
  13. Bjerknes, R., Guttormsen, H.K., Solberg, CO., and Wetzler, L.M., 1995, Neisserial porins inhibit human neutrophil actin polymerization, degranulation, opsonin receptor expression, and phagocytosis but prime the neutrophils to increase their oxidative burst, Infect. Immun. 63: 160–167.PubMedGoogle Scholar
  14. Blake, M.S., and Gotschlich, E.C., 1987, Functional and immunological properties of pathogenic Neisseria surface proteins, in: Bacterial Outer Membranes as Model Systems ( M. Inouye, ed.), John Wiley and Sons, New York, pp. 377–400.Google Scholar
  15. Blake, M.S., Blake, C.M., Apicella, M.A., and Mandrel!, R.E., 1995, Gonococcal opacity: lectinlike interactions between Opa proteins and lipooligosaccharide, Infect. Immun. 63: 1434–1439.PubMedGoogle Scholar
  16. Bodian, D.L., Jones, E.Y., Harlos, K., Stuart, D.I., and Davis, S.J.,1994, Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 A resolution, Structure 2: 755–766.Google Scholar
  17. Bos, M.P., Grunert, F, and Belland, R.J.,1997, Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae, Infect. Immun. 65: 2353–2361.Google Scholar
  18. Bos, M.P., Kuroki, M., Krop-Watorek, A., Hogan, D., and Belland, R.J., 1998, CD66 receptor specificity exhibited by neisserial Opa variants is controlled by protein determinants in CD66 N-domains, Proc. Natl. Acad. Sci. USA 95: 9584–9589.PubMedCrossRefGoogle Scholar
  19. Brener, D., DeVoe, I.W., and Holbein, B.E., 1981, Increased virulence of Neisseria meningitidis after in vitro iron limited growth at low pH, Infect. Immun. 33: 59–66.PubMedGoogle Scholar
  20. Broome, C.V., 1986, The carrier state: Neisseria meningitidis, J. Antimicrob. Chemother. 18A: 25–34.PubMedGoogle Scholar
  21. Burch, C.L., Danaher, R.J., and Stein, D.C., 1997, Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides, J. Bacteriol. 179: 982–986.PubMedGoogle Scholar
  22. Cannon, J.G., Buchanan, T.M., and Sparling, RE, 1983, Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection, Infect. Immun. 40: 816–819.PubMedGoogle Scholar
  23. Carey, D.J., 1997, Syndecans: multifunctional cell-surface co-receptors, Biochem. J. 327:1–16. Chen, T., and Gotschlich, E.C., 1996, CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins, Proc. Natl. Acad. Sci. USA 93: 14851–14856.Google Scholar
  24. Chen, T., Belland, R., Wilson, J., and Swanson, J.,1995, Adherence of pilus-Opa* gonococci to epithelial cells in vitro involves heparan sulfate, J. Exp. Med. 182: 511–517.Google Scholar
  25. Chen, T., Grunert, F., Medina-Marino, A., and Gotschlich, E.C., 1997, Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins, J. Exp. Med. 185: 1557–1564.PubMedCrossRefGoogle Scholar
  26. Cohen, M.S., Cannon, J.G., Jerse, A.E., Charniga, L.M., Isbey, S.F., and Whicker, L.G., 1994, Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development, Infect. Dis. 169: 532–537.CrossRefGoogle Scholar
  27. Connell, T.D., Shaffer, D., and Cannon, J.G., 1990, Characterization of the repertoire of hypervariable regions in the Protein II (opa) gene family of Neisseria gonorrhoeae, Mol. Microbiol. 4: 439–449.PubMedCrossRefGoogle Scholar
  28. Daeron, M., Latour, S., Malbec, O., Espinosa, E., Pina, P., Pasmans, S., and Fridman, W.H.,1995, The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation, Immunity 3: 635–646.Google Scholar
  29. Danaher, R.J., Levin, J.C., Arking, D., Burch, C.L., Sandlin, R., and Stein, D.C., 1995, Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J. Bacteriol. 177: 7275–7279.PubMedGoogle Scholar
  30. de Vries, F.P., van Der, E., van Putten, J.P., and Dankert, J., 1996, Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens, Infect. Immun. 64: 2998–3006.PubMedGoogle Scholar
  31. de Vries, EP., Cole, J., Dankert, J., Frosch, M., and van Putten, J.P.M., 1998, Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteogylcan receptors, Mol. Microbiol. 27: 1203–1212.Google Scholar
  32. Deal, C.D., and Krivan, H.C., 1990, Lacto-and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae, J. Biol. Chem. 265: 12774–12777.PubMedGoogle Scholar
  33. Dehio, C., Freissler, E., Lanz, C., Gomez-Duarte, O.G., David, G., and Meyer, T.F., 1998a, Ligation of cell surface heparan sulfate proteoglycans by antibody-coated beads stimulates phagocytic uptake into epithelial cells: a model for cellular invasion by Neisseria gonorrhoeae, Exp. Cell Res 242: 528–539.PubMedCrossRefGoogle Scholar
  34. Dehio, M., Gomez-Duarte, O.G., Dehio, C., and Meyer, T.F., 1998b, Vitronectin-dependent invasion of epithelial cells by Neisseria gonorrhoeae involves a„ integrin receptors, FEBS Lett. 424: 84–88.PubMedCrossRefGoogle Scholar
  35. Densen, P., and Mandell, G.L., 1978, Gonococcal interactions with polymorphonuclear neutrophils: importance of the phagosome for bactericidal activity, J . Clin. Invest. 62: 1161–1171.PubMedCrossRefGoogle Scholar
  36. Diaz, J.L., and Heckels, J.E., 1982, Antigenic variation of outer membrane protein II in colonial variants of Neisseria gonorrhoeae P9, J. Gen. Microbiol. 128: 585–591.PubMedGoogle Scholar
  37. Ducker, T.P., and Skubitz, K.M., 1992, Subcellular localization of CD66, CD67, and NCA in human neutrophils, J. Leuko. Biol. 52: 11–16.PubMedGoogle Scholar
  38. Duensing, T.D., and van Putten, J.P., 1997, Vitronectin mediates internalization of Neisseria gonorrhoeae by Chinese hamster ovary cells, Infect. Immun. 65: 964–970.PubMedGoogle Scholar
  39. Dunn, K.L., Virji, M., and Moxon, E.R., 1995, Investigations into the molecular basis of meningococcal toxicity for human endothelial and epithelial cells: the synergistic effect of LPS and pili, Microb. Pathog. 18: 81–96.PubMedCrossRefGoogle Scholar
  40. Facius, D., and Meyer, T.F., 1993, A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation, Mol. Microbiol. 10: 699–712.PubMedCrossRefGoogle Scholar
  41. Farrell, C.F., and Rest, R.F., 1990, Up-regulation of human neutrophil receptors for Neisseria gonorrhoeae expressing PII outer membrane proteins, Infect. Immun. 58: 2777–2784.PubMedGoogle Scholar
  42. Fischer, S.H., and Rest, R.F., 1988, Gonococci possessing only certain PII outer membrane proteins interact with human neutrophils, Infect. Immun. 56: 1574–1579.PubMedGoogle Scholar
  43. Forest, K.T., and Tainer, J.A., 1997, Type-4 pilus-structure: outside to inside and top to bottom—a minireview, Gene 192: 165–169.PubMedCrossRefGoogle Scholar
  44. Forest, K.T., Bernstein, S.L., Getzoff, E.D., So, M., Tribbick, G., Geysen, H.M., Deal, C.D., and Tainer, J.A., 1996, Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies, Infect. Immun. 64: 644–652.PubMedGoogle Scholar
  45. Gibbs, C.P, Reimann, B.Y., Schultz, E., Kaufmann, A., Haas, R., and Meyer, TE, 1989, Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms, Nature 338: 651–652.PubMedCrossRefGoogle Scholar
  46. Givan, K.F., Thomas, B.W., and Johnston, A.G., 1977, Isolation of Neisseria meningitidis from the urethra, cervix, and anal canal: further observations, Brit. J. Ven. Dis. 53: 109–112.Google Scholar
  47. Gomez-Duarte, O.G., Dehio, M., Guzman, C.A., Chhatwal, G.S., Dehio, C., and Meyer, T.F., 1997, Binding of vitronectin to Opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells, Infect. Immun. 65: 3857–3866.PubMedGoogle Scholar
  48. Grassme, H., Gulbins, E., Brenner, B., Ferlinz, K., Sandhoff, K., Harzer, K., Lang, E, and Meyer, T.E, 1997, Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells, Cell 91: 605–615.PubMedCrossRefGoogle Scholar
  49. Gray-Owen, S.D., Dehio, C., Haude, A., Grunert, E, and Meyer, T.E, 1997a, CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes, EMBO J. 16: 3435–3445.PubMedCrossRefGoogle Scholar
  50. Gray-Owen, S.D., Lorenzen, D.R., Haude, A., Meyer, T.F., and Dehio, C. 19976, Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae, Mol. Microbiol. 26: 971–980.Google Scholar
  51. Haas, R., and Meyer, T.F., 1986, The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion, Cell 44: 107–115.PubMedCrossRefGoogle Scholar
  52. Haas, R., Schwarz, H., and Meyer, T.F., 1987, Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 84: 9079–9083.PubMedCrossRefGoogle Scholar
  53. Haas, R., Veit, S., and Meyer, T.F.,1992, Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates, Mol. MicrobioL 6: 197–208.Google Scholar
  54. Hagblom, P., Segal, E., Billyard, E., and So, M., 1985, Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae, Nature 315: 156–158.PubMedCrossRefGoogle Scholar
  55. Haines, K.A., Yeh, L., Blake, M.S., Cristello, P., Korchak, H., and Weissmann, G., 1988, Protein I, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting 02-generation, J. BioL Chem. 263: 945–951.PubMedGoogle Scholar
  56. Haines, K.A., Reibman, J., Tang, X.Y., Blake, M., and Weissmann, G.,1991, Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis, J. Cell BioL 114: 433–442.Google Scholar
  57. Hall, A., 1994, Small GTP-binding proteins and the regulation of the actin cytoskeleton, Ann. Rev. Cell BioL 10: 31–54.PubMedCrossRefGoogle Scholar
  58. Hammerschmidt, S., Birkholz, C., Zahringer, U., Robertson, B.D., van Putten, J., Ebeling, O., and Frosch, M., 1994, Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis, Mol. Microbiol. 11: 885–896.PubMedCrossRefGoogle Scholar
  59. Hammerschmidt, S., Hilse, R., van Putten, J.P., Gerardy-Schahn, R., Unkmeir, A., and Frosch, M., 1996a, Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element, EMBO J. 15: 192–198.PubMedGoogle Scholar
  60. Hammerschmidt, S., Muller, A., Sillmann, H., Muhlenhoff, M., Borrow, R., Fox, A., van Putten, J., Zollinger, W.D., Gerardy-Schahn, R., and Frosch, M., 19966, Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease, Mol. Microbiol. 20: 1211–1220.Google Scholar
  61. Hauck, C.R., Lorenzen, D., Saas, J., and Meyer, T.F,1997, An in vitro-differentiated human cell line as a model system to study the interaction of Neisseria gonorrhoeae with phagocytic cells, Infect. Immun. 65: 1863–1869.Google Scholar
  62. Hauck, C.R., Meyer,T.F., Lang, F., and Gulbins, E.,1998, CD66-mediated phagocytosis of Opa52 Neisseria gonorrhoeae requires a Src-like tyrosine kinase-and Racl-dependent signalling pathway, EMBO J. 17: 443–454.Google Scholar
  63. Heckels, J.E., 1981, Structural comparison of Neisseria gonorrhoeae outer membrane proteins. J. BacterioL 145: 736–742.PubMedGoogle Scholar
  64. Heckels, J.E., Blackett, B., Everson, J.S., and Ward, M.E., 1976, The influence of surface charge on the attachment of Neisseria gonorrhoeae to human cells, J. Gen. Microbiol. 96: 359–364.PubMedCrossRefGoogle Scholar
  65. Hill, S.A., 1996, Limited variation and maintenance of tight genetic linkage characterize heteroallelic pilE recombination following DNA transformation of Neisseria gonorrhoeae, Mol. MicrobioL 20: 507–518.PubMedCrossRefGoogle Scholar
  66. Hill, S.A., Morrison, S.G., and Swanson, J., 1990, The role of direct oligonucleotide repeats in gonococcal pilin gene variation, Mol. Microbiol. 4: 1341–1352.PubMedCrossRefGoogle Scholar
  67. Hitchcock, P.J., 1989, Unified nomenclature for pathogenic Neisseria species, Clin. MicrobioL. Rev. 2: 64–65.Google Scholar
  68. Hobbs, M.M., Malorny, B., Prasad, P., Morelli, G., Kusecek, B., Heckels, J.E., Cannon, J.G., and Achtman, M., 1998, Recombinational reassortment among opa genes from ET-37 complex Neisseria meningitidis isolates of diverse geographical origins, MicrobioL 144: 157–166.CrossRefGoogle Scholar
  69. Hook III, E.W., and Holmes, K.K., 1985, Gonococcal infections, Ann. Intern. Med. 102:229–243. James, J.F., and Swanson, J., 1978, Studies on gonococcus infection. XIII. Occurrence of color/opacity colonial variants in clinical cultures, Infect. Immun. 19: 332–340.Google Scholar
  70. Janda, W.M., Bohnoff, M., Morello, J.A., and Lerner, S.A., 1980, Prevalence and site-pathogen studies of Neisseria meningitidis and N. gonorrhoeae in homosexual men, DAMA 244: 2060–2064.Google Scholar
  71. Jarvis, G.A., 1995, Recognition and control of neisserial infection by antibody and complement, Trends Microbiol. 3: 198–201.PubMedCrossRefGoogle Scholar
  72. Jeanteur, D., Lakey, J.H., and Pattus, F., 1991, The bacterial porin superfamily: sequence alignment and structure prediction, Mol. Microbiol. 5: 2153–2164.PubMedCrossRefGoogle Scholar
  73. Jennings, H.J., Battacharjee, A.K., Kenne, L., Kenny, C.P., and Calver, G., 1977, Structures of the capsular polysaccharides of Neisseria meningitidis as determined by 13C-nuclear magnetic resonance spectroscopy, J. Infect. Dis. 136, S78 - S83.PubMedCrossRefGoogle Scholar
  74. Jennings, M.P., Hood, D., Peak, I.R.A., Virji, M., and Moxon, E.R., 1995, Molecular analysis of a locus for the biosynthesis and phase variable expression of the lactoN-neotetraose terminal LPS structure in Neisseria meningitidis, Mol. Microbiol. 18: 729–740.PubMedCrossRefGoogle Scholar
  75. Jerse, A.E., Cohen, M.S., Drown, P.M., Whicker, L.G., Isbey, S.F., Seifert, H.S., and Cannon, J.G., 1994, Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male, J. Exp. Med. 179: 911–920.PubMedCrossRefGoogle Scholar
  76. Jones, D.M., Borrow, R., Fox, A.J., Gray, S., Cartwright, K.A., and Pollman, J.T. The lipooligosaccharide immunotype as a virulence determinant in Neisseria meningitidis, Microb. Pathog. 13: 219–224.Google Scholar
  77. Jonsson, A.B., Nyberg, G., and Normark, S., 1991, Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly, EMBO J. 10: 477–488.PubMedGoogle Scholar
  78. Jonsson, A.B., Iiver, D., Falk, P., Pepose, J., and Normark, S., 1994, Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue, Mol. Microbiol. 13: 403–416.PubMedCrossRefGoogle Scholar
  79. Kalistrom, H., Liszewski, M.K., Atkinson, J.P., and Jonsson, A.B., 1997, Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria, Mol. Microbiol. 25: 639–647.CrossRefGoogle Scholar
  80. Kellogg, D.S.J., Cohen, I.R., Norins, L.C., Schroeter, A.L., and Reising, G., 1968, Neisseria gonorrhoeae. H. Colonial variation and pathogenicity during 35 months in vitro, J. Bacteriol. 96: 596–605.Google Scholar
  81. King, G.J., and Swanson, J.,1978, Studies on gonococcus infection. XV. Identification of surface proteins of Neisseria gonorrhoeae correlated with leukocyte association, Infect. Immun. 21: 575–583.Google Scholar
  82. Knapp, J.S., Tam, M.R., Nowinski, R.C., Holmes, K.K., and Sandstrom, E.G., 1984, Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I, J. Infect. Dis. 150: 44–48.PubMedCrossRefGoogle Scholar
  83. Knepper, B., Heuer, I., Meyer, T.F., and van Putten, J.P., 1997, Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins, Infect. Immun. 65: 4122–4129.PubMedGoogle Scholar
  84. Koj, A., 1996, Initiation of acute phase response and synthesis of cytokines, Biochim. Biophy. Acta 1317: 84–94.CrossRefGoogle Scholar
  85. Kolanus, W., Romeo, C., and Seed, B., 1993, T cell activation by clustered tyrosine kinases, Cell 74: 171–170.PubMedCrossRefGoogle Scholar
  86. Koransky, J.R., Scales, R.W., and Kraus, S.J.,1975, Bacterial hemagglutination by Neisseria gonorrhoeae, Infect. Immun. 12: 495–498.Google Scholar
  87. Kuijpers, T.W., Hoogerwerf, M., van der Laan, L.J.W., Nagel, G., van der Schoot, C.E., Grunert, F., and Roos, D., 1992, CD66 Nonspecific cross-reacting antigens are involved in neutrophil adherence to cytokine-activated endothelial cells, J. Cell Biol. 118: 457–466.Google Scholar
  88. Kupsch, E.-M., Knepper, B., Kuroki,T., Heuer, I., and Meyer, T.F., 1993, Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells, EMBO J. 12: 641–650.Google Scholar
  89. Kuroki, M., Yamanaka, T., Matsuo, Y., Oikawa, S., Nakazato, H., and Matsuoka, Y., 1995, Immunochemical analysis of carcinoembryonic antigen (CEA)-related antigens differentially localized in intracellular granules of human neutrophils, ImmunoL Invest. 24: 829–843.PubMedCrossRefGoogle Scholar
  90. Leusch, H.G., Hefta, S.A., Drzeniek, Z., Hummel, K., Markos-Pusztai, Z., and Wagener, C., 1990, Escherichia coli of human origin binds to carcinoembryonic antigen (CEA) and nonspecific crossreacting antigen (NCA), FEBS Leu. 261: 405–409.Google Scholar
  91. Leusch, H.G., Drzeniek, Z., Markos-Pusztai, Z., and Wagener, C., 1991, Binding of Escherichia coli and Salmonella strains to members of the carcinoembryonic antigen family differential binding inhibition by aromatic alpha-glycosides of mannose, Infect. Immun. 59: 2051–2057.PubMedGoogle Scholar
  92. Liszewski, M.K., Post, T.W., and Atkinson, J.P., 1991, Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster, Ann. Rev. Immunol. 9: 431–455.CrossRefGoogle Scholar
  93. Luo, W., Wood, C.G., Earley, K., Hung, M.C., and Lin, S.H., 1997, Suppression of tumorigenicity of breast cancer cells by an epithelial cell adhesion molecule (C-CAM1): the adhesion and growth suppression are mediated by different domains, Oncogene 14: 1697–1704.PubMedCrossRefGoogle Scholar
  94. Majuri, M.-L., Hakkarainen, M., Paavonen, T., and Renkonen, R., 1994, Carcinoembryonic antigen is expressed on endothelial cells. A putative mediator of tumor cell extravasation and metastasis, APMIS 102: 432–438.PubMedCrossRefGoogle Scholar
  95. Malorny, B., Morelli, G., Kusecek, B., Kolberg, J., and Achtman, M., 1998, Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of neisserial Opa proteins, J. Bacteriol. 180: 1323–1330.Google Scholar
  96. Mandrell, R.E., Lesse, A.J., Sugai, J.V., Shero, M., Griffiss, J.M., Cole, J.A., Parsons, N.J., Smith, H. Morse, S.A., and Apicella, M.A., 1990, In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation, J. Exp. Med. 171:1649–1664.Google Scholar
  97. Mandrell, R.E., and Apicella, M.A., 1993, Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS, Immunobiol. 187: 382–402.CrossRefGoogle Scholar
  98. Manning, P.A., Kaufmann, A., Roll, U., Pohlner, J., Meyer, T.F., and Haas, R., 1991, L-pilin variants of Neisseria gonorrhoeae MS11, Mol. MicrobioL 5: 917–926.PubMedCrossRefGoogle Scholar
  99. Marceau, M., Beretti, J.L., and Nassif, X., 1995, High adhesiveness of encapsulated Neisseria meningitidis to epithelial cells is associated with the formation of bundles of pili, Mol. Microbiol. 17: 855–863.Google Scholar
  100. Mattick, J.S., Whitchurch, C.B., and Alm, R.A., 1996, The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa—a review, Gene 179: 147–155.PubMedCrossRefGoogle Scholar
  101. Mauro, A., Blake, M., and Labarca, P., 1988, Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 85: 1071–1075.PubMedCrossRefGoogle Scholar
  102. McGee, Z.A., Street, C.H.; Chappell, C.L., Cousar, E.S., Morris, F., and Horn, R.G., 1979, Pili of Neisseria meningitidis: effect of media on maintenance of piliation, characteristics of Pili, and colonial morphology, Infect. Immun. 24: 194–201.PubMedGoogle Scholar
  103. McGee, Z.A., Johnson, A.P., and Taylor-Robinson, D., 1981, Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4, J. Infect. Dis. 143: 413–422.PubMedCrossRefGoogle Scholar
  104. McGee, Z.A., Stephens, D.S., Hoffman, L.H., Schlech, W.F., and Horn, R.G., 1983, Mechanisms of mucosal invasion by pathogenic Neisseria, Rev. Infect. Dis. 5:Supp. l-14.Google Scholar
  105. Merker, P., Tommassen, J., Kusecek, B., Virji, M., Sesardic, D., and Achtman, M., 1997, Two-dimensional structure of the Opc invasin from Neisseria meningitidis, Mol. Microbiol. 23: 281–293.PubMedCrossRefGoogle Scholar
  106. Merz, A.J., Rifenbery, D.B., Arvidson, C.G., and So, M., 1996, Traversal of a polarized epithelium by pathogenic Neisseriae: facilitation by type IV pili and maintenance of epithelial barrier function, Mol. Medicine 2: 745–754.Google Scholar
  107. Meyer, T.F., Mlawer, N., and So, M., 1982, Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement, Cell 30: 45–52.PubMedCrossRefGoogle Scholar
  108. Meyer, T.F., Billyard, E., Haas, R., Storzbach, S., and So, M., 1984, Pilus genes óf Neisseria gonorrhoeae: chromosomal organization and DNA sequence, Proc. Natl. Acad. Sci. USA 81: 6110–6114.PubMedCrossRefGoogle Scholar
  109. Moran, E.E., Brandt, B.L., and Zollinger, W.D., 1994, Expression of the L8 lipopolysaccharide determinant increases the sensitivity of Neisseria meningitidis to serum bactericidal activity, Infect. Immun. 62: 5290–5295.PubMedGoogle Scholar
  110. Morelli, G., Malorny, B., Muller, K., Seiler, A., Wang, J.F., del Valle, J., and Achtman, M., 1997, Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread, Mol. Microbiol. 25: 1047–1064.PubMedCrossRefGoogle Scholar
  111. Mosleh, I.M., Boxberger, H.J., Sessler, M.J., and Meyer, T.F., 1997, Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium, Infect. Immun. 65: 3391–3398.PubMedGoogle Scholar
  112. Murphy, G.L., Connell, T.D., Barritt, D.S., Koomey, M., and Cannon, J.G., 1989, Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence, Cell 56: 539–547.PubMedCrossRefGoogle Scholar
  113. Nagel, G., Grunert, E, Kuijpers, T.W., Watt, S.M., Thompson, J., and Zimmerman, W., 1993, Genomic organization, splice variants and expression of CGM1, a CD66-related member of the carcinoembryonic antigen gene family, Eur. J. Biochem. 214: 27–35.PubMedCrossRefGoogle Scholar
  114. Naids, F.L., Belisle, B., Lee, N., and Rest, R.F., 1991, Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (Opa) outer membrane proteins and synthetic Opa peptides, Infect. Immun. 59: 4628–4635.PubMedGoogle Scholar
  115. Nairn, C.A., Cole, J.A., Patel, P.V., Parsons, N.J., Fox, J.E., and Smith, H., 1988, Cytidine 5’monophospho-N-acetylneuraminic acid or a related compound is the low Mr factor from human red blood cells which induces gonococcal resistance to killing by human serum, J. Gen. Microbiol. 134: 3295–3306.PubMedGoogle Scholar
  116. Nassif, X., Lowy, J., Stenberg, P., O’Gaora, R, Ganji, A., and So, M., 1993, Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells, Mol. Microbiol. 8: 719–725.PubMedCrossRefGoogle Scholar
  117. Nassif, X., Beretti, J.L., Lowy, J., Stenberg, P., O’Gaora, R, Pfeifer, J., Normark, S., and So, M., 1994, Roles of pilin and PiIC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells, Proc. Natl. Acad. Sci. USA 91: 3769–3773.PubMedCrossRefGoogle Scholar
  118. Novotny, P., and Turner, W.H., 1975, Immunological heterogeneity of pili of Neisseria gonorrhoeae, J. Gen. Microbiol. 89: 87–92.PubMedCrossRefGoogle Scholar
  119. Nyberg, G, Stromberg, N., Jonsson, A., Karsson, K.A., and Normark S., 1990, Erythrocyte gangliosides act as receptors for Neisseria flava: identification of the Sia-1 adhesin, Infect. Inimun. 58: 2555–2563.Google Scholar
  120. Oh, E.S., Woods, A., and Couchman, J.R., 1997, Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C, J. Biol. Chem. 272: 11805–11811.PubMedCrossRefGoogle Scholar
  121. Oikawa, S., Inuzuka, C., Kuroki, M., Arakawa, F., Matsuoka, Y., Kosaki, G., and Nakazato, H., 1991, A specific heterotypic cell adhesion activity between members of carcinoembryonic antigen family, W272 and NCA, is mediated by N-domains, J. Biol. Chem. 266: 7995–8001.PubMedGoogle Scholar
  122. Olafson, R.W., McCarthy, P.J., Bhatti, A.R., Dooley, J.S., Heckels, J.E., and Trust, T.J., 1985, Structural and antigenic analysis of meningococcal piliation, Infect. Immun. 48: 336–342.PubMedGoogle Scholar
  123. Olcese, L., Lang, P., Vely, F., Cambiaggi, A., Marguet, D., Blery, M., Hippen, K.L., Biassoni, R., Moretta, A., Moretta, L., Cambier, J.C., and Vivier, E., 1996, Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases, J. Immun[. 156: 4531–4534.Google Scholar
  124. Parge, H.E., Forest, K.T., Hickey, M.J., Christensen, D.A., Getzoff, E.D., and Tainer, J.A., 1995, Structure of the fibre-forming protein pilin at 2.6 A resolution, Nature 378: 32–38.PubMedCrossRefGoogle Scholar
  125. Perry, A.C., Hart, C.A., Nicolson, I.J., Heckels, J.E., and Saunders, J.R., 1987, Inter-strain homology of pilin gene sequences in Neisseria meningitidis isolates that express markedly different antigenic pilus types, J. Gen. Microbiol. 133: 1409–1418.PubMedGoogle Scholar
  126. Pinner, R.W., Spellman, P.A., and Stephens, D.S., 1991, Evidence for functionally distinct pili expressed by Neisseria meningitidis, Infect. Immun. 59: 3169–3175.PubMedGoogle Scholar
  127. Porat, N., Apicella, M.A., and Blake, M.S., 1995a, A lipooligosaccharide-binding site on HepG2 cells similar to the gonococcal opacity-associated surface protein Opa, Infect. Immun. 63: 2164–2172.PubMedGoogle Scholar
  128. Porat, N., Apicella, M.A., and Blake, M.S., 19956, Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line, Infect. Immun. 63: 1498–1506.Google Scholar
  129. Prall, F., Nollau, P., Neumaier, M., Haubeck, H.-D., Drzeniek, Z., Heimchen, U., Loning, T., and Wagener, C., 1996, CD66a (BGP), an adhesion molecule of the carcinoembryonic antigen family, is expressed in epithelium, endothelium, and myeloid cells in a wide range of normal human tissues, J. Histochem. Cytochem. 44: 35–41.PubMedCrossRefGoogle Scholar
  130. Pujol, C., Eugene, E., de Saint, M., and Nassif, X., 1997, Interaction of Neisseria meningitidis with a polarized monolayer of epithelial cells, Infect. Immun. 65: 4836–4842.PubMedGoogle Scholar
  131. Purachuri, D.K., Seifert, H.S., Ajioka, R.S., Karlsson, K.A., and So, M. 1990, Identification and characterization of a Neisseria gonorrhoeae gene encoding a glycolipid-binding adhesin, Proc. Natl. Acad. Sci. USA 87: 333–337.CrossRefGoogle Scholar
  132. Rahman M., Källström H., Normark S., and Jonsson A., 1997, PiIC of pathogenic Neisseria is associated with the bacterial surface, Mol. Microbiol. 25: 11–25.PubMedCrossRefGoogle Scholar
  133. Rayner, C.F., Dewar, A., Moxon, E.R., Virji, M., and Wilson, R., 1995, The effect of variations in the expression of pili on the interaction of Neisseria meningitidis with human nasopharyngeal epithelium,./. Infect Dis. 171: 113–121.CrossRefGoogle Scholar
  134. Robertson, B.D., and Meyer, T.F., 1992, Genetic variation in pathogenic bacteria, Trends Genet. 8: 422–427.PubMedGoogle Scholar
  135. Robertson, J.N., Vincent, P., and Ward, M.E., 1977, The preparation and properties of gonococcal pili. J. Gen. Microbiol. 102: 169–177.PubMedCrossRefGoogle Scholar
  136. Rudel, T., van Putten, J.P., Gibbs, C.P., Haas, R., and Meyer, T.F., 1992, Interaction of two variable proteins (PilE and PiIC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells, Mol. Microbiol. 6: 3439–3450.PubMedCrossRefGoogle Scholar
  137. Rudel, T., Boxberger, H.J., and Meyer, T.F., 1995a, Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants, Mol. Microbiol. 17: 1057–1071.PubMedCrossRefGoogle Scholar
  138. Rudel, T., Facius, D., Barten, R., Scheuerflug, I., Nonnenmacher, E., and Meyer, T.F., 19956, Role of pili and the phase-variable Pi1C protein in natural competence for transformation of Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. 92: 7986–7990.Google Scholar
  139. Rudel, T., Scheuerpflug, I., and Meyer, T.F., 1995c, Neisseria Pi1C protein identified as type-4 pilus tip-located adhesin, Nature 373: 357–359.PubMedCrossRefGoogle Scholar
  140. Rudel, T., Schmid, A., Benz, R., Kolb, H.A., Lang, E, and Meyer, T.F.,1996, Modulation of Neisseria porin (PorB) by cytosolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis, Cell 85: 391–402.Google Scholar
  141. Ryll, R.R., Rudel, T., Scheuerpflug, I., Barten, R., and Meyer, TE, 1997, Pi1C of Neisseria meningitidis is involved in class II pilus formation and restores pilus assembly, natural transformation competence and adherence to epithelial cells in Pi1C-deficient gonococci, Mol. Microbiol. 23: 879–892.PubMedCrossRefGoogle Scholar
  142. Salit, I.E., 1981, Hemagglutination by Neisseria meningitidis, Can. J. Microbiol. 27:586–593. Sandstrom, E.G., Knapp, J.S., Reller, L.B., Thompson, S.E., Hook, E.W., and Holmes, K.K., 1984, Serogrouping of Neisseria gonorrhoeae: correlation of serogroup with disseminated gonococcal infection, Sex. Trans. Dis. 11: 77–80.Google Scholar
  143. Sarkari, J., Pandit, N., Moxon, E.R., and Achtman, M., 1994, Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine, Mol. Microbiol 13: 207–217.Google Scholar
  144. Schneider, H., Hammack, C.A., Apicella, M.A., and Griffiss, J.M., 1988, Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae, Infect. Immun. 56: 942–946.PubMedGoogle Scholar
  145. Schneider, H., Griffiss, J.M., Boslego, J.W., Hitchcock, P.J., Zahos, K.M., and Apicella, M.A., 1991, Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men, J. Exp. Med. 174: 1601–1606.PubMedCrossRefGoogle Scholar
  146. Schneider, H., Cross, A.S., Kuschner, R.A., Taylor, D.N., Sadoff, J.C., Boslego, J.W., and Deal, C.D., 1995, Experimental human gonococcal urethritis: 250 Neisseria gonorrhoeae MS11mkC are infective, J. Infect. Dis. 172: 180–185.PubMedCrossRefGoogle Scholar
  147. Schneider, H., Schmidt, K.A., Skillman, D.R., Van De Verg, L., Warren, R.L., Wylie, H.J., Sadoff, J.C., Deal, C.D., and Cross, A.S., 1996, Sialylation lessens infectivity of Neisseria gonorrhoeae MS11mkC, J . Infect. Dis. 173: 1422–1427.PubMedCrossRefGoogle Scholar
  148. Screaton, R.A., Penn, L.Z., and Stanners, C.P., 1997, Carcinoembryonic antigen, a human tumor marker, cooperates with Myc and Bd-2 in cellular transformation, J. Cell Biol. 137: 939–952.PubMedCrossRefGoogle Scholar
  149. Seifert, H.S., Ajioka, R.S., Marchai, C., Sparling, P.F., and So, M., 1988, DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae, Nature 336: 392–395.PubMedCrossRefGoogle Scholar
  150. Seifert, H.S., Wright, C.J., Jerse, A.E., Cohen, M.S., and Cannon, J.G., 1994, Multiple gonococcal pilin antigenic variants are produced during experimental human infections, J. Clin. Invest. 93: 2744–2749.PubMedCrossRefGoogle Scholar
  151. Seya, T, Hara, T, Iwata, K., Kuriyama, S., Hasegawa, T., Nagase, Y., Miyagawa, S., Matsumoto, M., Hatanaka, M., and Atkinson, J. P., 1995, Purification and functional properties of soluble forms of membrane cofactor protein (CD46) of complement: identification of forms increased in cancer patients’ sera, Internat. Immunol. 7: 727–736.CrossRefGoogle Scholar
  152. Shaw, J.H., and Falkow, S., 1988, Model for invasion of human tissue culture cells by Neisseria gonorrhoeae, Infect. Immun. 56: 1625–1632.PubMedGoogle Scholar
  153. Skubitz, K.M., Campbell, K.D., Ahmed, K., and Skubitz, A.P.N., 1995, CD66 family members are associated with tyrosine kinase activity in human neutrophils, J. Immunol. 155: 5382–5390.PubMedGoogle Scholar
  154. Song, J., Minetti, C.A., Blake, M.S., and Colombini, M., 1998, Successful recovery of the normal electrophysiological properties of PorB (class 3) porin from Neisseria meningitidis after expression in Escherichia coli and renaturation, Biochim. Biophys. Acta 1370: 289–298.PubMedCrossRefGoogle Scholar
  155. Spence, J.M., Chen, C.-R., and Clark, V., 1997, A proprosed role for the lutropin receptor in contact-inducible gonococcal invasion of Hec1B cells, Infect. Immun. 65: 3736–3742.PubMedGoogle Scholar
  156. Steeghs, L., den Hartog, R., den Boer, A., Zomer, B., Roholl, P., and van der Ley, P., 1998, Meningitis bacterium is viable without endotoxin, Nature 392: 449–450.PubMedCrossRefGoogle Scholar
  157. Stephens, D.S., and McGee, Z.A., 1981, Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell, J. Infect. Dis. 143: 525–532.PubMedCrossRefGoogle Scholar
  158. Stephens, D.S., Hoffman, L.H., and McGee, Z.A., 1983, Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells, J. Infect. Dis. 148: 369–376.PubMedCrossRefGoogle Scholar
  159. Stephens, D.S., Whitney, A.M., Rothbard, J., and Schoolnik, G.K., 1985, Pili of Neisseria meningitidis. Analysis of structure and investigation of structural and antigenic relationships to gonococcal pili, J. Exp. Med. 161: 1539–1553.PubMedCrossRefGoogle Scholar
  160. Stephens, D.S., Spellman, P.A., and Swartley, J.S., 1993, Effect of the (alpha2–8)-linked polysialic acid capsule on adherence of Neisseria meningitidis to human mucosal cells, J. Infect. Dis. 167: 475–479.PubMedCrossRefGoogle Scholar
  161. Stern, A., and Meyer, T.F., 1987, Common mechanism controlling phase and antigenic variation in pathogenic neisseriae, Mol. Microbiol. 1: 5–12.PubMedCrossRefGoogle Scholar
  162. Stern, A., Brown, M., Nickel, P., and Meyer, T.E, 1986, Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation, Cell 47: 61–71.PubMedCrossRefGoogle Scholar
  163. Stromberg, N., Deal, C., Nyberg, G., Normark, S., So, M., and Karlsson, K., 1988, Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 85: 4902–4906.PubMedCrossRefGoogle Scholar
  164. Swanson, J., 1973, Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells, J. Exp. Med. 137: 571–589.PubMedCrossRefGoogle Scholar
  165. Swanson, J.,1978, Studies on gonococcus infection. XIV. Cell wall protein differences among color/opacity colony variants of Neisseria gonorrhoeae, Infect. Immun. 21: 292–302.Google Scholar
  166. Swanson, J., Bergstrom, S., Robbins, K., Barrera, O., Corwin, D., and Koomey, J.M., 1986, Gene conversion involving the pilin structural gene correlates with pilus’ in equilibrium with pilus changes in Neisseria gonorrhoeae, Cell 47: 267–276.PubMedCrossRefGoogle Scholar
  167. Swanson, J., Barrera, O., Sola, J., and Boslego, J.,1988, Expression of outer membrane protein II by gonococci in experimental gonorrhoea, J. Exp. Med. 168: 2121–2129.Google Scholar
  168. Thompson, J.A., Grunert, E, and Zimmerman, W., 1991, Carcinoembryonic antigen gene family: molecular biology and clinical perspectives, J. Clin. Lab. Anal. 5: 344–366.PubMedCrossRefGoogle Scholar
  169. Tinsley, C.R., and Nassif, X., 1996, Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities, Proc. Natl. Acad. Sci. USA 93: 11109–11114.PubMedCrossRefGoogle Scholar
  170. Tjia, K.F., van Putten, J.P., Pels, E., and Zanen, H.C., 1988, The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study, Graefes Arch. Clin. Exp. Ophthalmol. 226: 341–345.PubMedCrossRefGoogle Scholar
  171. Tommassen, J., Vermeij, P., Struyve, M., Benz, R., and Poolman, J. T., 1990, Isolation of Neisse-ria meningitidis mutants deficient in class 1 (porA) and class 3 (porB) outer membrane proteins, Infect. Immun. 58: 1355–1359.PubMedGoogle Scholar
  172. Tonjum, T., and Koomey, M., 1997, The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships-a review, Gene 192: 155–163.PubMedCrossRefGoogle Scholar
  173. Tsai, C.M., Frasch, C.E., and Mocca, L.F., 1981, Five structural classes of major outer membrane proteins in Neisseria meningitidis, J. Bacterial. 146: 69–78.Google Scholar
  174. van der Ley, P., Heckels, J.E., Virji, M., Hoogerhout, P., and Poolman, J.T., 1991, Topology of outer membrane porins in pathogenic Neisseria spp, Infect. Immun. 59: 2963–2971.PubMedGoogle Scholar
  175. van Putten, J.P., 1993, Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae, EMBO J. 12: 4043–4051.PubMedGoogle Scholar
  176. van Putten, J.P., and Paul, S.M., 1995, Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells, EMBO J. 14: 2144–2154.PubMedGoogle Scholar
  177. van Putten, J.P.M., Duensing, T.D., and Carlson, J., 1998a, Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties, J. Exp. Med. 188: 941–952.PubMedCrossRefGoogle Scholar
  178. van Putten, J., Duensing, T.D., and Cole, R.L., 19986, Entry of Opa` gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors, Mol. Microbiol. 29: 369–379.Google Scholar
  179. Virji, M. and Everson, J.S., 1981, Comparative virulence of opacity variants of Neisseria gonorrhoeae strain P9, Infect. Immun. 31: 965–970.PubMedGoogle Scholar
  180. Virji, M. and Heckels, J E.,1986, The effect of protein II and pili on the interaction of Neisse-ria gonorrhoeae with human polymorphonuclear leucocytes, J. Gen. Microbiol. 132: 503–512.Google Scholar
  181. Virji, M., Alexandrescu, C., Ferguson, D.J., Saunders, J.R., and Moxon, E.R., 1992a, Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells, Mol. Microbiol. 6: 1271–1279.PubMedCrossRefGoogle Scholar
  182. Virji, M., Makepeace, K., Ferguson, D.J.P., Achtman, M., Sarkari, J., and Moxon, E.R., 1992b, Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis, Mol. Microbiol. 6: 2785–2795.CrossRefGoogle Scholar
  183. Virji, M., Makepeace, K., Ferguson, D.J., Achtman, M., and Moxon, E.R., 1993a, Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells, Mol. Microbiol. 10: 499–510.PubMedCrossRefGoogle Scholar
  184. Virji, M., Saunders, IR., Sims, G., Makepeace, K., Maskell, D., and Ferguson, D.J., 1993b, Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin, Mol. Microbiol. 10: 1013–1028.PubMedCrossRefGoogle Scholar
  185. Virji, M., Makepeace, K., and Moxon, E.R., 1994, Distinct mechanisms of interactions of Opcexpressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions, Mol. Microbiol. 14: 173–174.PubMedCrossRefGoogle Scholar
  186. Virji, M., Makepeace, K., Peak, I., Payne, G., Saunders, J.R., Ferguson, D.J., and Moxon, E.R., 1995a, Functional implications of the expression of PiIC proteins in meningococci, Mol. Microbiol. 16: 1087–1097.Google Scholar
  187. Virji, M., Makepeace, K., Peak, I.R.A., Ferguson, D.J.P., Jennings, M.P., and Moxon, E.R., 1995b, Opc-and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides, Mol. Microbiol. 18: 741–754.PubMedCrossRefGoogle Scholar
  188. Virji, M., Makepeace, K., Ferguson, D.J.P., and Watt, S., 1996a, Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae, Mol. Microbiol. 22: 941–950.PubMedCrossRefGoogle Scholar
  189. Virji, M., Watt, S.M., Barker, S., Makepeace, K., and Doyonnas, R., 1996b, The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae, Mol. Microbiol. 22: 929–939.CrossRefGoogle Scholar
  190. Wainwright, L.A., Pritchard, K.H., and Seifert, H.S., 1994, A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation, Mol. Microbiol. 13: 75–87.PubMedCrossRefGoogle Scholar
  191. Wang, J., Gray-Owen, S.D., Knorre, A., Meyer, T.F., and Dehio, C., 1998, Opa binding to cellular CD66 receptors mediates the transcellular traversal of Neisseria gonorrhoeae across polarised T84 epithelial cell monolayers, Mol. Microbiol . in press.Google Scholar
  192. Wang, J.F., Caugant, D.A., Morelli, G., Koumare, B., and Achtman, M., 1993, Antigenic and epidemiologic properties of the ET-37 complex of Neisseria meningitidis, J. Infect. Dis. 167: 1320–1329.CrossRefGoogle Scholar
  193. Wang, J.H., Yan, Y.W., Garrett, T.P., Liu, J.H., Rodgers, D.W., Garlick, R.L., Tarr, G.E., Husain, Y., Reinherz, E.L., and Harrison, S.C., 1990, Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains, Nature 348: 411–418.PubMedCrossRefGoogle Scholar
  194. Ward, M.E., Watt, P.J., and Robertson, J.N., 1974, The human fallopian tube: a laboratory model for gonococcal infection, J. Infect. Dix 129: 650–659.CrossRefGoogle Scholar
  195. Ward, M.J., Lambden, P.R., and Heckels, J.E., 1992, Sequence analysis and relationships between meningococcal class 3 serotype proteins and other porins from pathogenic and non-pathogenic Neisseria species, FEMS Microbiol. Lett. 73: 283–289.PubMedCrossRefGoogle Scholar
  196. Weel, J.F., and van Putten, J.P., 1991, Fate of the major outer membrane protein PIA in early and late events of gonococcal infection of epithelial cells, Res. Microbiol. 142: 985–993.PubMedCrossRefGoogle Scholar
  197. Weel, J.F.L., Hopman, C.T.P., and van Putten, J.P.M., 1991, In situ expression and localization of Neisseria gonorrhoeae opacity proteins in infected epithelial cells: apparent role of Opa proteins in cellular invasion, J. Exp. Med. 173: 1395–1405.Google Scholar
  198. Williams, J.M., Chen, G.C., Zhu, L., and Rest, R.F., 1998, Using the yeast two-hybrid system to identify human epithelial cell proteins that bind gonococcal Opa proteins: intracellular gonococci bind pyruvate kinase via their Opa proteins and require host pyruvate for growth, Mol. Microbiol. 27: 171–186.PubMedCrossRefGoogle Scholar
  199. Yang, Q.L., and Gotschlich, E.C., 1996, Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases, J. Exp. Med. 183: 323–327.PubMedCrossRefGoogle Scholar
  200. Zak, K., Diaz, J.L., Jackson, D., and Heckels, J.E., 1984, Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhea, J. Infect. Dis. 149: 166–174.PubMedCrossRefGoogle Scholar
  201. Zhang, Q.Y., DeRyckere, D., Lauer, P., and Koomey, M., 1992, Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation, Proc. Natl. Acad. Sci. USA 89: 5366–5370.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Christoph Dehio
    • 1
  • Scott D. Gray-Owen
    • 1
  • Thomas F. Meyer
    • 1
    • 2
  1. 1.Dept. InfektionsbiologieMax-Planck-Institut für BiologieTübingenGermany
  2. 2.Molekulare BiologieMax-Planck-Institut für InfektionsbiologieBerlinGermany

Personalised recommendations