Advertisement

New Approaches for Diagnosis of Infections by Intracellular Bacteria

  • Reinhard Marre
Part of the Subcellular Biochemistry book series (SCBI, volume 33)

Abstract

Laboratory diagnosis of infectious diseases usually is achieved by microscopy, culture, antigen and antibody detection or, in order to overcome diagnostic gaps of single tests, a combination of these methods. During the last years, however, microbiologists increasingly became aware of bacterial species which cannot satisfactorily be detected in a clinical microbiology laboratory by standard methods either due to their low sensitivity and specificity or due to the need to apply expensive and time consuming methods. The introduction of molecular-genetic methods in clinical microbiology seemed to solve many problems: Since speed of detection was no longer dependent on the generation time and on growth conditions of the pathogen and since specific detection of the in vitro amplified DNA or RNA was possible, a new world of non or barely in vitro culturable pathogens appeared. With increasing experience the limits of this technology became obvious, requiring a meticulous quality control program.

Keywords

Mycobacterium Tuberculosis Chlamydia Trachomatis Neisseria Gonorrhoeae Nucleic Acid Amplification Test Respiratory Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, Q., Liu, J., O’Brien, W., Radcliffe, G., Buxton, D., Popoff, S., King, W., Vera, G.M., Lu, L., Shah, J., and others, 1995, Comparison of characteristics of Q beta replicase-amplified assay with competitive PCR assay for Chlamydia trachomatis, J. Clin. Microbiol. 33: 58–63.Google Scholar
  2. An, Q., Radcliffe, G., Vassallo, R., Buxton, D., O’Brien, W.J., Pelletier, D.A., Weisburg, W.G., Klinger, J.D., and Olive, D.M., 1992, Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. J. Clin. Microbiol. 30: 2814–2821.Google Scholar
  3. Andersen, A.B., and Hansen, E.B., 1989, Stucture and mapping of antigenic domains of protein b, a 38000 molecular weight protein of Mycobacterium tuberculosis. Infect. Immun. 57: 2481–2488.Google Scholar
  4. Anonymous, 1997, Rapid diagnostic tests for tuberculosis: what is the appropriate use? American Thoracic Society Workshop, Am. J. Respir. Crit. Care Med. 155: 1804–1814.Google Scholar
  5. Ausina, V., Gamboa, F., Gazapo, E., Manterola, J.M., Lonca, J., Matas, L., Manzano, J.R., Rodrigo, C., Cardona, P.J., and Padilla, E., 1997, Evaluation of the semiautomated Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis in respiratory specimens, J. Clin. Microbiol. 35: 1996–2002.PubMedGoogle Scholar
  6. Avidor, B., Kletter, Y., Abulafia, S., Golan, Y., Ephros, M., and Giladi, M., 1997, Molecular diagnosis of cat scratch disease.: a two-step approach. J Clin. Microbiol. 35: 1924–1930.PubMedGoogle Scholar
  7. Bass, C.A., Jungkind, D.L., Silverman, N.S., and Bondi, J.M., 1993, Clinical evaluation of a new polymerase chain reaction assay for detection of Chlamydia trachomatis in endocervical specimens, J. Clin. MicrobioL 31: 2648–2653.Google Scholar
  8. Beatty, W.L., 1993, Morphologic and antigenic characterization of interferon mediated persistent Chlamydia trachomatis infection in vitro, Proc. Natl. Acad. Sci. USA 90: 3998–4002.PubMedCrossRefGoogle Scholar
  9. Boman, J., Allard, A., Persson, K., Lundborg, M., Juto, P., and Wadell, G., 1997, Rapid diagnosis of respiratory Chlamydia pneumoniae infection by nested touchdown polymerase chain reaction compared with culture and antigen detection by EIA, J. Infect. Dis. 175: 1523–1526.PubMedCrossRefGoogle Scholar
  10. Burczak, J.D., Ching, S.F., Hu, H.Y., and Lee, H., 1995, Ligase chain reaction for the detection of infectious agents. In: Molecular methods for virus detection, ( D. Wiebrauk and D.H. Farkas, eds.), New York, Academic Press Inc., pp. 315–327.CrossRefGoogle Scholar
  11. Campbell, L.A., O’Brien, E.R., Cappuccio,A.L., Kuo, C.C., Wang, S.P., Stewart, D., Patton, D.L., Cummings, P.K., and Grayston, J.T., 1995, Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues, J. Infect. Dis. 172: 585–590.PubMedCrossRefGoogle Scholar
  12. Campbell, L.A., Perez-Melgosa, M., Hamilton, D.J., Kuo, C.C., and Grayston, J.T., 1992, Detection of Chlamydia pneumoniae by polymerase chain reaction, J. Clin. MicrobioL 30: 434–439.Google Scholar
  13. Chernesky, M.A., Mahony, J.B., Castriciano, S., Mores, M., Stewart, I.O., Landis, S.J., Seidelman, W., Sargeant, E.J., and Leman, C., 1986, Detection of Chlamydia trachomatis antigens by enzyme immunoassay and immunofiuorescence in genital specimens from symptomatic and asymptomatic men and women, J. Infect. Dis 154: 141–148.PubMedCrossRefGoogle Scholar
  14. Ching, S., Lee, H., Hook, E.W., Jacobs, M.R., and Zenilman, J., 1995, Ligase chain reaction for detection of Neisseria gonorrhoeae in urogenital swabs. J. Clin. Microbiol. 33: 3111–3114.PubMedGoogle Scholar
  15. Edelstein, P.H., 1986, Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture, J. Clin. MicrobioL 23: 481–484.PubMedGoogle Scholar
  16. Edelstein, P.H., Bryan, R.N., Enns, R.K., Kohne, D.E., and Kacian, D.L., 1987, Retrospective study of Gen-Probe rapid diagnostic system for detection of legionellae in frozen clinical respiratory tract samples, J. Clin. MicrobioL 25: 1022–1026.PubMedGoogle Scholar
  17. Engvall, E.O., Pettersson, B., Persson, M., Artursson, K., and Johansson, K.E., 1996, A 16S rRNA-based PCR assay for detection and identification of granulocytic Ehrlichia species in dogs, horses, and cattle. J. Clin. MicrobioL 34: 2170–2174.PubMedGoogle Scholar
  18. Essig, A., Zucs, P., Susa, M., Wasenauer, G., Mamat, U., Hetzel, M., Wieshammer, S., Brade, H., and Marre, R., 1995, Diagnosis of ornithosis by cell culture and polymerase chain reaction in a patient with chronic pneumonia, Clin. Infect. Dis. 21: 1495–1497.CrossRefGoogle Scholar
  19. Gaydos, C.A., Quinn, T.C., and Eiden, J.J., 1992, Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene, J. Clin. Microbiol. 30: 796–800.PubMedGoogle Scholar
  20. Gaydos, C.A., Roblin, P.M., Hammerschlag, M.R., Hyman, C.L., Eiden, J.J., Schachter, J., and Quinn, T.C., 1994, Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J. Clin. MicrobioL 32: 903–905.PubMedGoogle Scholar
  21. Goessens, W.H., Mouton, J.W., van-der-Meijden, W.I., Deelen, S., van Rijsoort, T.H., Lemmensden, T.N., Verbrugh, H.A., and Verkooyen, R.P., 1997, Comparison of three commercially available amplification assays, AMP CT, LCx, and COBAS AMPLICOR, for detection of Chlamydia trachomatis in first-void urine. J. Clin. MicrobioL 35: 2628–2633.PubMedGoogle Scholar
  22. Huang, T.S., Liu, Y.C., Lin, H.H., Huang, W.K., and Cheng, D.L., 1996, Comparison of the Roche AMPLICOR MYCOBACTERIUM assay and Digene SHARP Signal System with in-house PCR and culture for detection of Mycobacterium tuberculosis in respiratory specimens. J. Clin. Microbiol. 34: 3092–3096.PubMedGoogle Scholar
  23. Kennedy, N., Gillespie, S.H., Saruni,A.O., Kisyombe, G., McNerney, R., Ngowi, F.I., and Wilson, S., 1994, Polymerase chain reaction for assessing treatment response in patients with pulmonary tuberculosis. J. Infect. Dis. 170: 713–716.Google Scholar
  24. Khan, M.A., and Potter, C.W., 1996, The nPCR detection of Chlamydia pneumoniae and Chlamydia trachomatis in children hospitalized for bronchiolitis, J. Infect. 33: 173–175.Google Scholar
  25. Koide, M., and Saito, A., 1995, Diagnosis of Legionella pneumophila infection by polymerase chain reaction, Clin. Infect. Dis. 21: 199–201.CrossRefGoogle Scholar
  26. Kowalski, R.P., Uhrin, M., Karenchak, L.M., Sweet, R.L., and Gordon Y.J., 1995, Evaluation of the polymerase chain reaction test for detecting chlamydial DNA in adult chlamydial conjunctivitis, Ophthalmology 102: 1016–9.PubMedGoogle Scholar
  27. Kubota, Y., 1996, A new primer pair for detection of Chlamydia pneumoniae by polymerase chain reaction, Microbiol. Immunol. 40: 27–32.Google Scholar
  28. Kuo, C.C., Grayston, J.T., Campbell, L.A., Goo, Y.A., Wissler, R.W., and Benditt E.P., 1995, Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc. Natl. Acad. Sci. USA. 92: 6911–6914.PubMedCrossRefGoogle Scholar
  29. Kuo, C.C., Jackson, L.A., Campbell, L.A., and Grayston, J.T., 1995, Chlamydia pneumoniae (TWAR). Clin. Microbiol. Rev. 8: 451–461.PubMedGoogle Scholar
  30. Kuo, C.C., Shor, A., Campbel, L.A., Fukushi, H., Patton, D.L., and Grayston, J.T., 1993, Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J. Infect. Dis. 167: 841–849.PubMedCrossRefGoogle Scholar
  31. Kwoh, D.Y., Davis, G.R., Whitfield, K.M., Chappelle, H.L., DiMichele, J., and Gingeras, T.R., 1989, Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl. Acad. Sci. USA 86: 1173–1177.PubMedCrossRefGoogle Scholar
  32. Lindsay, D.S., Abraham, W.H., and Fallon, R.J., 1994, Detection of mip gene by PCR for diagnosis of Legionnaires’ disease. J. Clin. Microbiol. 32: 3068–3069.PubMedGoogle Scholar
  33. Lisby, G, and Dessau, R., 1994, Construction of a DNA amplification assay for detection of Legionella species in clinical samples. Eur J. Clin. Microbiol. Infect. Dis. 13: 225–231.PubMedCrossRefGoogle Scholar
  34. Lizardi, P., Guerra, C., Lomeli, H., Tussie-Luna, I., and Kramer, E, 1988, Exponential amplification of recombinant RNA hybridization probes, Biotechnology 6: 1197–1202.CrossRefGoogle Scholar
  35. Maiwald, M., 1991, The Polymerase chain reaction in the bacteriological diagnostic laboratory—an enlarging spectrum of applications, Klin. Lab. 37: 194–200.Google Scholar
  36. Messmer, T.O., Skelton, S.K., Moroney, J.F., Daugharty, H., and Fields, B.S., 1997, Application of a nested, multiplex PCR to psittacosis outbreaks. J. Clin. Microbiol. 35: 2043–2046.PubMedGoogle Scholar
  37. Mouton, J.W., Verkooyen, R., van-der-Meijden, W.I., van-Rijsoort, T.H., Goessens, W.H., Kluytmans, J.A., Deelen, S.D., Luijendijk, A., and Verbrugh, H.A., 1997, Detection of Chlamydia trachomatis in male and female urine specimens by using the amplified Chlamydia trachomatis test. J. Clin. Microbiol. 35: 1369–1372.PubMedGoogle Scholar
  38. Mullis, K.B., and Faloona, F.A., 1987, Specific synthesis of DNA in vitro via a polymerasecatalyzed reaction. Methods EnzymoL 155: 335–350.PubMedCrossRefGoogle Scholar
  39. Murdoch, D.R., Walford, E.J., Jennings, L.C., Light, G.J., Schousboe, M.I., Chereshsky, A.Y., Chambers, S.T., and Town, G.I., 1996, Use of the polymerase chain reaction to detect Legionella DNA in urine and serum samples from patients with pneumonia. Clin. Infect. Dis. 23: 475–480.PubMedCrossRefGoogle Scholar
  40. Pastemack, R., Vuorinen, P., and Miettinen, A., 1997, Evaluation of the gen-probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women. J. Clin. MicrobioL 35: 676–678.Google Scholar
  41. Piersimoni, C., Callegaro, A., Nista, D., Bornigia, S., De-Conti, F, Santini, G., and De-Sio, G., 1997, Comparative evaluation of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J. Clin. Microbiol. 35: 193–196.PubMedGoogle Scholar
  42. Podzorski, R.P., and Persing, D.H., 1995, Molecular detection and identification of microorganisms, In: Manual of Clinical Microbiology ( P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, and R.H. Yolken, eds.), ASM Press, Washington, DC., pp. 130–157.Google Scholar
  43. Rajalahti, I., Vuorinen, P., Nieminen, M.M., Miettinen, A., 1998, Detection of Mycobacterium tuberculosis complex in sputum specimens by the automated Roche Cobas Amplicor Mycobacterium Tuberculosis Test. J. Clin. Microbiol. 36: 975–978.PubMedGoogle Scholar
  44. Ramirez, J.A., 1996, Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann. Intern. Med. 125: 979–982.Google Scholar
  45. Rasmussen, S.J., Douglas, F.P., and Timms, P., 1992, PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis. Mol. Cell. Probes 6: 389–394.CrossRefGoogle Scholar
  46. Reischl, U., Leim, N., Wolf, H., and Naumann, L., 1998, Clinical evaluation of the automated COBAS AMPICOR MTB assay for testing of respiratory and nonrespiratory specimens. J. Clin. Microbiol. 36: 2853–2860.PubMedGoogle Scholar
  47. Rekrut, K., Howell, C., and Schuh, J., 1995, Comparative evaluation of acid fast smear, culture, and PCR, using Digene and Roche kits for the detection of Mycobacterium tuberculosis. 95’h ASM General Meeting, Abstr. C-149, p. 26.Google Scholar
  48. Shah, S., Miller, A., Mastellone, A., Kim, K., Colaninno, P., Hochstein, L., and D’Amato, R., 1998, Rapid diagnosis of tuberculosis in various biopsy and body fluid specimens by the AMPLICOR Mycobacterium tuberculosis polymerase chain reaction test. Chest 113: 1190–1194.PubMedCrossRefGoogle Scholar
  49. Smith, J.H., Radcliffe, G., Rigby, S., Mahan, D., Lane, D.J., and Klinger, J.D., 1997a, Performance of an automated Q-beta replicase amplification assay for Mycobacterium tuberculosis in a clinical trial. J. Clin. Microbiol. 35: 1484–1491.Google Scholar
  50. Smith, J.H., Buxton, D., Cahill, P., Fiandaca, M., Goldston, L., Marselle, L., Rigby, S., Olive, D.M., Hendricks, A., Shimei, T., Klingler, J.D., Lane, D.J., and Mahan, D.E., 1997b, Detection of Mycobacterium tuberculosis directly from sputum by using a prototype automated Q-beta replicase assay. J. Clin. Microbiol. 35: 1477–1483.PubMedGoogle Scholar
  51. Smith, K.R., Ching, S., Lee, H., Ohhashi, Y., Hu, H.Y., Fisher, H.C., and Hook, E.W., 1995, Evaluation of ligase chain reaction for use with urine for identification of Neisseria gonorrhoeae in females attending a sexually transmitted disease clinic. J. Clin. Microbiol. 33: 455–457.PubMedGoogle Scholar
  52. Stary, A., Choueiri, B., Horting, M., Halisch, P., and Teodorowicz, L., 1996, Detection of Chlamydia trachomatis in urethral and urine samples from symptomatic and asymptomatic male patients by the polymerase chain reaction. EurJ. Clin. Microbiol. Infect. Dis. 15: 465–471.CrossRefGoogle Scholar
  53. Stone, B.B., Cohen, S.P., Breton, G.L., Nietupski, R.M., Pelletier, D.A., Fiandaca, M.J., Moe, J.G., Smith, J.H., Shah, J.S., and Weisburg, W.G., 1996, Detection of rRNA from four respiratory pathogens using an automated Q beta replicase assay. Mol. Cell. Probes 10: 359–370.CrossRefGoogle Scholar
  54. Walker, G.T., Fraiser, M.S., Schram, J.L., Little, M.C., Nadeau, J.G., and Malinowski, D.P., 1992, Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 20: 1691–196.PubMedCrossRefGoogle Scholar
  55. Weiss, S.M, Roblin, RM., Gaydos, C.A., Cummings, R, Patton, D.L., Schulhoff, N., Shani, J., Frankel, R., Penney, K., Quinn, T.C., Hammerschlag, M.R., and Schachter, J., 1996, Failure to detect Chlamydia pneumoniae in coronary atheromas of patients undergoing atherectomy. J. Infect. Dis. 173: 957–962.PubMedCrossRefGoogle Scholar
  56. Wilson, P.A., Phipps, J., Samuel, D., and Saunders, N.A., 1996, Development of a simplified polymerase chain reaction-enzyme immunoassay for the detection of Chlamydia pneumoniae. J. Appl. Bacteriol. 80: 431–438.PubMedCrossRefGoogle Scholar
  57. Wu, D.Y., and Wallace, R.B., 1989, The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template dependent ligation. Genomics 4: 560–569.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Reinhard Marre
    • 1
  1. 1.Department of Medical Microbiology and HygieneUniversity of UlmUlmGermany

Personalised recommendations