Skip to main content

Invasion of Mammalian and Protozoan Cells by Legionella pneumophila

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 33))

Abstract

The first recognized outbreak of pneumonia due to Legionella pneumophila occurred in Philadelphia in July of 1976 among 180 persons attending the 56th annual American Legion Convention. Twenty nine patients died, and the disease became known as Legionnaires’ disease (Fraser et al., 1977). Guinea pigs were infected with postmortem lung tissue from the patients with fatal Legionnaires’ disease, and embryonated yolk sacs were inoculated with spleen homogenates from the infected guinea pigs. In January of 1977, a gram-negative bacterium was isolated and designated L. pneumophila (McDade et al., 1977). Antisera were subsequently generated which facilitated identification of many previous outbreaks of febrile respiratory illness of unknown etiology that occurred since 1965. The source of the infection during the Legionnaires’ convention was later found to be the air conditioning system in the hotel. It has been documented that the hallmark of Legionnaires’ disease is the intracellular replication of L. pneumophila in the alveolar spaces. At least another 39 species of legionellae have been identified, some of which are associated with disease while others are environmental isolates and whether they can cause disease is not known. L. pneumophila is responsible for more than 80% of cases of Legionnaires’ disease, and among the 13 serogroups of L. pneumophila, serogroup 1 is responsible for more than 95% of Legionnaires’ disease cases. It is estimated that L. pneumophila is responsible for at least 25,000 cases of pneumonia/year in the US. In 1980, Rowbotham described the ability of L. pneumophila to multiply intracellularly within protozoa (Rowbotham, 1980). Since then, L. pneumophila has been described to multiply in many species of protozoa, and this host-parasite interaction is central to the pathogenesis and ecology of L. pneumophila. Intracellular replication of L. pneumophila within mammalian and protozoan cells has been shown to occur in a ribosome-studded phagosome that does not fuse to lysosomes. Fields had hypothesized that the L. pneumophila phagosome fuses to the rough endoplasmic reticulum (RER) (Fields, 1993). Immunocytochemistry has proven this prediction by demonstrating the presence of an RER-specific chaperon, the Bip protein, in the ribosome-studded phagosome within macrophages (Swanson and Isberg, 1995), and protozoa (Abu Kwaik, 1996). Based on these characteristics the L. pneumophila phagosome may be accurately described as endosomal maturation-blocked (EMB) phagosome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abshire, K.Z., and Neidhardt, F.C., 1993, Analysis of proteins synthesized by Salmonella typhimurium during growth within host macrophage, J. Bacteriol. 175: 3734–3743.

    PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., Eisenstein, B.I., and Engleberg, N.C., 1993, Phenotypic modulation by Legionella pneumophila upon infection of macrophages, Infect. Immun. 61: 1320–1329.

    PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., and Engleberg, N.C., 1994, Cloning and molecular characterization of a Legionella pneumophila gene induced by intracellular infection and by various in vitro stress stimuli, Mol. Microbiol. 13: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., Fields, B.S., and Engleberg, N.C., 1994, Protein expression by the protozoan Hartmannella vermiformis upon contact with its bacterial parasite Legionella pneumophila, Infect. Immun. 62: 1860–1866.

    PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., 1996, The phagosome containing Legionella pneumophila within the protozoan Hartmanella vermiformis is surrounded by the rough endoplasmic reticulum, Appl. Environ. Microbiol. 62: 2022–2028.

    PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., and Pederson, L.L., 1996, The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages, Mol. Microbiol. 21: 543–556.

    Article  PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., Gao, L-Y., Harb, O.S., and Stone, B.J., 1997, Transcriptional regulation of the macrophage-induced gene (gspA) of Legionella pneumophila and phenotypic characterization of a null mutant, Mol. Microbiol. 24: 629–642.

    Article  PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., 1998, Induced expression of the Legionella pneumophila gene encoding a 20kilodalton protein during intracellular infection, Infect. Immun. 66: 203–212.

    PubMed  CAS  Google Scholar 

  • Abu Kwaik, Y., Gao, L-Y., Ticac, B., Elhage, N., and Susa, M. 1998a, Invasion and intracellular replication of Legionella micdadei in a ribosome-free phagosome within human-derived macrophages and alveolar epithelial cells, and within protozoa, Unpublished data.

    Google Scholar 

  • Abu Kwaik, Y., Venkataraman, C., Gao, L-Y., and Harb, O.S., 1998b, Signal transduction in the protozoan host Hartmannella vermiformis upon attachment and invasion by its bacterial parasite, the Legionnaires’ disease agent, Legionella micdadei, Appl. Environ. Microbiol. In Press.

    Google Scholar 

  • Adams, S.A., Robson, S.C., Gathiram, V., et al, 1993, Immunological similarity between the 170 kDa amoebic adherence glycoprotein and human ß2 integrins, Lancet 341: 17–19.

    Article  PubMed  CAS  Google Scholar 

  • Adeleke, A., Pruckler, J., Benson, R., Rowbotham, T., Halablab, M., and Fields, B.S., 1996, Legionella-like amoeba! pathogens-phylogenetic status and possible role in respiratory disease, Emerg. Infect. Dis. 2: 225–229.

    CAS  Google Scholar 

  • Adler, P., Wood, S.J., Lee, Y.C., Lee, R.T., Petri, W.A. Jr., and Schnaar, R.L., 1995, High affinity binding of the Entamoeba histolytica lectin to polyvalent N-Acetylgalactosaminides, J. Biot. Chem. 270: 5164–5171.

    Article  CAS  Google Scholar 

  • Alpuche-Aranda, C.M., Swanson, J.A., Loomis, WP., and Miller, S.I., 1992, Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes, Proc. Natl. Acad. Sci. USA. 89: 10079–10083.

    Article  CAS  Google Scholar 

  • Anderson, P., 1997, Kinase cascades regulating entry into apoptosis, Microbiol. Mo[. Biol. Rev. 61: 33–46.

    CAS  Google Scholar 

  • Barker, J., Brown, M.R.W., Collier, P.J.; Farrell, I., and Gilbert, P., 1992, Relationships between Legionella pneumophila and Acanthamoebae polyphaga: physiological status and susceptibility to chemical inactivation, Appl. Environ. Microbiol. 58: 2420–2425.

    PubMed  CAS  Google Scholar 

  • Barker, J., Lambert, P.A., and Brown, M.R.W., 1993, Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila, Infect. Immun. 61: 3503–3510.

    PubMed  CAS  Google Scholar 

  • Barker, J., Scaife, H., and Brown, M.R.W., 1995, Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila, Antimicrob. Agents Chemother. 39: 2684–2688.

    Article  PubMed  CAS  Google Scholar 

  • Behlau, I., and Miller, S.I., 1993, A PhoP-repressed gene promotes Salmonella typhimurium invasion of Epithelial cells, J. Bacteriol. 175: 4475–4484.

    PubMed  CAS  Google Scholar 

  • Berk, S.G., Ting, R.S., Turner, G.W., and Ashburn, R.J., 1998, Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp, Appl. Environ. Microbio/. 64: 279–286.

    CAS  Google Scholar 

  • Bertin, J., Mendrysa, S.M., LaCount, D.J., et al,1996, Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease, J. Virol. 70: 6251–6259.

    Google Scholar 

  • Bozue, J.A., and Johnson, W, 1996, Interaction of Legionella pneumophila with Acanthamoeba catellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion, Infect. Immun. 64: 668–673.

    PubMed  CAS  Google Scholar 

  • Brieland, J., Freeman, P., kunkel, R., et al,1994, Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice: A murine model of human Legionnaires’ disease, Am. J. Pathol. 145: 1537–1546.

    Google Scholar 

  • Brieland, J.K., Fantone, J.C., Remick, D.G., LeGendre, M., McClain, M., and Engleberg, N.C., 1997, The role of Legionella pneumophila-infected Hartmanella vermiformis as an infectious particle in a murine model of Legionnaires’ disease, Infect. Immun. 65: 4892–4896.

    PubMed  CAS  Google Scholar 

  • Britles, R.J., Rowbotham, T.J., Raoult, D., and Harrison, T.G., 1996, Phylogenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison, Microbiol. 142: 3525–3530.

    Article  Google Scholar 

  • Byrd, T.F., and Horwitz, M.A., 1989, Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron,. J. Clin. Invest. 83: 1457–1465.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, B., and Swanson, M.S., 1998, Expression of Legionella pneumophila virulence traits in response to growth conditions, Infect. Immun. (In Press)

    Google Scholar 

  • Cianciotto, N.P., Eisenstein, B.I., Mody, C.H., Toews, G.B., and Engleberg, N.C., 1989, A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection, Infect. Immun. 57: 1255–1262.

    PubMed  CAS  Google Scholar 

  • Cianciotto, N.P., and Fields, B.S., 1992, Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages, Proc. Natl. Acad. Sci. USA. 89: 5188–5191.

    Article  CAS  Google Scholar 

  • Cirillo, J.D., Tompkins, L.S., and Falkow, S., 1994, Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion, Infect. Immun. 62: 3254–3261.

    PubMed  CAS  Google Scholar 

  • Dowling, J.N., Saha, A.K., and Glew, R.H., 1992, Virulence factors of the family Legionellaceae, Microbiol. Rev. 56: 32–60.

    PubMed  CAS  Google Scholar 

  • Elliott, J.A., and Winn, W.C. Jr., 1986, Treatment of alveolar macrophages with cytochalasin D inhibits uptake and subsequent growth of Legionella pneumophila, Infect. Immun. 51: 31–36.

    PubMed  CAS  Google Scholar 

  • Fan, T., Lu, H., Shi, L., et al, 1998, Inhibition of apoptosis in Chlamydia-infected cells: Blockade of mitochondrial cytochrome c release and caspase activation, J. Exp. Med. 187: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, R.C., Logan, S., Lee, S.H.S., and Hoffman, P.S., 1996, Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlated with virulence, Infect. Immun. 64: 1968–1976.

    PubMed  CAS  Google Scholar 

  • Fields, B.S., Nerad, T.A., Sawyer, T.K., et al, 1990, Characterization of an axenic strain of Hart-mannella vermiformis obtained from an investigation of nosocomial legionellosis, J. Protozooi. 37: 581–583.

    CAS  Google Scholar 

  • Fields, B.S., 1993, Legionella and protozoa: interaction of a pathogen and its natural host, in Legionella; current status and emerging perspectives, Washington, D.C.: American Society of Microbiology, pp. 129–136.

    Google Scholar 

  • Fields, B.S., 1996, The molecular ecology of legionellae, Trends. Microbiol 4: 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, D.W., Tsai, T.R., Orenstein, W., et al, 1977, Legionnaires’ disease: description of an epidemic of pneumonia, N. Engl. J. Med. 297: 1189–1197.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L-Y., Gutzman, M., Brieland, J.K., and Abu Kwaik, Y., 1997a, Unupublished data.

    Google Scholar 

  • Gao, L-Y., Harb, O.S., and Abu Kwaik, Y., 19976, Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant hosts, mammalian and protozoan cells, Infect. Immun. 65: 4738–4746.

    Google Scholar 

  • Gao, L-Y., Harb, O.S., and Abu Kwaik, Y., 1998, Identification of macrophage-specific infectivity loci (mil) of Legionella pneumophila that are not required for infectivity of protozoa, Infect. Immun. 66: 883–892.

    PubMed  CAS  Google Scholar 

  • Garcia-del Portillo, E, and Finlay, B., 1995a, Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose-6phosphate receptors, J. Cell. Biol. 129: 81–97.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-del Portillo, E, and Finlay, B.B., 1995b, The varied life styles of intracellular pathogens within eukaryotic vacuolar compartments, Trends. Microbiol 3: 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Harb, O.S., and Abu Kwaik, Y., 1998, Identification of the aspartate-ß-semiadehyde dehydrogenase gene of Legionella pneumophila and characterization of a null mutant, Infect. Immun. 66: 1898–1903.

    PubMed  CAS  Google Scholar 

  • Harb, O.S., Venkataraman, C., Haack, B.J., Gao, L-Y., and Abu Kwaik, Y., 1998, Heterogeniety in the attachment and uptake mechanisms of the Legionnaires’ disease bacterium, Legionella pneumophila, by protozoan hosts, Appl. Environ. Microbiol. 64: 126–132.

    PubMed  CAS  Google Scholar 

  • Hickey, E.K., and Cianciotto, N.P., 1997, An iron-and Fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetase, Infect. Immun. 65: 133–143.

    PubMed  CAS  Google Scholar 

  • Horwitz, M.A., 1983, Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes, J. Exp. Med. 158: 1319–1331.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, M.A., 1984, Phagocytosis of the Legionnaires’ disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil, Cell 36: 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Husmann, L.K., and Johnson, W., 1994, Cytotoxicity of extracellular Legionella pneumophila, Infect. Immun. 62: 2111–2114.

    PubMed  CAS  Google Scholar 

  • Jacob, T., Escallier, J.C., Sanguedolce, M.V., et al, 1994, Legionella pneumophila inhibits superoxide generation in human monocytes via the down-modulation of a and b protein kinase C isotypes, J. Leukoc. Biol. 55: 310–312.

    CAS  Google Scholar 

  • King, C.H., Fields, B.S., Shotts, E.B.,Jr., and White, E.H., 1991, Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells, Infect. Immun. 59: 758–763.

    PubMed  CAS  Google Scholar 

  • Kirby, J.E., Vogel, J.P., Andrews, H.L., and Isberg, R.R., 1998, Evidence for pore-forming ability by Legionella pneumophila, Mol. Microbiol. 27: 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Knirel, Y.A., Moll, H., and Zahringer, U., 1996, Structural study of a highly O-acetylated core of Legionella pneumophila serogroup 1 lipopolysaccharide, Carbohydr. Res. 293: 223–234.

    Article  PubMed  CAS  Google Scholar 

  • Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P., 1997, Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis, J. Exp. Med. 185: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

  • Mann, B.J., Torian, B.E., Vedvick, T.S., and Petri, W.A. Jr., 1991, Sequence of a cysteine-rich galactose-specific lectin of Entamoeba histolytica, Proc. Natl. Acad. Sci. USA. 88: 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  • McDade, J.E., Shepard, C.C., Fraser, D.W., Tsai, T.R., Redus, M.A., and Dowdle, W.R., 1977, Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease, N. Engl. J. Med. 297: 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  • McDade, J.E., and Shepard, C.C., 1979, Virulent to avirulent conversion of Legionnaires’ disease bacterium (Legionella pneumophila) its effect on isolation techniques, J. Infect. Dis. 139: 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S.I., Kukral, A.M., and Mekalanos,.1J.,1989, A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence, Proc. Natl. Acad. Sci. USA. 86: 5054–5058.

    Google Scholar 

  • Miller, S.I., and Mekalanos, J.J., 1990, Constitutive expression of PhoP regulon attenuates Salmonella virulence and survival within macrophages, J. Bacteriol. 172: 2485–2490.

    PubMed  CAS  Google Scholar 

  • Miller, S.I., 1991, PhoP/PhoQ: Macrophage-specific modulators of Salmonella virulence? Mol. Microbiol. 5: 2073–2078.

    Article  PubMed  CAS  Google Scholar 

  • Miller, V.L., Beer, K.B., Loomis, W.P., Olson, J.A., and Miller, S.I., 1992, An unusual pagC::TnphoA mutations leads to an invasion-and virulence-defective phenotype in salmonellae, Infect. Immun. 60: 3763–3770.

    PubMed  CAS  Google Scholar 

  • Müller, A., Hacker, J., and Brand, B.C., 1996, Evidence for apoptosis of human macrophage- like HL-60 cells by Legionella pneumophila infection, Infect. Immun. 64: 4900–4906.

    PubMed  Google Scholar 

  • Nash, T.W., Libby, D.M., and Horwitz, M.A., 1984, Interaction between the legionnaires’ disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone, J. Clin. Invest. 74: 771–782.

    Article  PubMed  CAS  Google Scholar 

  • O’Brein, S.J., and Bhopal, R.S., 1993, Legionnaires’ disease: the infective dose paradox, Lancet 342: 5–6.

    Article  Google Scholar 

  • Oh, Y-K., Alpuche-Aranda, C., Berthiaume, E., Jinks, T., Miller, S.I., and Swanson, J.A., 1996, Rapid and complete fusion of macrophages lysosomes with phagosomes containing Salmonella typhimurium, Infect. Immun. 64: 3877–3883.

    PubMed  CAS  Google Scholar 

  • Payne, N.R., and Horwitz, M.A., 1987, Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors, J. Exp. Med. 166: 1377–1389.

    Article  PubMed  CAS  Google Scholar 

  • Petri, W.A. Jr., Smith, R.D., Schlesinger, P.H., Murphy, C.F., and Ravdin, J.1.,1987, Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica, J. Clin. Invest. 80: 1238–1244.

    Google Scholar 

  • Pope, C.D., O’connell, W.A., and Cianciotto, N.P., 1996, Legionella pneumophila mutants that are defective for iron acquisition and assimilation and intracellular infection, Infect. Immun. 64: 629–636.

    CAS  Google Scholar 

  • Pruckler, J.M., Benson, R.F., Moyenuddin, M., Martin, W.T., and Fields, B.S, 1995, Association of flagellum expression and intracellular growth of Legionella pneumophila, Infect. Immun. 63: 4928–4932.

    PubMed  CAS  Google Scholar 

  • Ray, C.A., Black, R.A., Kronheim, et al, 1992, Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme, Cell 69: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Rechnitzer, C., and Blom, J., 1989, Engulfment of the Philadelphia strain of Legionella pneumophila within pseudopod coils in human phagocytes. Comparison with the other Legionella strains and species, Acta Pathol. Microbiol. Immunol. Scand. [B] 97: 105–114.

    CAS  Google Scholar 

  • Rodgers, F.G., and Gibson III, F.C., 1993, Opsonin-independent adherence and intracellular development of Legionella pneumophila within U-937 cells, Can. J. Microbiol. 39: 718–722.

    CAS  Google Scholar 

  • Rowbotham,T.J.,1980, Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae, J. Clin. Pathol. 33: 1179–1183.

    Google Scholar 

  • Roy, C.R., Berger, K.H., and Isberg, R.R., 1998, Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake, Mol. Microbiol. 28: 663–674.

    CAS  Google Scholar 

  • Sadosky, A.B., Wiater, L.A., and Shuman, H.A., 1993, Identification of Legionella pneumophila genes required for growth within and killing of human macrophages, Infect. Immun. 61: 5361–5373.

    PubMed  CAS  Google Scholar 

  • Sakahira, H., Enari, M., and Nagata, S., 1998, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis, Nature 391: 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen, G.S., and Dixit, V.M., 1998, Caspases: Intracellular signaling by proteolysis, Cell 91: 443–446.

    Article  Google Scholar 

  • Steinert, M., Emody, L., Amann, R., and Hacker, J., 1997, Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii, Appl. Environ. Microbiol. 63: 2047–2053.

    PubMed  CAS  Google Scholar 

  • Stone, B.J., and Abu Kwaik, Y., 1998a, Expression of multiple pili by Legionella pneumophila: Identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells, Infect. Immun. 66: 1768–1775.

    PubMed  CAS  Google Scholar 

  • Stone, B.J., and Abu Kwaik, Y., 1998b, Natural competency for DNA uptake by Legionella pneumophila and its association with expression of type IV pili, Unupublished data. Susa, M., Hacker, J., and Marre, R., 1996, De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells, Infect. Immun. 64: 1679–1684.

    Google Scholar 

  • Susa, M., ileac, T., Rukavina, T., Doric, M., and Marre, R., 1998, Legionella pneumophila infection in intratracheally inoculated T cell depleted or non-depleted A/J mice, J. Immunol. 160: 316–321.

    PubMed  CAS  Google Scholar 

  • Swanson, M.S., and Isberg, R.R., 1995, Formation of the Legionella pneumophila replicative phagosome, Infect. Agents. Dis 2: 269–271.

    Google Scholar 

  • Swanson, M.S., and Isberg, R.R., 1996, Identification of Legionella pneumophila mutants that have abarrant intracellular fates, Infect. Immun. 64: 2585–2594.

    PubMed  CAS  Google Scholar 

  • Theriot, J.A., 1995, The cell biology of infection by intracellular bacterial pathogens, Annu. Rev. Cell. Dev. Biol. 11: 213–239.

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman, C., Gao, L-Y., Bondada, S., and Abu Kwaik, Y., 1998, Identification of putative cytoskeletal protein homologues in the protozoan Hartmannella vermiformis as substrates for induced tyrosine phosphatase activity upon attachment to the Legionnaires’ disease bacterium, Legioenlla pneumophila, J. Exp. Med. (In Press)

    Google Scholar 

  • Venkataraman, C., Haack, B.J., Bondada, S., and Abu Kwaik, Y., 1997, Identification of a Gal/GalNAc lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires’ disease bacterium, Legionella pneumophila, J. Exp. Med. 186: 537–547.

    Article  PubMed  CAS  Google Scholar 

  • Vescovi, E.C., Soncini, F.C., and Groisman, E.A., 1996, Mg’ as an extracellular signal: Environmental regulation of Salmonella virulence, Cell 84: 165–174.

    Article  CAS  Google Scholar 

  • Vogel, J.P., Roy, C., and Isberg, R.R., 1996, Use of salt to isolate Legionella pneumophila mutants unable to replicate in macrophages, Ann. NY. Acad. Sci. 797: 271–272.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, J.P., Andrews, H.L., Wong, S.K., and Isberg, R.R., 1998, Conjugative transfer by the virulence system of Legionella pneumophila, Science 279: 873–876.

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum, D.L., Benner, R.R., Dowling, J.N., Alpern, A., Pasculle, A.W., and Donowitz, G.R., 1984, Interaction of Legionella micdadei with human monocytes, Infect. Immun. 46: 68–73.

    PubMed  CAS  Google Scholar 

  • Winn, W.C. Jr., and Myerowitz, R.L., 1981, The pathology of the Legionella pneumonias. A review of 74 cases and the literature, Hum. Pathol. 12: 401–422.

    Article  PubMed  Google Scholar 

  • Wintermeyer, E., Ludwig, B., Steinert, M., Schmidt, B., Fischer, G., and Hacker, J., 1995, Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells, Infect. Immun. 63: 4576–4583.

    PubMed  CAS  Google Scholar 

  • Wyllie, A.H., 1980, Glucocorticoid-induced thymocyte apoptosis is associated with endogeneous endonuclease activation, Nature 284: 555–556.

    Article  PubMed  CAS  Google Scholar 

  • Zychlinsky, A., and Sansonetti, P.J., 1997, Apoptosis as a proinflammatory event: what we can learn from bacteria-induced cell death, Trends. Microbiol 5: 201–204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kwaik, Y.A. (2000). Invasion of Mammalian and Protozoan Cells by Legionella pneumophila . In: Oelschlaeger, T.A., Hacker, J. (eds) Bacterial Invasion into Eukaryotic Cells. Subcellular Biochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4580-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4580-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3330-0

  • Online ISBN: 978-1-4757-4580-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics