Salmonella Invasion of Non-Phagocytic Cells

  • Lisa M. Schechter
  • Catherine A. Lee
Part of the Subcellular Biochemistry book series (SCBI, volume 33)


The gram-negative, facultatively anaerobic bacteria of the genus Salmonella are able to infect a wide range of animal hosts and produce a variety of clinical manifestations. The ability of salmonellae to cause such a spectrum of diseases is attributable to the genetic diversity of this genus. Based on multilocus enzyme electrophoresis analysis, DNA hybridization studies, and gene sequencing, the genus Salmonella contains two species: bongori and enterica (Selander et al., 1996). Salmonella enterica is further subdivided into six subspecies, designated by the roman numerals I, II, IIIa, IIIb, IV, VI, and VII. Each subspecies is additionally divided into serovars based on the variability of surface antigens. Prior to the determination of Salmonella phylogenetic relationships by modern molecular methods, each Salmonella serovar was considered to be a unique species. Salmonella serovars are still commonly referred to as different species, although this practice is now taxonomically incorrect.


Host Cell Pathogenicity Island Bacterial Invasion Cytoskeletal Rearrangement Secretion Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atmeyer, R.M., McNern, J.K., Bossio, J.C., Rosenshine, I., Finlay, B.B., and Galan, J.E., 1993, Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells, Mol. Microbiol. 7: 89–98.CrossRefGoogle Scholar
  2. Anderson, D.M., and Schneewind, 0., 1997, A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica, Science 278: 1140–1143.PubMedCrossRefGoogle Scholar
  3. Arnold, J.W., Niese!, D.W., Annable, C.R., Hess, C.B., Asuncion, M., Cho, Y., Peterson, J.W., and Kumpel, G.R., 1993, Tumor necrosis factor-a mediates the early pathology in Salmonella infection of the gastrointestinal tract, Microb. Pathog. 14: 217–227.PubMedCrossRefGoogle Scholar
  4. Arricau, N., Hermant, D., Waxin, H., Ecobichon, C., Duffey, P.S., and Popoff, M.Y., 1998, The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity, Mol. MicrobioL. 29: 835–850.PubMedCrossRefGoogle Scholar
  5. Bajaj, V., Hwang, C., and Lee, C.A., 1995, hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes, Mol. MicrobioL 18: 715–727.Google Scholar
  6. Bajaj, V., Lucas, R.L., Hwang, C., and Lee, C.A., 1996, Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression, Mol. Microbiol. 22: 703–714.PubMedCrossRefGoogle Scholar
  7. Bäumler, A.J., 1997, The record of horizontal gene transfer in Salmonella, Trends MicrobioL 5: 318–322.PubMedCrossRefGoogle Scholar
  8. Bäumler, A.J., Tsolis, R.M., and Heffron, F, 1996a, Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium, Infect. Immun. 64: 1862–1865.PubMedGoogle Scholar
  9. Bäumler, A.J., Tsolis, R.M., and Heffron, E, 1996b, The 1pf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches, Proc. Natl. Acad. Sci. USA 93: 279–283.PubMedCrossRefGoogle Scholar
  10. Bäumler, A.J., Gilde, A.J., Tsolis, R.M., van der Velden, A.W., Ahmer, B.M., and Heffron, F., 1997a, Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes, J. Bacteriol. 179: 317–322.PubMedGoogle Scholar
  11. Bäumler, A.J., Tsolis, R.M., and Heffron, E, 1997b, Fimbrial adhesins of Salmonella typhimurium. Role in bacterial interactions with epithelial cells, Adv. Exp. Med. Biot 412: 149–158.Google Scholar
  12. Bäumler, A.J., Tsolis, R.M., Valentine, P.J., Ficht, T.A., and Heffron, E, 1997c, Synergistic effect of mutations in invA and 1pfC on the ability of Salmonella typhimurium to cause murine typhoid, Infect. Immun. 65: 2254–2259.PubMedGoogle Scholar
  13. Behlau, I., and Miller, S.I., 1993, A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells, J. BacterioL 175: 4475–4484.PubMedGoogle Scholar
  14. Betts, J., and Finlay, B.B., 1992, Identification of Salmonella typhimurium invasiveness loci, Can. J. MicrobioL 38: 852–857.PubMedCrossRefGoogle Scholar
  15. Bowe, F, Lipps, C.J., Tsolis, R.M., Groisman, E., Heffron, F, and Kusters, J.G., 1998, At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice, Infect. Immun. 66: 3372–3377.PubMedGoogle Scholar
  16. Carter, P.B., and Collins, FM., 1974, The route of enteric infection in normal mice, J. Exp. Med. 139: 1189–1203.PubMedCrossRefGoogle Scholar
  17. Chen, L.M., Hobbie, S., and Galin, J.E., 1996a, Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses, Science 274: 2115–2118.PubMedCrossRefGoogle Scholar
  18. Chen, L.M., Kaniga, K., and Galin, J.E., 1996b, Salmonella spp. are cytotoxic for cultured macrophages, Mol. Microbiol. 21: 1101–1015.CrossRefGoogle Scholar
  19. Cirillo, C.M., Valdivia, R.H., Monack, D.M., and Falkow, S., 1998, Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival, Mol. MicrobioL 30: 175–188.PubMedCrossRefGoogle Scholar
  20. Clark, M.A., Jepson, M.A., Simmons, N.L., and Hirst, B.H., 1994, Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells, Res. MicrobioL 145: 543–552.PubMedCrossRefGoogle Scholar
  21. Collazo, C.M., and Galin, J.E., 1996, Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium, Infect. Immun. 64: 3524–3531.PubMedGoogle Scholar
  22. Collazo, C.M., and Galin, J.E., 1997a, The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell, Mol. Microbiol. 24: 747–756.PubMedCrossRefGoogle Scholar
  23. Collazo, C.M., and Galan, J.E.,1997b,The invasion-associated type-III protein secretion system in Salmonella-a review, Gene 192: 51–59.Google Scholar
  24. Collazo, C.M., Zierler, M.K., and Galan, J.E., 1995; Functional analysis of the Salmonella typhimurium invasion genes invl and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus, Mol. Microbiol. 15: 25–38.Google Scholar
  25. Crago, A.M., and Koronakis, V., 1998, Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization, Mol. MicrobioL 30: 47–56.Google Scholar
  26. Daefler, S., and Russel, M., 1998, The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG, Mol. Microbiol. 28: 1367–1380.PubMedCrossRefGoogle Scholar
  27. Deiwick, J., Nikolaus, T., Shea, J.E., Gleason, C., Holden, D.W., and Hensel, M., 1998, Mutations in Salmonella Pathogenicity Island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents, J. Bacteriol. 180: 4775–4780.PubMedGoogle Scholar
  28. Duebbert, I.E., and Peterson, J.W., 1985, Enterotoxin-induced fluid accumulation during experimental salmonellosis and cholera: involvement of prostaglandin synthesis by intestinal cells, Toxicon 23: 157–172.PubMedCrossRefGoogle Scholar
  29. Eichelberg, K., Ginocchio, C.C., and Galan, J.E., 1994, Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the FOF1 ATPase family of proteins, J. Bacteriol. 176: 4501–4510.PubMedGoogle Scholar
  30. Eichelberg, K., Kaniga, K., and Galan, J.E., 1996, Transcriptional regulation of Salmonella secreted virulence determinants, in: The 96th General Meeting of the American Society for Microbiology, New Orleans, ASM Press, Washington D.C., p. 161.Google Scholar
  31. Ernst, R.K., Dombroski, D.M., and Merrick, J.M., 1990, Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium, Infect. Immun. 58: 2014–2016.PubMedGoogle Scholar
  32. Finlay, B.B., and Falkow, S., 1990, Salmonella interactions with polarized human intestinal Caco-2 epithelial cells, J. Infect. Dis. 162: 1096–1106.Google Scholar
  33. Finlay, B.B., Gumbiner, B., and Falkow, S., 1988a, Penetration of Salmonella through a polar- ized Madin-Darby canine kidney epithelial cell monolayer, J. Cell BioL 107: 221–230.PubMedCrossRefGoogle Scholar
  34. Finlay, B.B., Starnbach, M.N., Francis, C.L., Stocker, B.A., Chatfield, S., Dougan, G., and Falkow, S., 1988b, Identification and characterization of TnphoA mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer, Mol. Microbiol. 2: 757–766.PubMedCrossRefGoogle Scholar
  35. Finlay, B.B., Heffron, F, and Falkow, S., 1989, Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion, Science 243: 940–943.PubMedCrossRefGoogle Scholar
  36. Finlay, B.B., Ruschkowski, S., and Dedhar, S., 1991, Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells, J. Cell. Sci. 99: 283–296.PubMedGoogle Scholar
  37. Francis, C.L., Starnbach, M.N., and Falkow, S., 1992, Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions, Mol. Microbiol. 6: 3077–3087.PubMedCrossRefGoogle Scholar
  38. Francis, C.L., Ryan, T.A., Jones, B.D., Smith, S.J., and Falkow, S., 1993, Ruffles induced by Sal- monella and other stimuli direct macropinocytosis of bacteria, Nature 364: 639–642.PubMedCrossRefGoogle Scholar
  39. Fu, Y., and Galan, J.E., 1998a, Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium, J. Bacteriol. 180: 3393–3399.PubMedGoogle Scholar
  40. Fu, Y., and Galan, J.E., 1998b, The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton, Mol. Microbiol. 27: 359–368.PubMedCrossRefGoogle Scholar
  41. Gahring, L.C., Heffron, F., Finlay, B.B., and Falkow, S., 1990, Invasion and replication of Salmonella typhimurium in animal cells, Infect. Immun. 58: 443–448.PubMedGoogle Scholar
  42. Galin, J.E., 1994, Salmonella entry into mammalian cells: different yet converging signal transduction pathways, Trends Cell Biol. 4: 196–199.Google Scholar
  43. Galin, J.E., 1996, Molecular genetic bases of Salmonella entry into host cells, Mol. Microbiol. 20: 263–271.CrossRefGoogle Scholar
  44. Galin, J.E., and Curtiss, R.III, 1989, Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells, Proc. Nat. Acad. Sci. USA 86: 6383–6387.CrossRefGoogle Scholar
  45. Galin, J.E., and Curtiss, R.III,1990, Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling, Infect. Immun. 58: 1879–1885.Google Scholar
  46. Galin, J.E., and Sansonetti, P.J.,1996, Molecular and cellular bases of Salmonella and Shigella interactions with host cells, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, (EC. Neidhardt, R.I. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Schaechter, and E.H. Umbarger, eds.) ASM Press, Washington D.C., pp. 2757–2773.Google Scholar
  47. Galin, J.E., Ginocchio, C., and Costeas, P., 1992a, Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family, J. BacterioL 174: 4338–4349.Google Scholar
  48. Galin, J.E., Pace, J., and Hayman, M.J., 1992b, Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium, Nature 357: 588–589.CrossRefGoogle Scholar
  49. Galyov, E.E., Wood, M.W., Rosqvist, R., Mullan, P.B., Watson, P.R., Hedges, S., and Wallis, T.S., 1997, A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa, Mol. Microbiol. 25: 903–912.PubMedCrossRefGoogle Scholar
  50. Garcia-del Portillo, F, and Finlay, B.B., 1994, Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell, Infect. Immun. 62: 4641–4645.Google Scholar
  51. Garcia-del Portillo, E, and Finlay B.B., 1995, Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors, J. Cell. Biol. 129: 81–97.PubMedCrossRefGoogle Scholar
  52. Garcia-del Portillo, F., Zwick, M.B., Leung, K.Y., and Finlay, B.B., 1993, Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells, Proc. Nat. Acad. Sci. USA 90: 10544–10548.Google Scholar
  53. Giannella, R.A., Formal, S.B., Dammin, G.J., and Collins, H., 1973a, Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum, J. Clin. Invest. 52: 441–453.PubMedCrossRefGoogle Scholar
  54. Giannella, R.A., Washington, O., Gemski, P., and Formal, S.B., 1973b, Invasion of HeLa cells by Salmonella typhimurium: a model for study of invasiveness of Salmonella, J. Infect. Dis. 128: 69–75.PubMedCrossRefGoogle Scholar
  55. Giannella, R.A., Gots, R.E., Charney, A.N., Greenough, W.B., and Formal, S.B., 1975, Pathogenesis of Salmonella-mediated intestinal fluid secretion. Activation of adenylate cyclase and inhibition by indomethacin, Gastroenterology 69: 1238–1245.PubMedGoogle Scholar
  56. Ginocchio, C., Pace, J., and Galin, J.E., 1992, Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of salmonellae into cultured epithelial cells, Proc. Natl. Acad. Sci. USA 89: 5976–5980.PubMedCrossRefGoogle Scholar
  57. Ginocchio, C.C., Olmsted, S.B., Wells, C.L., and Galin, J.E., 1994, Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium, Cell 76: 717–724.PubMedCrossRefGoogle Scholar
  58. Ginocchio, C.C., and Galan, J.E., 1995, Functional conservation among members of the Salmonella typhimurium InvA family of proteins, Infect. Immun. 63: 729–732.PubMedGoogle Scholar
  59. Gottesman, S., 1995, Regulation of capsule biosynthesis: Modification of the two-component paradigm by an accessory unstable regulator, in Two-Component Signal Transduction. ( J.A. Hoch, and T.J. Silhavy, eds.), ASM Press, Washington D.C., pp. 253–262.Google Scholar
  60. Groisman, E.A., 1998, The ins and outs of virulence gene expression: Mge’ as a regulatory signal, BioEssays 20: 96–101.PubMedCrossRefGoogle Scholar
  61. Groisman, E.A., and Ochman, H., 1993, Cognate gene clusters govern invasion of host epithe- lial cells by Salmonella typhimurium and Shigella flexneri, EMBO J. 12: 3779–3787.PubMedGoogle Scholar
  62. Gulig, P.A., 1996, Pathogenesis of systemic disease, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, ( F.C. Neidhardt, R.I. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Schaechter, and E.H. Umbarger, eds.) ASM Press, Washington D.C., pp. 2774–2787.Google Scholar
  63. Gulig, P.A., and Curtiss, R.III, 1987, Plasmid-associated virulence of Salmonella typhimurium, Infect. Immun. 55: 2891–2901.PubMedGoogle Scholar
  64. Hardt, W-D., and Galan, J.E., 1997, A secreted.Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria, Proc. Natl. Acad. Sci. USA 94: 9887–9892.PubMedCrossRefGoogle Scholar
  65. Hardt, W.-D., Chen, L.-M., Schuebel, K.E., Bustelo, X.R., and Galan, J.E., 1998a, S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells, Cell 93: 815–826.Google Scholar
  66. Hardt, W.-D., Urlaub, H., and Galan, J.E., 1998b, A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage, Proc. Natl. Acad. Sci. USA 95: 2574–2579.PubMedCrossRefGoogle Scholar
  67. Hensel, M., Shea, J.E., Waterman, S.R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F.C., and Holden, D.W., 1998, Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages, Mol. Microbiol. 30: 163–174.PubMedCrossRefGoogle Scholar
  68. High, N.,Mounier, J., Prévost, M.-C., and Sansonetti, RI, 1992, IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole, EMBO J. 11:1991–1999.Google Scholar
  69. Hobbie, S., Chen, L.M., Davis, R.J., and Galan, J.E., 1997, Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells, J. Immun!. 159: 5550–5559.PubMedGoogle Scholar
  70. Hong, K.H., and Miller, V.L., 1998, Identification of a novel Salmonella invasion locus homologous to Shigella IpgDE, J. Bacteriol. 180: 1793–1802.PubMedGoogle Scholar
  71. Hueck, C.J., 1998, Type III protein secretion systems in bacterial pathogens of animals and plants, Microbiol. Mol. Biol. Rev. 62: 379–433.PubMedGoogle Scholar
  72. Hueck, C.J., Hantman, M.J., Bajaj, V., Johnston, C., Lee, C.A., and Miller, S.I., 1995, Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins, Mol. Microbiol. 18: 479–490.Google Scholar
  73. Johnston, C., Pegues, D.A., Hueck, C.J., Lee, A., and Miller, S.I., 1996, Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily, Mol. Microbiol. 22: 715–727.PubMedCrossRefGoogle Scholar
  74. Jones, B.D., and Falkow, S., 1994, Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization, Infect. Immun. 62: 3745–3752.PubMedGoogle Scholar
  75. Jones, B.D., Lee, C.A., and Falkow, S., 1992, Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation, Infect. Immun. 60: 2475–2480.PubMedGoogle Scholar
  76. Jones, B.D., Paterson, H.F., Hall, A., and Falkow, S., 1993, Salmonella typhimurium induces membrane ruffling by a growth factor-receptor-independent mechanism, Proc. Nat. Acad. Sci. USA 90: 10390–10394.Google Scholar
  77. Jones, B.D., Ghori, N., and Falkow, S., 1994, Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches, J. Exp. Med. 180: 15–23.Google Scholar
  78. Jones, B., Pascopella, L., and Falkow, S., 1995, Entry of microbes into the host: using M cells to break the mucosal barrier, Curr. Opin. Immunol. 7: 474–478.PubMedCrossRefGoogle Scholar
  79. Jung, H.C., Eckmann, L., Yang, S.K., Panja, A., Fierer, J., Morzycka-Wroblewska, E., and Kagnoff, M.F., 1995, A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion, J. Clin. Invest. 95: 55–65.PubMedCrossRefGoogle Scholar
  80. Kaniga, K., Bossio, J.C., and Galan, J.E., 1994, The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PuID family of proteins, Mol. Microbiol. 13: 555–568.PubMedCrossRefGoogle Scholar
  81. Kaniga, K., Trollinger, D., and Galan, J.E., 1995a, Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins, J. Bacteriol. 177: 7078–7085.PubMedGoogle Scholar
  82. Kaniga, K., ‘Ricker, S., Trollinger, D., and Galan, J.E., 1995b, Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells, J. BacterioL 177: 3965–3971.Google Scholar
  83. Kaniga, K., Uralil, J., Bliska, J.B., and Galan, J.E., 1996, A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium, Mol. MicrobioL 21: 633–641.PubMedCrossRefGoogle Scholar
  84. Khoramian, F.T., Harayama, S., Kutsukake, K., and Pechere, J.C., 1990, Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells, Microb. Pathog. 9: 47–53.CrossRefGoogle Scholar
  85. Klimpel, G.R., Asuncion, M., Haithcoat, J., and Niesel, D.W., 1995, Cholera toxin and Salmonella typhimurium induce different cytokine profiles in the gastrointestinal tract, Infect. Immun. 63: 1134–1137.PubMedGoogle Scholar
  86. Kohbata, S., Yokoyama, H., and Yabuuchi, E., 1986, Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer’s Patches in ligated ileal loops: An ultra-structural study, Microbiol. Immunol. 30: 1225–1237.PubMedGoogle Scholar
  87. Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J.E.; and Aizawa, S.-I.,1998, Supramolecular structure of the Salmonella typhimurium type III protein secretion system, Science 280: 602–605.Google Scholar
  88. Leclerc, G.J.,Tartera, C., and Metcalf, E.S., 1998, Environmental regulation of Salmonella typhi invasion-defective mutants, Infect. Immun. 66: 682–691.Google Scholar
  89. Lee, C.A., 1996, Pathogenicity islands and the evolution of bacterial pathogens, Inf. Agents Dis. 5: 1–7.Google Scholar
  90. Lee, C.A., 1997, Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells, Trends Microbiol. 5: 148–156.PubMedCrossRefGoogle Scholar
  91. Lee, C.A., and Falkow, S., 1990, The ability of Salmonella to enter mammalian cells is affected by bacterial growth state, Proc Nall Acad Sci USA 87: 4304–4308.CrossRefGoogle Scholar
  92. Lee, C.A., Jones, B.D., and Falkow, S., 1992, Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants, Proc Natl Acad Sci USA 89: 1847–1851.PubMedCrossRefGoogle Scholar
  93. Li, J., Ochman, H., Groisman, E.A., Boyd, E.F., Solomon, E, Nelson, K., and Selander, R.K., 1995, Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica, Proc. NatL Acad. Sci. USA 92: 7252–7256.PubMedCrossRefGoogle Scholar
  94. Liu, S.-L., Ezaki, T., Miura, H., Matsui, K., and Yabuuchi, E., 1988, Intact motility as a Salmonella typhi invasion-related factor, Infect. Immun. 56: 1967–1973.PubMedGoogle Scholar
  95. Lockman, H.A., and Curtiss, R.I., 1992, Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever, Infect. Immun. 60: 491–496.PubMedGoogle Scholar
  96. Lodge, J., Douce, G.R., Amin, I.I., Bolton, A.J., Martin, G.D., Chatfield, S., Dougan, G., Brown, N.L., and Stephen, J.,1995, Biological and genetic characterization of TnphoA mutants of Salmonella typhimurium TML in the context of gastroenteritis, Infect. Immun. 63: 762–769.Google Scholar
  97. MacBeth, K.J., and Lee, C.A., 1993, Prolonged inhibition of bacterial protein synthesis abolishes Salmonella invasion, Infect. Immun. 61: 1544–1546.PubMedGoogle Scholar
  98. Madara, J.L., Patapoff, T.W., Gillece-Castro, B., Colgan, S.P., Parkos, C.A., Delp, C., and Mrsny, R.1,1993,5’-Adenosine Monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers, J. Clin. Invest. 91: 2320–2325.Google Scholar
  99. McCormick, B.A., Colgan, S.P., Delp-Archer, C., Miller, S.I., and Madara, J.L., 1993, Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils, J. Cell Biol. 123: 895–907.Google Scholar
  100. McCormick, B.A., Hofman, P.M., Kim, J., Carnes, D.K., Miller, S.I., and Madara, IL., 1995a, Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils, J. Cell Biol. 131: 1599–1608.PubMedCrossRefGoogle Scholar
  101. McCormick, B.A., Miller, S.I., Carnes, D., and Madara, J.L., 1995b, Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis, Infect. Immun. 63: 2302–2309.PubMedGoogle Scholar
  102. McCormick, B.A., Parkos, C.A., Colgan, S.P., Carnes, D.K., and Madara, J.L., 1998, Apical secretion of a pathogen-elicited epithelial chemoattractant activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium, J. Immun!. 160: 455–466.PubMedGoogle Scholar
  103. McNeil, A., Dunstan, S.J., Clark, S., and Strugnell, R.A., 1995, Salmonella typhimurium displays normal invasion of mice with defective epidermal growth factor receptors, Infect. Immun. 63: 2770–2772.Google Scholar
  104. Mellman, I., 1996, Endocytosis and molecular sorting, Annu. Rev. Cell Dev. Biol. 12: 575–625.PubMedCrossRefGoogle Scholar
  105. Ménard, R., Sansonetti, P.J., Parsot, C., and Vasselon, T., 1994, Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri, Cell 79: 515–525.PubMedCrossRefGoogle Scholar
  106. Miller, Si., Hohmann, E.L., and Pegues, D.A., 1995, Salmonella (including Salmonella typhi), in: Principles and practice of infectious disease, (G. L. Mandell, J.E. Bennett, and R. Dolin, eds.) Churchill Livingstone, New York, pp. 2013–2033.Google Scholar
  107. Mills, D.M., Bajaj, V., and Lee, C.A., 1995, A 40kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome, Mol. Microbiol. 15: 749–759.PubMedCrossRefGoogle Scholar
  108. Mills, S.D., and Finlay, B.B., 1994, Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells, Microb. Pathog. 17: 409–423.PubMedCrossRefGoogle Scholar
  109. Mills, S.D., Boland, A., Sory, M.P., van der Smissen, P., Kerbourch, C., Finlay, B.B., and Cornelis, G.R., 1996, Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein, Proc. Natl. Acad. Sci. USA 94: 12638–12643.Google Scholar
  110. Monack, D.M., Raupach, B., Hromockyj, A.E., and Falkow, S., 1996, Salmonella typhimurium invasion induces apoptosis in infected macrophages, Proc. Natl. Acad. Sci. USA 93: 9833–9838.Google Scholar
  111. Monack, D.M., Mecsas, J., Ghori, N., and Falkow, S., 1997, Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death, Proc. Natl. Acad. Sci. USA 94: 10385–10390.Google Scholar
  112. Mroczenski-Wildey, M.J., Di Fabio, J.L., and Cabello, EC., 1989, Invasion and lysis of HeLa cell monolayers by Salmonella typhi: the role of lipopolysaccharide, Microb. Pathog. 6: 143–152.PubMedCrossRefGoogle Scholar
  113. Neutra, M.R., and Kraehenbuhl, J.P., 1993, The role of transepithelial transport by M cells in microbial invasion and host defense, J. Cell Sci. 17: 209–215.Google Scholar
  114. Ochman, H., Soncini, F.C., Solomon, F., and Groisman, E.A., 1996, Identification of a pathogenicity island required for Salmonella survival in host cells, Proc. Natl. Acad. Sci. USA 93: 7800–7804.PubMedCrossRefGoogle Scholar
  115. Pace, J., Hayman, M.J., and Galân, J.E., 1993, Signal transduction and invasion of epithelial cells by S. typhimurium, Cell 72: 505–514.PubMedCrossRefGoogle Scholar
  116. Pascopella, L., Raupach, B., Ghori, N., Monack, D., Falkow, S., and Small, P.L., 1995, Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum, Infect. Immun. 63: 4329–4435.PubMedGoogle Scholar
  117. Pegues, D.A., Hantman, M.J., Behlau, I., and Miller, S.I., 1995, PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion, Mol. Microbiol. 17: 169–181.PubMedCrossRefGoogle Scholar
  118. Penheiter, K.L., Mathur, N., Giles, D., Fahlen, T., and Jones, B.D., 1997, Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s patches, MoL Microbiol. 24: 697–709.PubMedCrossRefGoogle Scholar
  119. Peterson, J.W., Molina, N.C., Houston, C.W., and Fader, R.C., 1983, Elevated cAMP in intesti- nal epithelial cells during experimental cholera and salmonellosis, Toxicon 21: 761–775.PubMedCrossRefGoogle Scholar
  120. Pier, G.B., Grout, M., Zaidi, T., Meluleni, G., Mueschenbom, S.S., Banting, G., Ratcliff, R., Evans, M.J., and Colledge, W.H., 1998, Salmonella typhi uses CFTR to enter intestinal epithelial cells, Nature 393. Google Scholar
  121. Prasad, R., Chopra, A.K., Peterson, J.W., Pericas, R., and Houston, C.W., 1990, Biological and immunological characterization of a cloned cholera toxin-like enterotoxin from Salmonella typhimurium, Microb. Pathog. 9: 315–329.PubMedCrossRefGoogle Scholar
  122. Pugsley, T., 1993, The complete general secretory pathway in gram-negative bacteria, Microbiol. Rev. 57: 50–108.PubMedGoogle Scholar
  123. Reed, K.A., Booth, T.A., Hirst, B.H., and Jepson, M.A., 1996, Promotion of Salmonella typhimurium adherence and membrane ruffling in MDCK epithelia by staurosporine, FEMS Microbiol. Lett. 145: 233–238.PubMedCrossRefGoogle Scholar
  124. Reed, K.A., Clark, M.A., Booth, T.A., Hueck, C.J., Miller, S.I., Hirst, B.H., and Jepson, M.A., 1998, Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1, Infect. Immun. 66: 2007–2017.PubMedGoogle Scholar
  125. Reed, W.M., Olander, H.J., and Thacker, H.L., 1986, Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs, Am. J. Vet. Res. 47: 75–83.PubMedGoogle Scholar
  126. Ridley, A.J., 1994, Membrane ruffling and signal transduction, BioEssays 16:321–327. Rosenshine, I., Ruschkowski, S., Foubister, V., and Finlay, B.B., 1994, Salmonella typhimurium invasion of epithelial cells: role of induced host cell tyrosine protein phosphorylation, Infect. Immun. 62: 4969–4974.Google Scholar
  127. Ruschkowski, S., Rosenshine, I., and Finlay, B.B., 1992, Salmonella typhimurium induces an inositol phosphate flux in infected epithelial cells, FEMS Microbiol. Lett. 95: 121–126.Google Scholar
  128. Schechter, L.M., Damrauer, S.M., and Lee, C.A., Two AraC/XyIS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter, Mol. MicrobioL,in press.Google Scholar
  129. Schiemann, D.A., 1995, Association with MDCK epithelial cells by Salmonella typhimurium is reduced during utilization of carbohydrates, Infect. Immun. 63: 1462–1467.PubMedGoogle Scholar
  130. Schiemann, D.A., and Shope, S.R., 1991, Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle-407 and mouse peritoneal cells in vitro and repression of a major outer membrane protein, Infect. Immun. 59: 437–440.PubMedGoogle Scholar
  131. Selander, R.K., Li, J., and Nelson, K., 1996, Evolutionary genetics of Salmonella enterica, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, ( EC. Neidhardt, R.I. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Schaechter, and E.H. Umbarger, ed.) ASM Press, Washington D.C., pp. 2691–2707.Google Scholar
  132. Smith, H.W., 1967, Observations on experimental oral infection with Salmonella dublin in calves and Salmonella choleraesuis in pigs, J. Pathol. Bacteriol. 93: 141–156.PubMedCrossRefGoogle Scholar
  133. Stein, M.A., Leung, K.Y., Zwick, M., Garcia-del Portillo, F., and Finlay, B.B., 1996, Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells, Mol. Microbiol. 20: 151–164.PubMedCrossRefGoogle Scholar
  134. Stone, B.J., Garcia, C.M., Badger, J.L., Hassett, T., Smith, R.I., and Miller, V.L., 1992, Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells, J. Bacteriol. 174: 3945–3952.PubMedGoogle Scholar
  135. Stossel, T.P., 1993, On the crawling of animal cells, Science 262: 1086–1094.CrossRefGoogle Scholar
  136. Takeuchi, A., 1967, Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium, Am. J. Pathol. 50: 109–136.PubMedGoogle Scholar
  137. Takeuchi, A., and Sprinz, H., 1967, Electron-microscope studies of experimental Salmonella infection in hte preconditioned guinea pig. II. Response of the intestinal mucosa to the invasion by Salmonella typhimurium, Am. J. Pathol. 51: 137–161.PubMedGoogle Scholar
  138. Tang, P., Foubister, V., Pucciarelli, M.G., and Finlay, B.B., 1993, Methods tostudy bacterial invasion, J. Microbiol. Meth. 18: 227–240.CrossRefGoogle Scholar
  139. Tartera, C., and Metcalf, E.S., 1993, Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells, Infect. Immun. 61: 3084–3089.PubMedGoogle Scholar
  140. Tran Van Nhieu, G., Ben-Ze’ev, A., and Sansonetti, P.J., 1997, Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA protein, EMBO J. 16: 2717–2729.CrossRefGoogle Scholar
  141. Wallis, T.S., Starkey, W.G., Stephen, J., Haddon, S.J., Osborne, M.P., and Candy, D.C., 1986, The nature and role of mucosal damage in relation to Salmonella typhimurium-induced fluid secretion in the rabbit ileum, J. Med. Microbiol. 22: 39–49.PubMedCrossRefGoogle Scholar
  142. Wallis, T.S., Hawker, R.J., Candy, D.C., Qi, G.M., Clarke, G.J., Worton, K.J., Osborne, M.P., and Stephen, J., 1989, Quantification of the leucocyte influx into rabbit ileal loops induced by strains of Salmonella typhimurium of different virulence, J. Med. Microbiol. 30: 149–156.PubMedCrossRefGoogle Scholar
  143. Watson, P.R., Paulin, S.M., Bland, A.P., Jones, P.W., and Wallis, T.S., 1995, Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene, Infect. Immun. 63: 2743–2754.PubMedGoogle Scholar
  144. Watson, P.R., Galyov, E.E., Paulin, S.M., Jones, P.W., and Wallis, T.S., 1998, Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle, Infect. Immun. 66: 1432–1438.PubMedGoogle Scholar
  145. Weinstein, D.L., O’Neill, B.L., Hone, D.M., and Metcalf, E.S., 1998, Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells, Infect. Immun. 66: 2310–2318.PubMedGoogle Scholar
  146. Wood, M.W., Rosqvist, R., Mullan, P.B., Edwards, M.H., and Galyov, E.E., 1996, SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry, Mol. Microbiol. 22: 327–338.PubMedCrossRefGoogle Scholar
  147. Wood, M.W., Jones, M.A., Watson, P.R., Hedges, S., Wallis, T.S., and Galyov, E.E., 1998, Identification of a pathogenicity island required for Salmonella enteropathogenicity, Mol. Microbiol. 29: 883–891.PubMedCrossRefGoogle Scholar
  148. Zhou, D., Hardt, W-D., and Galan, J.E., 1997, Identification and characterization of a putative iron transport system in the pathogenicity island in Salmonellatyphimurium, in: The 97th General Meeting of the American Society for Microbiology, Miami, ASM Press, p. 77.Google Scholar
  149. Zierler, M.K., and Galin, J.E., 1995, Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ, Infect. Immun. 63:4024–4028.Google Scholar
  150. Zigmond, S.H., 1996, Signal transduction and actin filament organization, Curr. Opin. Cell Biol. 8: 66–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Lisa M. Schechter
    • 1
  • Catherine A. Lee
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations