The Etiologic Basis of Congestive Heart Failure

  • Joshua M. Hare

Abstract

Appropriate management of congestive heart failure requires recognition of the underlying etiologic basis. Currently, sequelae of ischemic heart disease are the most common causes of congestive heart failure in the United States. Mechanical causes of heart failure, which include coronary artery, valvular, and pericardial disease, must be diagnosed correctly in order to offer appropriate surgical therapy. Primary diseases of the myocardium, ie,cardiomyopathies, account for approximately 20% of cases of congestive heart failure [1]. Many systemic diseases, such as rheumatologic disorders, metabolic derangements, toxin exposures, and endocrinopathies, may affect cardiac function and present as a cardiomyopathy [2]. Although these secondary cardiomyopathies are rare, taken together they represent a significant proportion of new cases of dilated cardiomyopathy. As with mechanical causes, recognition of secondary cardiomyopathies is essential because treatment may result in the reversal of cardiac dysfunction.

Keywords

Ischemia Doxorubicin Fibril Hematoxylin Eosin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manolio TA, Baughman KL, Rodeheffer R, et al Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop). Am J Cardiol 1992, 69:1458–1466.Google Scholar
  2. 2.
    Felker GM, Thompson RE, Hare JM, et al Etiology and long-term survival in unexplained cardiomyopathy. N Engl J Med 2000, 342:1077–1084.Google Scholar
  3. 3.
    Lieberman EB, Hutchins GM, Herskowitz A, et al Clinicopathologic description of myocarditis. J Am Coll Cardiol 1991, 18:1617–1626.Google Scholar
  4. 4.
    Hrobon P, Kuntz KM, Hare JM: Should endomyocardial biopsy be performed for detection of myocarditis? A decision analytic approach. J Heart Lung Transplant 1998, 17: 479–486.PubMedGoogle Scholar
  5. 5.
    Ho KKL, Pinsky JL, Kannel WB, et al The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 1993, 22 (suppl A):6–13.Google Scholar
  6. 6.
    Teerlink JR, Goldhaber SZ, Pfeffer MA: An overview of contemporary etiologies of congestive heart failure. Am J Cardiol 1991, 121: 1852–1853.Google Scholar
  7. 7.
    Zile MR, Brutsaert DL: New concepts in diastolic dysfunction and diastolic heart failure: part II. Causal mechanisms and treatment. Circulation 2002, 105: 1503–1508.PubMedCrossRefGoogle Scholar
  8. 8.
    Gaasch WH, Levine HJ, Quinones NM, et al Left ventricular compliance: mechanisms and clinical implications. Am J Cardiol 1976, 38:645–653.Google Scholar
  9. 9.
    Dorn GW, Robbins J, Sugden PH: Phenotyping hypertrophy: eschew obfuscation. Circ Res 2003, 92: 1171–1175.PubMedCrossRefGoogle Scholar
  10. 10.
    Hare JM, Walford GD, Hruban RH, et al Ischemic cardiomyopathy: endomyocardial biopsy and ventriculographic evaluation of patients with congestive heart failure, dilated cardiomyopathy and coronary artery disease. J Am Coll Cardiol 1992, 20:1318–1325.Google Scholar
  11. 11.
    Alloni A, Rinaldi M, Gazzoli F, D’Armini AM, et al Left ventricular aneurysm resection with port-access surgery: a new mini-invasive surgical approach. Ann Thorac Surg 2003, 75:786–789.Google Scholar
  12. 12.
    Kloner RA, Przyklenk K, Patel B: Altered myocardial states: the stunned and hibernating myocardium. Am J Med 1989, 86 (suppl 1A): 14–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Pagley PR, Beller GA, Watson DD, et al Improved outcome after coronary bypass surgery patients with ischemic cardiomyopathy and residual myocardial viability. Circulation 1997, 96:793–800.Google Scholar
  14. 14.
    Ross J Jr: Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J Am Coll Cardiol 1985, 5: 811–826.PubMedCrossRefGoogle Scholar
  15. 15.
    Morgan DJ, Hall RJ: Occult aortic stenosis as cause of intractable heart failure. Br Med J 1979, 1 (6166): 784–787.PubMedCrossRefGoogle Scholar
  16. 16.
    Kontos GJ Jr, Schaff HV, Gersh BJ, et al Left ventricular function in subacute and chronic mitral regurgitation: effect of function early postoperatively. J Thorac Cardiovasc Surg 1989, 98:163–169.Google Scholar
  17. 17.
    Rozich JD, Carabello BA, Usher BW, et al Mitral valve replacement with and without chordal preservation in patients with chronic mitral regurgitation: mechanisms for differences in postoperative ejection performance. Circulation 1992, 86:1718–1726.Google Scholar
  18. 18.
    Liu CP, Ting CT, Yang TM, et al Reduced left ventricular compliance in human mitral stenosis: role of reversible internal constraint. Circulation 1992, 85:1447–1456.Google Scholar
  19. 19.
    Aretz HT, Bellingham ME, Edwards WD, et al Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol 1986,1:3–14.Google Scholar
  20. 20.
    Jones SR, Herskowitz A, Hutchins GM, et al Effects of immunosuppressive therapy in biopsy-proved myocarditis and borderline myocarditis on left ventricular function. Am J Cardiol 1991, 68:370–376.Google Scholar
  21. 21.
    Chow LH, Radio SJ, Sears TD, et al Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 1989, 14:915–920.Google Scholar
  22. 22.
    Deckers JW, Hare JM, Baughman KL: Complications of transvenous right ventricular endomyocardial biopsy in adult cardiomyopathy patients: a seven year survey of 546 consecutive diagnostic procedures in a tertiary referral center. J Am Coll Cardiol 1992, 19: 43–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Starling RC, VanFossen DB, Hammer DF, et al Morbidity of endomyocardial biopsy in cardiomyopathy. Am J Cardiol 1991, 68:133–136.Google Scholar
  24. 24.
    Eck M, Greiner A, Kandolf R, et al Active fulminant myocarditis characterized by T-lymphocytes expressing the gamma-delta T-cell receptor: a new disease entity? Am J Surg Pathol 1997, 21:1109–1112.Google Scholar
  25. 25.
    Mason JW, O’Connell TB, Herskowitz A, et al A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med 1995, 333:269–275.Google Scholar
  26. 26.
    Hare TM, Baughman KL: Myocarditis: current understanding of the etiology, pathophysiology, natural history and management of inflammatory diseases of the myocardium. Cardiol Rev 1994, 2: 165–173.CrossRefGoogle Scholar
  27. 27.
    Bowles NE, Ni JY, Kearney DL, et al Detection of viruses in myocardial tissues by polymerase chain reaction: evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 2003, 42:466–472.Google Scholar
  28. 28.
    Kuhl U, Pauschinger M, Schwimmbeck PL, et al Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 2003, 107:2793–2798.Google Scholar
  29. 29.
    Kandolf R: The impact of recombinant DNA technology on the study of enterovirus heart disease. In Coxsackieviruses: A General Update. Edited by Bendinelli M, Friedman H. New York: Plenum Publishing; 1988: 293–318.CrossRefGoogle Scholar
  30. 30.
    Kandolf R: Molecular biology of viral heart disease. Herz 1993, 18: 238–244.PubMedGoogle Scholar
  31. 31.
    McCarthy RE, Boehmer JP, Hruban RH, et al Long-term transplant-free survival of patient with fulminant and acute nonfulminant myocarditis. N Engl J Med 2000, 342:690–695.Google Scholar
  32. 32.
    Felker GM, Boehmer JP, Hruban RH, et al Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol 2000, 36:227–232.Google Scholar
  33. 33.
    Dec GW, Palacios I, Yasuda T, et al Antimyosin antibody cardiac imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol 1990, 16:97–104.Google Scholar
  34. 34.
    Meininger GR, Nadasdy T, Hruban RH, et al Chronic active myocarditis following acute Bartonella henselae infection. Am J Surg Pathol 2001, 25:1211–1214.Google Scholar
  35. 35.
    Narula J, Khaw BA, Dec GW, et al Recognition of acute myocarditis masquerading as acute myocardial infarction. N Engl J Med 1993, 328:100–104.Google Scholar
  36. 36.
    Okura Y, Dec GW, Hare JM, et al A clinical and histopathologic comparison of cardiac sarcoidosis and idiopathic giant cell myocarditis. JAm Coll Cardiol 2003, 41:322–328.Google Scholar
  37. 37.
    Cooper LT, Berry GJ, Shabetai R: Idiopathic giant-cell myocarditis: natural history and treatment. N Engl J Med 1997, 336: 1861–1866.CrossRefGoogle Scholar
  38. 38.
    Johns CJ, Paz H, Kasper EK, et al Myocardial sarcoidosis: course and management. Sarcoidosis 1992, 9(suppl 1):231–236.Google Scholar
  39. 39.
    Kounis NG, Zavras GM, Soufras GD, et al Hypersensitivity myocarditis. Ann Allergy 1989, 62:71–73.Google Scholar
  40. 40.
    Murphy JG, Wright RS, Bruce GK, et al Eosinophilic-lymphocytic myocarditis after smallpox vaccination. Lancet 2003, 362:1378–1380.Google Scholar
  41. 41.
    Ardehali H, Qasim A, Cappola T, et al Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 2004, 147:919–923.Google Scholar
  42. 42.
    Felker GM, Jaeger CJ, Klodas E, et al Myocarditis and long-term survival in peripartum cardiomyopathy. Are Heart J 2000, 140:785–791.Google Scholar
  43. 43.
    Jin O, Sole MJ, Butany JW, et al Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation 1990, 82:8–16.Google Scholar
  44. 44.
    Wijetunga M, Rockson S: Myocarditis in systemic lupus erythematosus. Am J Med 2002, 113: 419–423.PubMedCrossRefGoogle Scholar
  45. 45.
    Herskowitz A, Campbell S, Deckers J, et al Demographic features and prevalence of idiopathic myocarditis in patients undergoing endomyocardial biopsy. Am J Cardiol 1993, 71:982–986.Google Scholar
  46. 46.
    Stanek G, Klein J, Bittner R, et al.: Isolation of Borrelia burgdorferi from the myocardium of a patient with longstanding cardiomyopathy. N Engl J Med 1990, 322: 249–252.PubMedCrossRefGoogle Scholar
  47. 47.
    Kirchhoff LV: American trypanosomiasis (Chagas’ disease): a tropical disease now in the United States. N Engl J Med 1993, 329: 639–644.PubMedCrossRefGoogle Scholar
  48. 48.
    Morris SA, Tanowitz HB, Wittner M, et al.: Pathophysiologic insights into the cardiomyopathy of Chagas’ disease. Circulation 1990, 82: 1900–1909.PubMedCrossRefGoogle Scholar
  49. 49.
    Bestetti RB, MucciIto G: Clinical course of Chagas’ heart disease: a comparison with dilated cardiomyopathy. hrt J Cordial 1997, 60: 187–193.Google Scholar
  50. 50.
    Ladenson PW, Sherman SI, Baughman KL, et al.: Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A 1992, 89: 5251–5255.PubMedCrossRefGoogle Scholar
  51. 51.
    Woeber KA: Thyrotoxicosis and the heart. N Engl J Med 1992, 327: 94–98.PubMedCrossRefGoogle Scholar
  52. 52.
    Lam JB, Shub C, Sheps SG: Reversible dilatation of hypertrophied left ventricle in pheochromocytoma: serial two-dimensional echocardiographic observations. Am Heart J 1985, 109: 613–615.PubMedCrossRefGoogle Scholar
  53. 53.
    Imperato-McGinley J, Gautier T, Ehlers K, et al Reversibility of catecholamine-induced dilated cardiomyopathy in a child with pheochromocytoma. N Engl J Med 1987, 316:793–797.Google Scholar
  54. 54.
    Case records of the Massachusetts General Hospital: Case 15–1988. N Engl J Med 1988, 318: 970–998.Google Scholar
  55. 55.
    Sugihara N, Genda A, Shimizu M, et al.: Intramural coronary angiitis of periarteritis nodosa proved by endomyocardial biopsy. Am Heart J1990, 119: 1414–1416.Google Scholar
  56. 56.
    Follansbee WP, Miller TR, Curtiss EI, et al A controlled clinico-pathologic study of myocardial fibrosis in systemic sclerosis (scleroderma). J Rheumatol 1990, 17:656–662.Google Scholar
  57. 57.
    Alexander EL, Firestein GS, Weiss JL, et al Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis. Ann Intern Med 1986, 105:661–668.Google Scholar
  58. 58.
    Kahan A, Nitenberg A, Foult JM, et al Decreased coronary reserve in primary scleroderma myocardial disease. Arthritis Rheum 1985, 28:637–646.Google Scholar
  59. 59.
    Urbano-Marquez A, Estruch R, Navarro-Lopez F, et al The effects of alcoholism on skeletal and cardiac muscle. N Engl J Med 1989, 320:409–415.Google Scholar
  60. 60.
    Kloner RA, Hale S, Alker K, et al.: The effects of acute and chronic cocaine use on the heart. Circulation 1992, 408: 407–419.CrossRefGoogle Scholar
  61. 61.
    Nysom K, Colan SD, Lipshultz SE: Late cardiotoxicity following anthracyclines therapy for childhood cancer. Prog Pediatr Cardiol 1998, 8: 121–138.CrossRefGoogle Scholar
  62. 62.
    Shan K, Lincoff AM, Young JB: Anthracycline-induced cardiotoxicity. Ann Intern Med 1996, 125: 47–58.PubMedCrossRefGoogle Scholar
  63. 63.
    Feldman AM, Fivush B, Zahka K, et al Congestive cardiomyopathy in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1988, 11:76–79.Google Scholar
  64. 64.
    Perloff JK: Neurologic disorders and heart disease. In Heart Disease, A Textbook of - Cardiovascular Medicine, edn 5. Edited by Braunwald E. Philadelphia: WB Saunders; 1997: 1865–1886.Google Scholar
  65. 65.
    Melacini P, Fanin M, Daniell GA, et al.: Cardiac involvement in Becker muscular dystrophy. J Am Coll Cardiol 1993, 22: 1927–1934.PubMedCrossRefGoogle Scholar
  66. 66.
    Michels VV, Moll PP, Miller FA, et al The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated czardiomyopathy. N Engl J Med 1992, 326:77–82.Google Scholar
  67. 67.
    Berko BA, Swift M: X-linked dilated cardiomyopathy. N Engl J Med 1987, 316: 1186–1191.PubMedCrossRefGoogle Scholar
  68. 68.
    Towbin JA, Hejtmancik JF, Brink P, et al X-linked dilated cardiomyopathy: molecular evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 1993, 87:1854–1865.Google Scholar
  69. 69.
    Muntoni F, Cau M, Ganua A, el al: Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med 1993, 329: 921–925.PubMedCrossRefGoogle Scholar
  70. 70.
    Pistilli D, de Gioia CRT, D’Amati G, et al Detection of deleted mitochondrial DNA in Kearns-Sayre syndrome using laser capture microdissection. Hum Pathol 2003,34:11)58–1061.Google Scholar
  71. 71.
    Geurts J, van den Bosch B, Jacobs L, et al.: DNA microarrays as a method to monitor changes in mitochondria-related gene expression in patients with OXPHOS defects and/or mitochondrial cardiomyopathy. Am J Hum Genet 2001, 69: 578.Google Scholar
  72. 72.
    Marin-Garcia J, Goldenthal MJ, Ananthakrishnan R, et al.: The complete sequence of mtDNA genes in idiopathic dilated cardiomyopathy shows novel missense and tRNA mutations. J Cardiac Failure 2000, 6: 321–329.CrossRefGoogle Scholar
  73. 73.
    Schwartzkopff B, Frenzel H, Breithardt G, et al Ultrastructural findings in endomyocardial biopsy of patients with Kearns-Sayre syndrome. J Am Coll Cardiol 1988, 12:1522–1528.Google Scholar
  74. 74.
    Towbin JA, Bowles NE: The failing heart. Nature 2002, 415: 227–233.PubMedCrossRefGoogle Scholar
  75. 75.
    Westra WH, Hruban RH, Baughman KL, et al Progressive hemochromatotic cardiomyopathy despite reversal of iron deposition after liver transplantation. Ant J Clin Pathol 1993,99:39–44.Google Scholar
  76. 76.
    Flipse TR, Tazelaar HD, Holmes DR Jr: Diagnosis of malignant cardiac disease by endomyocardial biopsy. Mayo Clin Proc 1990, 65: 1415–1422.PubMedCrossRefGoogle Scholar
  77. 77.
    Dubrey SW, Cha K, Skinner, et al Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart 1997,78:74–82.Google Scholar
  78. 78.
    Spirito P, Seidman CE, McKenna WJ, et al.: The management of hypertrophie cardiomyopathy. N Engl J Med 1997, 336: 775.PubMedCrossRefGoogle Scholar
  79. 79.
    Topol EJ, Traill TA, Fortuin NJ: Hypertensive hypertrophie cardiomyopathy of the elderly. N Engl J Med 1985, 312: 277–283.PubMedCrossRefGoogle Scholar
  80. 80.
    Barouch LA, Cappola TP, Harrison RW, et al Combined loss of neuronal and endothelial nitric oxide synthase cause premature mortality and age-related hypertrophie cardiac remodeling in mice. J Mol Cell Cardiol 2003, 35:637–644.Google Scholar

Copyright information

© Springer Science+Business Media New York 2005

Authors and Affiliations

  • Joshua M. Hare

There are no affiliations available

Personalised recommendations