Investigations of Goldfish Color Vision

  • Dean Yager
  • Sylvia Thorpe


There is abundant evidence to suggest that fish have color vision. Early behavioral experiments (von Frisch, 1912, 1913; Wolff, 1925) provided a foundation for subsequent work on the color vision of fish. In 1959, McCleary and Bernstein used classical conditioning of heart rate to demonstrate that goldfish could discriminate colored paper panels of red, green, and blue, independently of brightness. More recently, instrumental “go”—“no-go” and forced-choice discrimination procedures have been employed. These investigations have provided a wavelength discrimination function (Yarczower and Bitterman, 1965), photopic spectral sensitivity functions for different conditions of adaptation (Yager, 1967; 1969), a scotopic spectral sensitivity function (Yager, 1968), and a spectral saturation discrimination function (Yager, 1967). In some of these experiments, brightness has not been properly controlled—a hazard to guard against in assessing the color vision of any species—but recent data demonstrate color vision in goldfish unequivocally.


Spectral Sensitivity Color Vision Psychometric Function Optic Tectum Chromatic Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blough, D. S., and D. Yager. In press. Visual psychophysics in animals. In Hurvich, L., and Jameson, D., eds. Visual Psychophysics, Handbook of Sensory Physiology, Berlin, Springer-Verlag, vol. VII, part 3.Google Scholar
  2. Boynton, R. 1966. Vision. In Sidowski, J., ed. Experimental Methods and Instrumentation in Psychology, New York, McGraw-Hill Book Company, pp. 273–330.Google Scholar
  3. Burkhardt, D. 1966. The goldfish ERG: Relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Res., 6:517–532.PubMedCrossRefGoogle Scholar
  4. DeValois, R., and G. Jacobs. 1968. Primate color vision. Science, 162:533–540.CrossRefGoogle Scholar
  5. Frisch, K. von. 1912. Sind die Fische farbenblind? Zool. Jahrb. Abt. allg. Zool. Physiol. Tiere, 33:151–164.Google Scholar
  6. Frisch, K. von. 1913. Weitere Untersuchungen über den Farbensinn der Fische. Zool. Jahrb. Abt. allg. Zool. Physiol. Tiere, 34:43–68.Google Scholar
  7. Hering, E. 1964. Outlines of a Theory of the Light Sense. Translated by Hurvich, L. and Jameson, D. Cambridge, Harvard University Press.Google Scholar
  8. Hogan, J., and P. Rozin. 1962. An improved mechanical fish-lever. Amer. J. Psychol., 75:307–308.PubMedCrossRefGoogle Scholar
  9. Hurvich, L., and D. Jameson. 1957. An opponent-process theory of color vision. Psychol. Rev., 64:384–404.PubMedCrossRefGoogle Scholar
  10. Jacobson, M. 1964. Spectral sensitivity of single units in the optic tectum of the goldfish. Quart. J. Exp. Physiol., 49:384–393.PubMedGoogle Scholar
  11. Jameson, D., and L. Hurvich. 1955. Some quantitative aspects of an opponent colors theory. I. Chromatic responses and spectral saturation. J. Opt. Soc. Amer., 45:546–552.CrossRefGoogle Scholar
  12. Jameson, D., and L. Hurvich. 1968. Opponent-response functions related to measured cone photopigments. J. Opt. Soc. Amer., 58:429–430.CrossRefGoogle Scholar
  13. Kelleher, R. 1958. Stimulus-producing responses in chimpanzees. J. Exp. Anal. Behav., 1:87–102.PubMedCrossRefGoogle Scholar
  14. Liebman, P., and G. Entine. 1964. Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones. J. Opt. Soc. Amer., 54: 1451–1459.CrossRefGoogle Scholar
  15. MacNichol, E., M. Wolbarsht, and H. Wagner. 1961. Electrophysiological evidence for a mechanism of color vision in the goldfish. In McElroy, W., and Glass, B., eds. Light and Life, Baltimore, Johns Hopkins Press, pp. 795–813.Google Scholar
  16. McCleary, R., and J. Bernstein. 1959. A unique method for control of brightness cues in the study of color vision in fish. Physiol. Zool., 32:284–292.Google Scholar
  17. Marks, W. 1965. Visual pigments of single goldfish cones. J. Physiol., 178:14–32.PubMedGoogle Scholar
  18. Wagner, H., E. MacNichol, and M. Wolbarsht. 1960. The response properties of single ganglion cells in the goldfish retina. J. Gen. Physiol., 43:Suppl. 2, 45–62.PubMedCrossRefGoogle Scholar
  19. Wolff, H. 1925. Das Farbenunterscheidungsvermögen der Ellritze. Z. vergl. Physiol., 3:279–329.CrossRefGoogle Scholar
  20. Yager, D. 1967. Behavioral measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish, Carassius auratus. Vision Res., 7:707–727.PubMedCrossRefGoogle Scholar
  21. Yager, D. 1968. Behavioral measures of the spectral sensitivity of the dark-adapted goldfish. Nature, 220:1052–1053.PubMedCrossRefGoogle Scholar
  22. Yager, D. 1969. Behavioral measures of spectral sensitivity in the goldfish following chromatic adaptation. Vision Res., 9:179–186.PubMedCrossRefGoogle Scholar
  23. Yarczower, M., and M. Bitterman. 1965. Stimulus generalization in the goldfish. In Mostofsky, D., ed. Stimulus Generalization, Stanford, Stanford University Press, pp. 179–192.Google Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • Dean Yager
    • 1
  • Sylvia Thorpe
    • 1
  1. 1.Psychology DepartmentBrown UniversityProvidenceUSA

Personalised recommendations