Advertisement

Fusion as an Opportunity for Calorimetrically Probing Polymer Conformations and Interactions in the Bulk State

  • Alan E. Tonelli

Abstract

It is a well documented1 fact that the fusion or melting of crystalline polymers is a first-order phase transition “between two polymeric states in equilibrium: the crystalline and molten amorphous, or liquid states. Consequently, the melting temperature Tm is well defined and given by
$$ \mathop T\nolimits_m = \Delta \mathop H\nolimits_u /\Delta \mathop S\nolimits_u $$
(1)
where ΔH and ΔS are the differences between the enthalpy and entropy, respectively, of the crystalline and molten polymer phases in equilibrium at T. Unlike calorimetric studies of the glass transition in polymers, for example, whose interpretations in terms of polymer chain conformations and interactions suffer from a lack of knowledge of the state of the polymer chains both above and below this transition, because the polymer chains may not be in equilibrium, 2 the fusion process affords an opportunity for studying the effect of molecular structure on the melting temperature and, more importantly, upon both components of the ratio ΔHuSu which determine Tm.

Keywords

Rotational State Isotactic Polypropylene Bulk State Conformational Entropy Ether Oxygen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mandelkern, “Crystallization of Polymers, ” McGraw-Hill Book Co., New York, 1964, Chaps. 1, 2, 5, 9.Google Scholar
  2. 2.
    M. C Shen and A. Eisenberg, Prog. Solid State Chem., 3, 407 (1966).CrossRefGoogle Scholar
  3. 3.
    P. J. Flory, International Symposium on Macromolecules, Helsinki, July, 1972.Google Scholar
  4. 4.
    P. J. Flory, “Principles of Polymer Chemistry, ” Cornell University Press, Ithaca, New York, 1953; Chaps. 10, 14.Google Scholar
  5. 5.
    L. Mandelkern, Chem. Rev., 56, 903 (1956).CrossRefGoogle Scholar
  6. 6.
    H. W. Starkweather, Jr., and R. H. Boyd, Jr., J. Phys. Chem., 64, 410 (1960).CrossRefGoogle Scholar
  7. 7.
    J. C. Slater, “Introduction to Chemical Physics, ” McGraw-Hill Book Co., New York, 1939.Google Scholar
  8. 8.
    R. A. Oriani, J. Chem. Phys., 19, 93 (1951).CrossRefGoogle Scholar
  9. 9.
    A. E. Woodward, A. Odajima and J. A. Sauer, J. Phys. Chem., 65, 1384 (1961).CrossRefGoogle Scholar
  10. 10.
    K. S. Chan, G. Ranby, H. Brumberger, and A. Odajima, J. Poly. Sci., 61, 529 (1962).CrossRefGoogle Scholar
  11. 11.
    I. Kirshenbaum, R. B. Isaacson, and W. G. Feist, J. Poly. Sci., Part B, 2, 897 (1964).CrossRefGoogle Scholar
  12. 12.
    T. L. Hill, “Introduction to Statistical Thermodynamics, Addison-Wesley Publishers, Inc., Reading, Mass., 1960, Chap. 1.Google Scholar
  13. 13.
    M. V. Volkenstein, “Configurational Statistics of Polymeric Chains, ” English Translation, Interscience Publishers, Inc., New York, 1963, Chap. 3.Google Scholar
  14. 14.
    P. J. Flory, “Statistical Mechanics of Chain Molecules, ” Interscience Publishers, Inc., New York, 1969, Chaps. I, III-VI.Google Scholar
  15. 15.
    P. J. Flory and R. L. Jernigan, J. Chem. Phys., 42, 3509 (1965).CrossRefGoogle Scholar
  16. 16.
    P. J. Flory, Proc. Roy. Soc., Ser. A, 234, 60 (1956).CrossRefGoogle Scholar
  17. 17.
    F. A. Quinn, Jr., and L. Mandelkern, J. Am. Chem. Soc., 80, 3187 (1958).CrossRefGoogle Scholar
  18. 18.
    J. G. Fatou, Eur. Polym. J., 7, 1057 (1971).CrossRefGoogle Scholar
  19. 19.
    G. C. Fortune and G. N. Malcolm, J. Phys. Chem., 71, 876 (1967).CrossRefGoogle Scholar
  20. 20.
    P. E. Roberts and L. Mandelkern, J. Am. Chem. Soc., 77, 781 (1955).CrossRefGoogle Scholar
  21. 21.
    L. Mandelkern, F. A. Quinn, Jr. and P. E. Roberts, J. Am. Chem. Soc, 78, 926 (1956).CrossRefGoogle Scholar
  22. 22.
    I. Kirshenbaum, J. Polym. Sci., Part A, 3, 1869 (1965).Google Scholar
  23. 23.
    G. N. Malcolm and G. L. P. Ritchie, J. Phys. Chem., 66, 852 (1962).CrossRefGoogle Scholar
  24. 24.
    G. Allen, J. Appl. Chem., 14, 1 (1967).CrossRefGoogle Scholar
  25. 25.
    S. Y. Hobbs and F. W. Billmeyer, Jr., J. Poly. Sci., Part A-2,. 8, 1387 (1970).CrossRefGoogle Scholar
  26. 26.
    E. S. Clark and L. T. Muus, Z. Krist., 117, 119 (1962).CrossRefGoogle Scholar
  27. 27.
    A. E. Tonelli, J. Chem. Phys., 52, 4749 (1970).CrossRefGoogle Scholar
  28. 28.
    Yu. A. Ovchinnikov, G. S. Markova and V. A. Kargin, Polymer Sci., (USSR), 11, 369 (1969).CrossRefGoogle Scholar
  29. 29.
    A. E. Tonelli, J. Chem. Phys., 53, 4339 (1970).CrossRefGoogle Scholar
  30. 30.
    A. E. Tonelli, Macromolecules, 5, 563 (1972).CrossRefGoogle Scholar
  31. 31.
    A. Abe, R. L. Jernigan and P. J. Flory, J. Am. Chem. Soc., 88, 631 (1966).CrossRefGoogle Scholar
  32. 32.
    P. J. Flory, J. E. Mark and A. Abe, ibid, 88, 639 (1966); J. Poly. Sci., Part C, No. 3 973 (1965).CrossRefGoogle Scholar
  33. 33.
    A. Abe, Polymer J., 1, 232 (1970); J. Am. Chem. Soc., 90, 2205 (1968).CrossRefGoogle Scholar
  34. 34.
    P. J. Flory, Macromolecules, 3, 613 (1970).CrossRefGoogle Scholar
  35. 35.
    F. Heatley, Polymer, 13, 218 (1972).CrossRefGoogle Scholar
  36. 36.
    R. H. Boyd and S. M. Breitling, Macromolecules, 5, 279 (1972).CrossRefGoogle Scholar
  37. 37.
    P. J. Lory, J. Poly. Sci., Part A-2, 11, 621 (1973).Google Scholar
  38. 38.
    A. E. Tonelli, J. Chem. Phys., 54, 4637 (1971).CrossRefGoogle Scholar
  39. 39.
    F. Rybniker, Chem. Listz, 52, 1024 (1948).Google Scholar
  40. 40.
    R. P. Evans, H. R. Mighton and P. J. Flory, J. Am. Chem. Soc., 72, 2018 (1950).CrossRefGoogle Scholar
  41. 41.
    G. B. Geschele and L. Crescentini, J. Appl. Polymer Sci., 7, 1349 (1963).CrossRefGoogle Scholar
  42. 42.
    A. E. Tonelli, Macromolecules, 5, 558 (1972); ibid, 6, 503 (1973).CrossRefGoogle Scholar
  43. 43.
    J. M. O’Reilly and F. E. Karasz, J. Poly. Sci., Part C, 14, 49 (1966).Google Scholar
  44. 44.
    F. E. Karasz, J. M. O’Reilly, H. E. Bair and R. A. Kluge, ”Analytical Colorimetry, ” R. S. Porter and J. F. Johnson, Eds., Plenum Press, New York, 1968, p. 59; J. Poly. Sci., Part A-2, 6, 1141 (1968).CrossRefGoogle Scholar
  45. 45.
    A. R. Shultz and C. R. McCullough, ibid, 7, 1977 (1969); ibid, 10, 307 (1972).Google Scholar
  46. 46.
    W. Wrasidlo, Macromolecules, 4, 642 (1971); J. Poly. Sci., Part A-2, 10, 1719 (1972).CrossRefGoogle Scholar
  47. 47.
    J. M. Barrales-Rienda and J. G. M. Fatou, Kolloid-Z.U.Z. Polymere, 244, 317 (1971).CrossRefGoogle Scholar
  48. 48.
    J. Boon and E. P. Magre, Makromol. Chem., 126, 130 (1960); ibid, 136, 267 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Alan E. Tonelli
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations