Advertisement

Steady State Technique for Low Temperature Heat Capacity of Small Samples

  • R. Viswanathan

Abstract

Reported here is an elegant method based on steady state or ac calorimetry technique, using laser beam as heat source, to measure absolute heat capacity of tiny samples of mass l-100mgm. The results on high purity copper, gold, nickel and isotopes of molybdenum are given to show that the absolute accuracy of this method is ~ ± 2%, at least comparable, if not better than conventional heat pulse techniques, which require bulky samples ~ 100 times larger. The possible variations of this method will also be discussed.

Keywords

Heat Capacity Heat Capacity Measurement Copper Block Focal Length Lens Mechanical Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Keesom and N. Pearlman, Methods in Experimental Physics, Ed. K. Lark’-Horovitz and V. A. Johnson, Academic Press, N. Y. (1959), Vol. 6, Part A, Sec. 5.1.2.1.Google Scholar
  2. 2.
    C. A. Luengo, Ph.D. Thesis, Universidad Nacional de Cuyo, San Carlos de Bariloche Argentina (1972).Google Scholar
  3. 3.
    Y. A. Kraftmakher, Zh. Prikl. Mekhan. i. Tekhn. Fiz. 5, 176 (1962).Google Scholar
  4. 4.
    P. F. Sullivan and G. Seidel, Phys. Rev. 173, 679 (1968).CrossRefGoogle Scholar
  5. 5.
    R. D. Hempstead, Ph.D. Thesis, University of Illinois, Urbana (1970).Google Scholar
  6. 6.
    P. Handler, D. E. Mapother and M. Rayl, Phys. Rev. Lett. 19, 356 (1967).CrossRefGoogle Scholar
  7. 7.
    D. S. Simons, Ph.D. Thesis, University of Illinois, Urbana (1973).Google Scholar
  8. 8.
    L. L. Sparks and W. J. Hall, Cryogenic Temperature Tables III, NBS Report 9721 (1969), pp. 16.Google Scholar
  9. 9.
    G. T. Furukawa, W. G. Saba and M. L. Reilly, National Standard Ref. Data Series, NBS18, April 1968, pp. 20.Google Scholar
  10. 10.
    D. W. Osborne, H. E. Flowtow and F. Schreiner, Rev. Sci. Instrum. 38, 159 (1967).CrossRefGoogle Scholar
  11. 11.
    F. Heiniger, E. Bucher and J. Müller, Phys. Kondens. Materie. 5, 243 (1966).Google Scholar
  12. 12.
    R. Viswanathan, H, L. Luo and J. J. Engelhardt, Proc. 13th International Conf. on Low Temp. Phys. (LT-13), 1972 (in press).Google Scholar
  13. 13.
    E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press. N. Y. (1966), pp. 34.CrossRefGoogle Scholar
  14. 14.
    R. Bachmann, F. J. Disalvo, Jr., T. H. Geballe, R. L. Greene, R. E. Howard, C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H. U. Thomas and R. B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972).CrossRefGoogle Scholar
  15. 15.
    R. Viswanathan and C. T. Wu, (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • R. Viswanathan
    • 1
  1. 1.Department of Applied Physics and Information ScienceUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations