Advertisement

The Dissociation Energy of NiO and Vaporization and Sublimation Enthalpies of Ni

  • Milton Farber
  • R. D. Srivastava

Abstract

The vaporization thermodynamics of nickel oxide have been controversial for a number of years. Johnston and Marshall (1) determined the vaporization of NiO by heating a nickel ring coated with the oxide in a high vacuum. They assumed that the only species which transported oxygen was NiO(g). From these weight loss data in the temperature range 1438 to 1566 K, Johnston and Marshall calculated a ΔHo of 117.05 ± 1 kcal/mole for the heat of sublimation of NiO(s). Subsequently, Brewer and Mastick (2) re-examined the data of Johnston and Marshall and concluded that the O2 pressures calculated would agree with a treatment of their data of the vaporization of NiO(g) to O2 instead of NiO(g). Thus Brewer and Mastick determined that the dissociation mechanism is the only hypothesis which fits the data of Johnston and Marshall. Brewer and Mastick also performed three effusion experiments of NiO in a beryllium crucible at temperatures of 1816 K and 1782 K. From an analysis of the effused material they found that vaporization by dissociation is the chief method by which NiO vaporizes. They therefore concluded that the vapor pressure data of Johnston and Marshall would be an upper limit; they calculated a Do of NiO(g) of ≤ 99 kcal/mole.

Keywords

Nickel Oxide Mass Spectrometric Study Weight Loss Data Vapor Pressure Data Ionize Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. L. Johnston and A. L. Marshall, J.Am.Chem.Soc. 62, 1383 (1940).CrossRefGoogle Scholar
  2. 2.
    L. Brewer and D. F. Mastick, J.Chem.Phys. 19, 834 (1951).CrossRefGoogle Scholar
  3. 3.
    L. Huldt and A. Lagerquist, Z.Naturforsch 9a, 358 (1954).Google Scholar
  4. 4.
    R. T. Grimley, R. P. Burns and M. G. Inghram, J.Chem.Phys. 35, 551 (1961).CrossRefGoogle Scholar
  5. 5.
    E. A. Gulbransen and K. F. Andrew, J. Metals 11, 71 (1959).Google Scholar
  6. 6.
    J. P. Morris, G. R. Zellars, S. L. Payne and R. L. Kipp, U.S. Bur. of Mines Report 5364 (1957).Google Scholar
  7. 7.
    G. Bryce, J. Chem. Soc. 2, 1517 (1936).CrossRefGoogle Scholar
  8. 8.
    H. A. Jones, I. Langmuir and G. M. J. Mackay, Phys. Rev. 30, 201 (1927).CrossRefGoogle Scholar
  9. 9.
    E. Rutner and G. L. Haury, Tech. Report AFML-TR-72–217 (1973).Google Scholar
  10. 10.
    R. Hultgren, R. L. Orr, P. D. Anderson and K. K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley & Sons (1963).Google Scholar
  11. 11.
    D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements, Adv. Chem. Series No. 18 (ACS, Washington D. C. 1956).Google Scholar
  12. 12.
    R. A. Oriani and T. S. Jones, Rev.Sci.Inst. 25, 248(1954).CrossRefGoogle Scholar
  13. 13.
    F. Wust, A. Meuther and R. Durrer, Forsch.Gebiete Ingenieurw. VDI-Forschungsh. 204 (1918).Google Scholar
  14. 14.
    J. L. Margrave, Faraday Discussions of the Chemical Society, Symposium No. 8, to be published.Google Scholar
  15. 15.
    M. Farber, M. A. Frisch and H. C. Ko, Trans. Faraday Soc. 65, 3202 (1969).CrossRefGoogle Scholar
  16. 16.
    M. Farber and M. A. Frisch, First Int’l. Conf. Calorimetry and Thermodynamics, Warsaw, Poland, Aug. 1969, Proceedings, pp 443–456.Google Scholar
  17. 17.
    M. Farber, C.M. Uy and R. D. Srivastava, J.Chem. Phys. 56, 5312 (1972).CrossRefGoogle Scholar
  18. 18.
    U.S. Dept. of Commerce, Nat. Bur. of Standards Publ. NSRDS-NBS 2 6, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, (1969).Google Scholar
  19. 19.
    J. B. Mann, J. Chem. Phys. 46, 1646 (1967).CrossRefGoogle Scholar
  20. 20.
    S. Lin and F. E. Stafford, J. Chem. Phys. 47, 4667 (1967).CrossRefGoogle Scholar
  21. 21.
    R. F. Pottie, J.Chem. Phys. 44, 916(1966).CrossRefGoogle Scholar
  22. 22.
    J. W. Otvos and D. P. Stevenson, J.Am.Chem.Soc. 78, f 546 (1956).CrossRefGoogle Scholar
  23. 23.
    M. Farber and R. D. Srivastava, J.C.S. Faraday I, 69, 390 (1973).CrossRefGoogle Scholar
  24. 24.
    A. C. H. Smith, E. Caplinger, R. H. Neynaber, E. W. Rothe and S. M. Trujills, Phys. Rev. 127, 1674(1962).Google Scholar
  25. 25.
    R. E. Honig, J. Chem. Phys. 22, 126 (1968).Google Scholar
  26. 26.
    J. Drowart and P. Goldfinger, Angnew. Chem. 6, 581 (1967).CrossRefGoogle Scholar
  27. 27.
    M. G. Inghram, R. J. Hayden, and D. C. Hess, Nat. Bur. of Standards Circ. 522, 257 (1953).Google Scholar
  28. 28.
    M. Farber, R. D. Srivastava and O. M. Uy, J.C.S. Faraday I, 68, 249 (1972).CrossRefGoogle Scholar
  29. 29.
    L. Brewer and M. S. Chandrasekharaiah, UCRL-8713, (Rev.) (1960).Google Scholar
  30. 30.
    C. K. Crawford and K. L. Wang, J.Chem.Phys. 47, 4667 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Milton Farber
    • 1
  • R. D. Srivastava
    • 1
  1. 1.Space Sciences, Inc.MonroviaUSA

Personalised recommendations